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Abstract. This study numerically investigates 
uid 
ow and heat transfer enhancement
of a two-dimensional developing laminar 
ow in an axisymmetric pipe with partially �lled
porous material attached to the wall. The e�ects of porous layer in the range of 0 � �=R < 1
and Darcy number in the range of 10�6 � Da � 10�4 are investigated. It is found that
thermal entrance length increases with porous layer thickness and is longer than a plain
pipe. In addition, the dependence of Nusselt number on the thickness of the porous layer
is not monotonic. A critical value of the porous layer thickness exists at which the Nusselt
number value reaches the minimum. As the porous layer is thickening, more 
uid is pushed
towards the middle of the pipe and less 
uid goes through the porous layer in comparison
with the case that the porous layer is located in the center. In this case, the heat convection
is reduced relative to heat conduction due to the physical contact between the solid matrix
and the wall surface.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Heat transfer and transport phenomena in porous
media are important processes in many engineering
applications such as heat exchanger, electronic cooling,
oil extraction, chemical catalytic reactors, and ther-
mal insulations. It is generally known that partially
�lling a conduit with saturated porous media leads
to the conclusion that higher heat transfer rate in a
forced convection can be achieved at the expense of
a reasonable pressure drop. However, the penalty of
the pressure drop will be signi�cant if the conduit
is fully �lled with porous media. Recently, porous
media have been employed to promote heat transfer
in thermal systems and this has received considerable
attention [1-3]. The e�ects of a random porosity
model on heat transfer performance of porous media
are numerically demonstrated by Fu and Huang [4].
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Deng and Martinez [5] numerically and analytically
considered two-dimensional 
ow for partially �lled
porous channel under wall suction. The numerical
investigation of Yucel and Guven [6] on convection
cooling enhancement of heated elements in a parallel-
plate channel using porous inserts shows that heat
transfer can be enhanced by using high thermal con-
ductivity of porous medium. Also, the pressure drop
increases rapidly along the channel with increase in the
Reynolds number. Erdogan and Imrak [7] considered
fully laminar 
ow of an incompressible viscous 
uid in a
uniformly porous pipe with suction and injection. They
expressed the velocity �led in a series form in terms of
the modi�ed Bessel function of the �rst kind of order n.
They found that 
ow properties depend on the suction
velocity and for large values of suction velocity, the

ow near the region of the suction shows a boundary-
layer character. In this region, the velocity and the
vortices vary sharply. Jiang and Ren [8] numerically
investigated forced-convection heat transfer in porous
media using a thermal non-equilibrium model. Their
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results indicated that the convection heat transfer in
porous media can be predicted numerically by using
the thermal non-equilibrium model with the ideal
constant-wall heat-
ux boundary condition. Alazmi
and Vafai [9] numerically studied constant-wall heat-

ux boundary conditions in porous media under lo-
cal thermal non-equilibrium conditions. Tzeng [10]
experimentally and numerically examined the forced-
convection heat transfer in a rectangular channel �lled
with sintered bronze beads and periodically spaced
heat blocks. The result indicated that such arrange-
ment can be used to improve the cooling performance
of heated blocks, where the blocks are used to simulate
heated electronic components, by sintered metallic
porous media. Aguilar-Madera [11] presented the
modeling of momentum and heat transfer in parallel-
plate channels partially �lled with a porous insert using
a one-domain approach. With this methodology, they
avoided specifying the boundary conditions at the 
uid
porous insert boundary at the cost of solving more
complicated transport models. Wu et al. [12] took
advantage of longitudinal vortex generator and slit to
simulate heat transfer and 
uid 
ow characteristics of
composite �n numerically. Their computational results
show that composite �n can improve the synergy of
temperature gradient and velocity �elds, and its equiv-
alent thermal resistance is smaller and its irreversibility
of heat transfer is lower. Eiamsa-ard et al. [13] and Bas
and Ozceyhan [14] enhanced heat transfer in tubes by
inserting twisted tapes. They stated that the optimum
tradeo� between the enhancement of heat transfer and
increasing of friction are obtained from a critical value
between their ratio. Yang et al. [15] performed the heat
transfer performance assessment for forced convection
in a heated tube partially �lled with a porous material
in the core and attached to the wall. It was found that
the local thermal non-equilibrium analysis was essential
for the case of forced convection in a tube with a heated
wall surface covered with a porous medium layer. On
the other hand, the local thermal equilibrium analysis
su�ced to capture transport phenomena for the case
of forced convection in a tube with a porous medium
core. In a comparatively low range of pumping power,
the heat transfer performance of the tube with a porous
medium core is higher than that of the tube with a wall
covered with a porous medium layer. However, in a
high range of pumping power, the latter performance
exceeds the former. Poulikakos and Kazmierczak [16]
presented a theoretical study of fully developed forced
convection in a channel and a circular pipe partially
�lled with a porous matrix attached to the wall. Both
cases of constant-wall heat 
ux and constant-wall tem-
perature were studied. Of particular importance is the
�nding that the dependence of Nu on the thickness of
the porous layer is not monotonic. A critical thickness
exists at which the value of Nu reaches the minimum.

The present work numerically investigates a devel-
oping laminar forced-convection heat transfer in a pipe
with partially �lled porous medium. The pipe wall is
under suction and at constant temperature. The e�ects
of thermal entrance length, thickness of the porous
layer, and Darcy number on the rate of heat transfer
and on the pressure drop are discussed.

2. Problem statement and formulation

Let us assume that a laminar air 
ow enters a partially
�lled porous pipe with radius R and length L at
uniform velocity uin and temperature Tin (Figure 1).
The wall of the pipe is reticulated at temperature Tw
and under suction. The air 
ow can leave the pipe
both at the outlet and through the wall at atmospheric
pressure. The porosity and permeability of the porous
layer are assumed to be � and K, respectively, with
thickness � in the range of 0 < � < R. The porous
layer can be placed at the center or on the wall and
extends inward, toward the center line.

2.1. Mass and momentum equations
To present the model equations in one-domain ap-
proach, a single set of unsteady transport equations
including mass and momentum applicable for the entire
domain comprising the clear 
uid and porous layer is
given as follows [17]:
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Figure 1. Schematic of the porous pipe with distribution
of suction velocity through the wall.
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The corresponding momentum equations of the clear

uid are determined from Eqs. (2) and (3) when � = 1
and K ! 1, and the corresponding governing equa-
tions of the 
uid phase in the porous layer, referred to
as Brinkman-Forchheimer of Darcy's law, are obtained
if 0 < � < 1 and K = �nite.

The coe�cient �̂f = �f=� is an e�ective liquid
viscosity. Brinkman [18] set �f and ~�f equal to each
other; but, in general, that is not true. Bear and
Bachmat [19] suggested a detailed averaging process
that led to the result: ~�f=�f = 1=�� , for an isotropic
porous medium, where � was a quantity called the
tortuosity of the medium. On the other hand, straight
volume averaging as presented by Ochoa-Tapia and
Whitaker [20] gives ~�f=�f = 1=�. u and v are averaged
velocity of the 
uid taken with respect to a volume ele-
ment of the medium (incorporating both solid and 
uid
materials) in z- and r-direction, respectively. These
quantities have been given various names, by di�erent
authors, such as Darcy velocity and super�cial velocity.
P is pressure and denotes an intrinsic quantity and that
Darcy's equation is not a balance of forces averaged
over a representative elementary volume. Also, CF is a
dimensionless form-drag constant and according to the
results of Handley and Heggs [21], its value approaches
zero when the porous Reynolds number is of order one
or less. Beavers et al. [22] showed that the bounding
walls could have a substantial e�ect on the value of CF
and found that their data correlated fairly well with
the expression CF = 0:55(1�5:5d=De), in which d was
the diameter of their sphere and De was the equivalent
diameter of the bed de�ned in terms of the height,
h, and width, w, of the bed by De = 2hw=(h + w).
The coe�cient, K, is called the speci�c or intrinsic
permeability and is independent of the nature of the

uid, but it depends on the geometry of the medium.
It is in general a second-order tensor. For the case of an
isotropic medium, it is a scalar quantity and its value
for natural materials varies widely with dimension.
If K is determined by the geometry of the medium,
then, clearly, it is possible to calculate K in terms of
the geometrical parameters. For example, in the case
of beds of particles or �bbers, one can introduce an
e�ective average particle or �ber diameter dpe�. The
hydraulic radius theory of Carman-Kozey leads to the
relationship:

K =
d2

pe��3

150(1� �)2 ; (4)

where:
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f(dp) is the density function of the distribution of
diameter dp. The constant 150 in Eq. (4) was obtained
by seeking the best �t with experimental results.

2.2. Energy equation
We start with a simple situation in which the medium
is isotropic and where radiation e�ect, viscous dissipa-
tion, and the work done by pressure changes are absent.
Here, we assume that heat conduction in the 
uid and
solid phases takes place in parallel so that there is no
net heat transfer from one phase to the other. Usually,
it is a good approximation to assume that the solid and

uid phases are in thermal equilibrium; but there are
situations, such as highly transient problem and some
steady-state problems, in which this is not so [23].
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The corresponding energy equation of the clear 
uid is
determined from Eq. (6), where the porosity is � = 1
and the corresponding energy equation of the porous
layer is obtained if 0 < � < 1. Meanwhile, kstag =
�kf +(1��)ks and (�Cp)stag = ��fCpf +(1��)�sCps.
The e�ective thermal conductivity of the 
uid consists
of the stagnant and dispersion components as kfe� =
kf +kdis, which is expressed by empirical correlation of
Wakao and Kaguei [24].
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�
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�

�
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Also, Calmidi and Mahajan [25,26] proposed the fol-
lowing correlations:

kstag = �kf + 0:19ks(1� �)0:763; (8)
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p
K

�
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in which uD is Darcian velocity (uniform inlet velocity).
The Nusselt number is:

Nu =
_q00wD

(Tb � Tw)(kstag + �kdis)
; (10)

where, Tb is the bulk or mean temperature of the
stream across the pipe and is calculated by:
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Z
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3. Boundary conditions

At the interface between the wall and the porous layer
or between a porous layer and a clear 
uid, we can
impose continuity of the normal component of the heat

ux and continuity of the temperature because of the
assumption of local thermal equilibrium.

The corresponding boundary conditions of the
above governing equations are speci�ed as follows:

u(r; 0) = uin; vin(r; 0) = 0; Tf (r; 0) = Tin;
(12a)

@u(r; L)
@z

= 0;
@v(r; L)
@z

= 0;

@Tf (r; L)
@z
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@z
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P (r; L) = P1; (12b)

@u(0; z)
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@Tf (0; z)

@r
= 0;

v(0; z) = 0; p(R; z) = patm; (12c)

u(R; z) = 0; Tf (R; z) = Ts(R; z) = Tw: (12d)

Indices s and f refer to solid and 
uid, respectively.
Since the outside of the pipe is exposed to the atmo-
spheric pressure and is constant along the boundary for
all values of z, @p=@z = 0 and, hence, u = 0 for all z.
Therefore, based on the continuity equation, @u=@z = 0
at r = R. We conclude that:

@v(R; z)
@r

= 0: (13)

4. Numerical method with one-domain
approach

To determine the 
ow variables in the clear 
uid and
in the porous layer, Eqs. (1)-(5) have been solved
numerically in one-domain approach with an interface
zone across which the porosity and permeability are
continuous. In the one-domain approach, the interface
can be either a continuous transition zone across which
the physical variables encounter possibly strong but
nevertheless continuous variations (e.g., Goyeau et
al. [27] and Valdes-Parada et al. [28]) or a discontinuous
interface where the physical variables are possibly
discontinuous (e.g., Silva and de Lemos [29]). Jamet
and Goyeau [30] show that the discontinuous one-
domain approach and the two-domain approach are
mathematically strictly equivalent, provided that the
discontinuous one-domain approach is in the sense of
distributions. On the other hand, the experimental
results of Basu and Khalili [31] show that a one-domain

approach can provide good predictions of interfacial

ow. In this regard, Arquiset et al. [32] used a
harmonic mean formulation of the permeability and
Poulikakos [33] also used a hyperbolic tangent function
to handle the abrupt change in governing parameters.

In this work, a �nite-volume method in one-
domain approach is used to discretize the governing
equations based on a staggered grid with uniform grid
spacing in r- and z-direction. We also used a hyperbolic
tangent function to handle the abrupt change in the
porosity and permeability in the interface zone. The

uid-porous interface is supposed to be located at
the center of the cell interface. Scalars variables are
stored at the center of the mesh cells and variables
of the vectors are stored at the mesh faces. The
second-order upwind di�erencing scheme is used for
convection terms and the central di�erencing scheme
is used for di�usion terms. The pressure and velocity
linked in the momentum equations are solved on the
staggered grid arrangement. Subsequently, the set of
the discretized linear algebraic equations for u; v, and
p are solved using successive line-by-line relaxation by
tri-diagonal matrix algorithm. Either of the algebraic
equations includes only three non-zero coe�cients.
The convergence criterion for solution of equations is
also established by local and global mass and energy
conservations in which their corresponding residuals
are set equal to 10�6.

5. Results and discussion

It is assumed that air 
ow enters a partially �lled
porous pipe with radius R = 2 cm and length L =
50 cm at uniform inlet velocity uin = 0:805 m/s and
temperature Tin = 25�C (see Figure 1). The air 
ow
exits through both the outlet and the permeable wall
of the pipe at temperature Tw = 35�C and atmospheric
pressure. The porous layer is placed in the center or
attached to the pipe wall and extends inward, toward
the centerline. The porous material is made of a
commercial aluminum with physical properties of � =
2770 kg/m3, Cp = 875 J/kg.�K, k = 177 W/m.K, and
porosity of � = 0:7.

Model tests: In order to validate the numerical
results and to show that the results are independent
of the grid size, a number of grids with di�erent sizes
are used. To compare the present results with the
previously published results in the open literature,
Figures 2 and 3 are plotted for the case in which the
porous layer is placed in the center of the pipe without
wall suction. These �gures respectively show the mesh
re�nement and axial velocity at the outlet cross section
of a pipe with radius R = 3:2 cm and length L = 50 cm
for four grid points 8�13, 17�26, 33�51, and 65�101.
It is found that the velocity will be independent grid
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Figure 2. Mesh re�nement for the axial velocity at the
outlet cross section of the pipe and the results of
Mohammad [1] without wall suction.

Figure 3. Axial velocity for di�erent thicknesses of the
porous layer located in the pipe center and the results of
Mohammad [1] without wall suction.

size when the grid points are equal to or greater than
65 � 101. In this �gure, the data of Mohammad [1] is
also given for comparison. The other cases where the
porous layer is attached to the wall have been plotted
in Figures 3-9.

Model results: Figure 3 depicts three axial velocity
pro�les at the outlet cross section of the pipe (z = L)
for two di�erent porous layers (�=R = 0:1; 0:2) located
in the center of the pipe. The third one (�=R = 0)
corresponds to the empty pipe or no porous layer. The
data of Mohammad [1] is also shown for three layers,
i.e. �=R = 0; 0:1 and 0.2. The comparison shows a
good agreement between these three cases. It is worth
noting that the velocity pro�le in the porous layers for
�=R = 0:1, and 0:2 is Darcy 
ow and for the clear pipe
(�=R = 0) is Poiseuille 
ow with maximum speed at
the center of the pipe.

Figure 4 represents the fully developed axial ve-

Figure 4. Pro�les of the developed axial velocity for
di�erent thicknesses of porous layer in the vicinity of the
wall with suction.

Figure 5. Distribution of suction velocity through the
wall for di�erent thicknesses of the porous layer.

locity pro�les for four di�erent porous layer thicknesses
(�=R = 0:2; 0:4; 0:6; 0:8) at the outlet cross section of
the pipe with wall suction. In this case, the porous
layer is attached to the wall. As the porous layer is
thickening, more 
uid is pushed towards the middle of
the pipe and the maximum speed occurs at the center.
In other words, less mass 
ow rate of air goes through
the porous layer in comparison with the case that the
porous layer is located in the central region.

Figure 5 depicts distribution of suction velocity
through the wall for four di�erent thicknesses of porous
layer in the vicinity of the wall (�=R = 0:2; 0:4; 0:6 and
0:8). The coordinates axes have been dimensionless
by the inlet velocity and the length of the pipe. The
discharge velocity increases sharply near the intake
pipe; then, it gradually decreases and eventually
reaches zero. Furthermore, the thicker layer makes the
emptying rate increase. It can be deduced from Darcy
law that emptying rate is proportional to the pressure
gradient.

Figure 6 represents the pressure distribution in
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Figure 6. Distribution of radial pressure in the middle
length of the pipe for di�erent thicknesses of porous layer
attached to the wall with suction.

Figure 7. Thermal entrance length versus the porous
layer thickness with wall suction.

the r-direction and in the middle length of the pipe
for di�erent thicknesses of porous layer attached to the
wall with suction. Each curve consists of two parts,
a vertical part that belongs to the clear 
uid region
with constant pressure and the other part belongs to
the porous layer with a pressure reduction. In the
porous layer, the pressure starts from the atmospheric
pressure at the wall and reaches the pressure of air

ow at the interface between two regions. For instance,
when �=R = 0:6, air pressure in the middle of the pipe
is (p � p1)=�u2

in = 0:19; then, it gradually decreases
across the porous layer and reaches the atmospheric
pressure at the wall.

Figure 7 exhibits the thermal entrance length
against the porous layer thickness. It is found that
the entrance length increases somehow linearly with

Figure 8. Developing local Nusselt number along the
pipe for di�erent porous layer thicknesses attached to the
wall with suction.

porous layer thickness and is approximated by function
of zent=L = 0:135�=R. Thickening of the porous layer
pushes the 
uid towards the middle of the pipe and
more 
uid goes through the clear 
uid region. In other
words, the corresponding Reynolds number increases
and thermal entrance length and, consequently, heat
transfer coe�cient and pressure drop increase as well.

Figure 8 illustrates the developing local Nusselt
number along the pipe for four di�erent porous layer
thicknesses (0:2; 0:4; 0:6; 0:8) and Darcy number of
Da = 10�5. Each curve, after passing a distance
from the inlet pipe, reaches a constant value. This
distance corresponds to the thermal entrance length
and depends on the thickness of the porous layer.

Figure 9 illustrates the fully developed Nusselt
number versus the porous layer thickness without con-
sideration of convective terms in momentum equations
as well as without wall suction. A surprising �nding
is that dependence of the Nusselt number on the
thickness of the porous layer is not monotonic. That
is, there exists a critical value of the porous layer
thickness at which the value of the Nusselt number
reaches the minimum. The physical interpretation is
that thickening of the porous layer pushes the 
uid
towards the middle of the pipe and less mass 
ow
rate goes through the porous layer. In this event,
the rate of convective heat transfer between the wall
surface and the 
uid saturated porous layer is reduced
in comparison with the conduction part due to the
contact between the solid matrix and the wall surface.
The �gure also includes the data of Poulikakos and
Kazmierczak [16] for comparison.

6. Conclusion

This study has numerically considered a developing
laminar forced-convection heat transfer in a partially
�lled porous pipe with wall suction for the range of
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Figure 9. Fully developed Nusselt number versus the
porous layer thickness and in comparison with the results
of Popukakous [16] without wall suction.

Darcy number, 10�6 � Da � 10�4, and porous layer
thickness, 0 � �=R < 1. It is found that thermal
entrance length increases with porous layer thickness
and is longer than that of the pipe with no porous
layer. Further, the local Nusselt numbers approach
the developed value after a distance from the inlet of
the pipe and depend on the porous layer thickness.
Due to the resistance of the porous matrix to the

uid 
ow, less mass 
ow rate goes through the porous
layer in comparison with the case that the porous layer
is located in the center. In this case, the rate of
convection heat transfer between the wall and the 
uid
saturated porous region is reduced relative to the heat
conduction between them.

Nomenclature

A Surface area
Cp Speci�c heat
CF Inertial coe�cient
D Pipe diameter
Da Darcy number K=D2

dp Particle diameter
h Heat transfer coe�cient
k Thermal conductivity
K Permeability
L Length
Nu Nusselt number, hd=k
_q00 Heat 
ux
p Pressure

Pr Prantel number
r Radial coordinate
R Pipe radius
Re Reynolds number, vD=�
t Time
T Temperature
u Axial velocity
v Radial coordinate
z Axial coordinate

Greek letters

� Thermal di�usivity, k=(�Cp)
� Porous wall or porous layer thickness
� Dynamic viscosity
� Kinematic viscosity
� Density
� Porosity

Subscripts

atm Atmosphere
dis Dispersion
e� E�ective
f Fluid
in Inlet conditions
p Porous, particle
s Solid
stag Stagnation
w Wall
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