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Abstract. In this paper, the in-house code based on the smoothed particle hydrodynamics
is proposed to simulate a Fluid-Solid Interaction (FSI) problem. This method is a
Lagrangian, mesh-free method, and it has a high ability to capture the free surface in
two-phase ows and also the interface in FSI problems. To compare Weakly Compressible
SPH (WCSPH) and Incompressible SPH (ISPH) schemes, uid ow under a hypo-elastic
gate is simulated in solid and uid domains with both methods. At �rst, uid domain is
simulated with ISPH method and solid domain is solved with WCSPH scheme. Another
simulation is done with both uid and solid parts solved by WCSPH method. The results
of both methods are in good agreement with each other and also with other researcher's
results. So, it is concluded that it is easier to model the uid ow with ISPH scheme
and the solid part with WCSPH in coupling uid-solid interaction problems with good
accuracy.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The interaction of a moveable or deformable structure
with an internal or external uid ow is called Fluid-
Solid Interaction (FSI). Hydrodynamic damping of
o�shore structures in wave, oscillation of aircraft wings,
and the ow of blood through arteries are some well-
known examples of such phenomena.

The arbitrary Lagrangian Eulerian [1] and the
Coupled Eulerian Lagrangian (CEL) methods are the
most popular methods to solve the FSI problems. In
both methods, Eulerian and Lagrangian formulations
are coupled to obtain the advantages of each pure
method and prevent the disadvantages of each un-
coupled formulations. In problems with small defor-
mation, ALE methods have high accuracy and low
computational cost, but in the problems of large de-
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formation, these coupled methods need the re-meshing
procedure and re-meshing has high computational cost.
Smoothed Particle Hydrodynamics (SPH) is a mesh-
free, Lagrangian and particle adaptive method which
has a high ability to solve the large deformation uid-
solid interaction problems. This method has a good
ability to track the free surface and �nd the interface
in FSI problems. Easy implementation of SPH group
methods for solving uid ows around complex geome-
tries is another advantage of these schemes.

There are two approaches in the SPH method to
�nd the pressure of the particles; one is the use of
Weakly Compressible SPH (WCSPH) idea, in which
an equation of state is solved to �nd the pressure.
Another approach is Incompressible SPH (ISPH) which
is introduced by Cummins and Rudman [2], and in
which incompressibility is enforced by solving Poisson
equation. It seems that solving the Poisson equation in
ISPH method decreases computational speed in each
time step, but it should be noted that in WCSPH
method, the speed of sound is used to satisfy the
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CFL condition and it leads to much smaller time
steps in comparison with the ISPH method and more
computational cost [3].

The SPH method was �rst introduced in astro-
physics by Lucy [4] and also by Gingold and Mon-
aghan [5]. Nowadays, this method is used to study
di�erent problems such as interfacial ows, that is,
ow �elds with di�erent uids separated by sharp
interfaces [6], free surface and viscoelastic free surface
ows [7-9], multi-uid ows [10], wave interactions
with porous media [11], and incompressible ows in
general [12].

Recently, di�erent algorithms of the SPH method
are used to solve FSI problems. Antoci et al. [13] used
a standard SPH method to model uid-structure inter-
action problems. They neglected the e�ect of viscosity
and used a repulsive force to prevent the penetration of
uid particles into the solid particles. Yang et al. [14]
used a combined SPH-FEM model to simulate FSI
problems. ISPH method is also utilized to solve some
FSI problems by Ra�ee and Thiagarajan [15]. They
used Antoci's model for coupling conditions on the
interface, and they also considered the viscosity of uid.

The motivation of this work is to show the merits
of the ISPH method. For this purpose, the in-house
code is implemented based on SPH method. The uid
ow in a uid-structure problem is solved by both ISPH
and WCSPH methods. In both algorithms, the motion
of the solid structure is modeled with WSCPH method.
The results and methods of implementation in both
algorithms are compared with each other.

2. Governing equations and numerical method

2.1. Governing equations
The equations of motion for two dimensional problems
in the Lagrangian description include the conservation
of mass and momentum which are as follows:

D�
Dt

= ��r:~v; (1)

Dvi
Dt

=
1
�
@�ij
@xj

+ fi; (2)

where t; �; v; f , and � are time, density, velocity vector,
external force, and stress tensor, respectively. The
indices i and j refer to the ith and jth components of a
vector. For uids, the stress tensor can be decomposed
into isotropic pressure, P , and shear stress, � , as
follows:

�ij = �P�ij + �ij : (3)

The shear stress for Newtonian uid is as follows:�
1
�
r:�

�
i

=
�
�
�
r2~v

�
i
; (4)

where � is the dynamic viscosity.
Eqs. (1) and (2) are also valid for solids. The

stress tensor can be decomposed into isotropic pressure,
P , and deviatoric shear stress tensor:

�ij = �P�ij + Sij ; (5)

where � is the Kronecker delta. The deviatoric shear
stress tensor can be obtained from Eq. (6) [16]:

DSij
Dt

=2�s
�
Dij� 1

3
Dmm�ij

�
+SikWjk+SkjWik;(6)

where �s, D, and W are the shear modulus, rate of
deformation tensor, and spin tensor, respectively. D
and W can be obtained from Eqs. (7) and (8):

Dij =
1
2

�
@vi
@xj

+
@vj
@xi

�
; (7)

Wij =
1
2

�
@vi
@xj
� @vj
@xi

�
: (8)

2.2. Introduction to SPH
The SPH method is based on the integral interpolation
theory. The value of any function in the SPH method
is obtained by the values of the neighboring particles.
Eq. (9) is the main idea in the SPH method [2]:

f(x) =
Z
f (x0) � (x� x0) dx0; (9)

where � is the Kronecker delta. The continuous
domain should be discretized, and the smoothing kernel
function (w) is used instead of � and the domain is
represented by some particles, so the function f(x) can
be represented as:

hf(x)ia =
NX
j=1

mb

�b
f(xb)w(x� xb; h); (10)

where m is the mass of particles, h is the smoothing
length which de�nes the inuence domain of the weight
function, N is the number of neighboring particles,
and indices a and b represent the central particle and
its neighboring, respectively. The smoothing kernel
function should have the following properties:8>>><>>>:

lim
x!x0 w(x� x0)dx0 = �(x� x0)
w(x� x0) = 0 jx� x0j > khR


 w(x� x0)dx0 = 1

(11)

In addition, the �rst and second derivatives should
exist.

The stability of the SPH algorithm is dependent
on the second derivative of the kernel function [17]. In
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this paper, the cubic spline smoothing kernel function
with the following formulation is used [15,18]:

w(r; h) =

8>>><>>>:
10

7�h2

�
1� 3

2R
2 + 3

4R
3� R < 1

10
28�h2 (2�R)3 1 � R � 2

0 R > 2

(12)

where R = r
h , r is the distance between particles, h

is set to h = 1:3dx, and dx is the initial horizontal
distance between two neighboring particles. According
to Eq. (12), particle b is a neighbor for particle a if
rab < 2h.

2.3. SPH approximation of divergence,
gradient, and Laplasian operators

Divergence of the vector ~V and gradient of a function
f(x) can be obtained as follows [19]:

r:~V
�t

=

NP
b=1

mb

�
~Va � ~Vb

�
:raWab

�t
; (13)

hrf(xa)i = �a
NX
b=1

mb

�
f(xb)
�2
b

+
f(xa)
�2
a

�
rawab; (14)

in which:

rawab =
�
@w
@rab

xa � xb
jrabj ;

@w
@rab

ya � yb
jrabj

�
: (15)

The SPH approximation of Eq. (4) is:�
�
�
r2~v

�
a

=
X
b

4mb(�a + �b)~rab:rawab
(�a + �b)2

�jrabj2 + �2
� (~va � ~vb) ;

(16)

where � = 0:1h is a non-zero parameter to prevent the
denominator from getting zero.

2.4. SPH approximation of continuity and
momentum equations

According to Eq. (10), the density can be found as
follows:

�a =
NX
b=1

�bw
mb

�b
=

NX
b=1

wmb: (17)

Another form of density variation which is found from
continuity equation can be written as in Eq. (18):

d�a
dt

= �a
NX
b=1

mb

�b
(ua � ub):rawab: (18)

According to Eqs. (16) and (14), the SPH approxima-
tion of the momentum Eq. (2) for uid can be obtained

as:

Dvai
Dt

=�X
b
mb

�
Pa
�2
a

+
Pb
�2
b

�
@wab
@axi

+
X
b

4mb(�a+�b)~rab:rawab
(�a+�b)2

�jrabj2+�2
� (~vai�~vbi)+fi:

(19)

Generally, in the SPH method, there are two schemes
to �nd the pressure. The pressure in the standard form
of the SPH is obtained from an equation of state; this
form is called Weakly Compressible SPH (WCSPH).
The equation of state for both parts (uid and solid)
has the form of Eq. (20):

P = c20(�� �0): (20)

In the solid, c20 = k
�0

where k is the bulk modulus and
for the uid, c20 = �

�0
where � is the compressibility

modulus where �0 is the reference density. The
WCSPH method cannot satisfy incompressibility, there
is another form of SPH to satisfy incompressibility, and
this form is called Incompressible SPH (ISPH). In the
ISPH method, pressure is obtained from the Poisson
equation, and the continuity equation is satis�ed by
vanishing velocity divergence. The Poisson equation
can be found as [2]:

r:
�

1
�
rPt+1

�
=
r:~v
�t

: (21)

The left-hand side of Eq. (21) is discretized as fol-
lows [10,20]:

r:
�

1
�
rP
�
a
=

NX
b

mb
8

(�a+�b)2
(Pa�Pb)~rab:rawab

jrabj2+�2
;

(22)

where ~rab = ~ra�~rb. The momentum equation for solid
particles can be written as:

Dvai
Dt

= �X
b

mb

 
Pa
�2
a

+
Pb
�2
b

+
Y
ab

!
@wab
@axi

+
X
b

mb

�
Sija
�2
a

+
Sijb
�2
b

+(Rija+Rijb)fn
�
@wab
@axj

+fi;
(23)

where
Q
ab

is an arti�cial viscosity and Rij is an arti�cial

stress, these two terms have been introduced in order
to solve numerical problems.

Q
ab

has been proposed

by [21] and can smooth out the velocity oscillations
when particles get too close to each other:Y

ab

=

8<:���cab�ab
��ab ~vab:~rab < 0

0 ~vab:~rab > 0
(24)
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where:

~rab = ~ra � ~rb;
~vab = ~va � ~vb;

�ab =
h (~vab:~rab)
jrabj2 + 0:01h2

;

��ab =
1
2

(�a + �b); and �cab =
1
2

(ca + cb):

c is the speed of sound and � is an arti�cial viscosity
coe�cient. According to the following equations, the
component of Rij can be obtained:

�Rxxa =

8<:�e ��xxa
�2
a

��xxa > 0

0 ��xxa < 0
(25)

�Ryya =

8<:�e ��yya
�2
a

��yya > 0

0 ��yya < 0
(26)

To obtain Rij , it is necessary to �nd principal
stresses [16]:

��xxa = c2�xxa + 2sc�xya + s2�yya ; (27)

��yya = s2�xxa + 2sc�xya + c2�yya ; (28)

where c and s represent cos � and sin �, and:

tan 2�a =
2�xya

�xxa � �yya ; (29)

�Rxxa =

8<:�e ��xxa
�2
a

��xxa > 0

0 ��xxa < 0
(30)

�Ryya =

8<:�e ��yya
�2
a

��yya > 0

0 ��yya < 0
(31)

e is a constant and is set to e = 0:3.

Rxxa = c2 �Rxxa + s2 �Ryya ; (32)

Ryya = s2 �Rxxa + c2 �Ryya ; (33)

Rxya = cs
� �Rxxa � �Ryya

�
: (34)

f = wij
w(l0;h) where l0 is the initial distance between two

neighboring particles, and n is set to 4.

Eqs. (7) and (8) are discretized in order to found
deviatoric stress tensor.

Dxx = �X
b

mb

�b
(ua � ub)@w@x ; (35)

Dyy = �X
b

mb

�b
(va � vb)@w@y ; (36)

Dxy = Dyx

=�1
2

X
b

mb

�b

�
(ua�ub)@w@y +(va�vb)@w@x

�
;

(37)

Wxy=�1
2

X
b

mb

�b

�
(ua�ub)@w@y �(va�vb)@w@x

�
; (38)

Wxx = Wyy = 0: (39)

Finally, the components of deviatoric stress tensor can
be found as:

Sn+1
ij � Snij

�t
=2�s

�
Dn
ij � 1

3
Dn
mm�ij

�
+ Sn+1

ik Wn
jk + Sn+1

kj Wn
ik: (40)

2.5. Free surface and wall boundary condition
The base rule of �nding free surface interface in the
SPH methods is the variation of density near the free
surface. Due to the fact that the surface particles in
free surface have less neighboring particles, the density
of these particles decreases according to Eq. (17), as
depicted in Figure 1. Therefore, a particle is considered
in the free surface if � < ��0 where 0:8 < � < 0:99 [22].

In this research, dummy particles are used to
prevent the penetration of uid particles into the solid
particles in the wall boundary conditions. This method
was purposed by Koshizuka et al. [23]. Two sets
of particles are used in this method; the �rst set
of particles are placed on the boundary as shown in
Figure 2, and the second set of particles are used

Figure 1. Position of free surface particles.
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Figure 2. Three rows of dummy particles in the
boundary.

Figure 3. Interface and its normal vector.

to avoid density change close to the boundary. The
Poisson equation is solved to calculate the pressure of
dummy particles and the velocity is set to zero.

2.6. Fluid-solid interaction model
In the SPH method, each particle has a support
domain. All particles with the distance of 2h or lower
than 2h are in the support domain of the central
particle. In FSI problems, there are two sets of particles
(uid and solid) close to the interface. Thus, the
support domain of the interface particles included both
solid and uid particles (like particles a and b in
Figure 3). By extending the summation of Eqs. (19)
and (23) to all particles regardless of their nature, the
coupling condition can be satis�ed [13].

In the previous works, some repulsive forces were
used to prevent the penetration of uid particles
into the solid particles [13,14,24]. The previously
used repulsive forces are complex and are sometimes
dependent on the uid particles pressure. In the
present work, a new repulsive force is introduced that
is very easy to implement and it is not dependent
on pressure. This repulsive force was �rst proposed
by Esmaeili [25] for wall boundary condition. This
force works as an external force and exert from solid
particles to the uid particles. Also, the dynamic
interface condition is satis�ed by exerting the repulsive

force on the opposite direction to solid particles [14].
This new repulsive force which is used in the present
FSI problem with WCSPH method can be depicted as
follows:

f =

8><>: 1
3

�
����!ut�1:~n

dt

��
1�0:5q

0:5q

�
~u:~n < 0

0 ~u:~n > 0
(41)

where q = jrij j
2h (0 < q < 1) and ~n is the normal to

the interface particles. The tangential vector of solid
particles which are near to the interface can be found
as in [26]:

bta = (tax; tay) =
�
xa+1 � xa�1

jra+1;a�1j ;
ya+1 � ya�1

jra+1;a�1j
�
; (42)

where a � 1 and a + 1 represent the two particles
which are before and after the particle a, respectively,
as is shown in Figure 3. The vertical vector at particle
a can be found as:

~na = (�tay; tax): (43)

In a few papers, the ISPH method was used to simulate
FSI problems [15]. In this method, incompressibility
is satis�ed by the Poisson equation. In this paper,
to compare the implementation of WCSPH and
ISPH methods, uid particles of a FSI problem are
simulated by both WSCPH and ISPH methods. In
the ISPH method, there is no need to use the repulsive
force, and it is one of the merits of the ISPH method.

In both WCSPH and ISPH methods, to model the
uid-solid interaction problems, in each time step, at
�rst, the uid domain is solved and the uid particles
are moved with their calculated velocities. Afterwards,
the exerted force by the uid particles on the solid
particles are obtained, so the solid domain equation
is solved and the solid particles are moved to their
new locations. In the WCSPH method, to prevent the
penetration of uid particles into the solid domain, a
repulsive force is implemented. So, in each time step,
the repulsive force is speci�ed and exerted on the uid
particles from solid particles; it is also exerted from
the uid particles on the solid particles according to
the Newtown's third law.

2.7. XSPH velocity correction
In order to smooth out oscillation of particles velocity,
the XSPH technique is used. In this technique,
particles move with a velocity closer to the average
velocity, and particles are moved by [27]:

D~ra
Dt

= �!va � "X
b

mb

�ab
(�!va ��!vb)wab; (44)

where �ab = �a+�b
2 , and " is set to 0.5.
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2.8. ISPH algorithm
In the ISPH algorithm, a prediction-correction scheme
is used for time marching. So, the complete movement
of the uid particles is achieved after �nishing the
two sub steps of each time step. In the prediction
step, particles move without sensing the e�ect of
pressure gradient and the temporal particle position,
and velocity can be founded by solving the momentum
equation only by considering the body and shear forces
with the following equations [2]:

~r� = ~rt + ~vt�t; (45)

�~v� =
�
~g +

�
�
r2~v

�
�t; (46)

~v� = ~vt + �~v�; (47)

where subscripts t and � denote the parameters at time
t and in the prediction step. After �nding the position
and velocity in the prediction step, the density in this
step can be obtained from Eq. (17). In the second sub
step (correction step), the e�ect of pressure gradient is
considered. The pressure in this new time step (t+ 1)
can be found by solving the Poisson equation [28]:

r:
�

1
��
rPt+1

�
=
r:~v�
�t

: (48)

In the correction step, incompressibility is satis�ed, and
the position and velocity are corrected as follows:

~vt+1 = ~v� + �~v��; (49)

~rt+1 = ~rt +
~vt + ~vt+1

2
�t; (50)

where subscript �� represents the correction step and�!
�v�� is:

�~v�� = � 1
��
rPt+1�t: (51)

3. Results and discussion

3.1. Fluid ow under a gate
To validate the uid part of the prepared code, a
uid ow under a gate is solved by the ISPH method,
and results are compared with the �nite volume and
VOF scheme. The uid is water with � = 1000 kg

m3 ,
� = 0:001 N

m2s , and g = 9:81 m
s2 . The geometry

is a tank with the length and the height of 0.1 and
0.14 m, respectively. Also the height of the gate
is 0.03 m. In this simulation, the total number of
particles is 1689; the initial space between the particles
is 0.00375 m, and the time step is set to 0.001 s. To
check the independency from the number of particles,
this example is also simulated with 2580 particles.

The size of the particles adjacent to the gate is set
to 0.001 m. After that, the particles size is set to
0.002 m and adjusted to 0.00375 m far from the gate.
The comparison of uid ow under the gate with
ISPH and VOF schemes is depicted in Figure 4 for
di�erent particle sizes and shows similar results with
a reasonable agreement. It also shows the ability of
the ISPH method to capture the free surface ows [28].
This example is also solved by WCSPH method with
1689 particles.

Figure 5 shows the pressure distribution of uid
ow under the gate for two di�erent time steps.

3.2. Oscillating plate
For validating the solid part of the code, vibration of
an elastic plate is simulated [13,16]. The plate has one
end clamped and the other end is free, as is shown
in Figure 6. In this example, the plate is initially
horizontal and oscillates around the initial position of
its fundamental mode (kL = 1:875). According to
the analytical expression of the �rst normal mode, the
initial velocity distribution is:

vy = c0v0L
f(x)
f(L)

; (52)

where:

f(x) =(cos(kL) + cosh(kL))(cosh(kx)� cos(kx))

+(sin(kL)�sinh(kL))(sinh(kx)�sin(kx));(53)

and v0L = 0:01 is the initial velocity of the free end
of the plate, and other properties are: L = 0:2 m,
H = 0:02 m, � = 1000 kg

m3 , �s = 7:15 � 106 N
m2 , and

K = 3:25�106 N
m2 . The results are compared with the

analytical solution and also with the other researchers'
results (Table 1).

This example is solved by WCSPH method along
with two sets of particles, n = 3195 and n = 5560
particles; the time step is set to �t = 10�5 second.
The results are in good agreement with other results
as depicted in Figure 7.

3.3. Fluid ow under a hypo-elastic gate
In this part, the deformation of an elastic gate due to
water pressure is simulated to show the ability of ISPH
method in FSI problems. The elastic gate is clamped

Table 1. Non-dimensional parameters.

Non-dimensional
period

�Tc0
L

� Non-dimensional
amplitude

�A
L

�
Present SPH 80.95 0.125

Antoci et al. [13] 81.5 0.124

Gray et al. [16] 82 0.125

Analytical solution 72.39 0.115
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Figure 4. The comparison of uid ow under the gate with ISPH and VOF methods at times (a) 0.0 s, (b) 0.05 s, (c)
0.1 s, and (d) 0.2 s (left: 1689 particles and right: 2580 particles).

Figure 5. The pressure distribution of uid ow under the gate with ISPH: (a) 0.1 s; and (b) 0.2 s.
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Figure 6. Geometry of the plate.

Figure 7. Vertical displacement of the free end of the
plate by n = 3195 and n = 5560 particles.

Figure 8. Initial con�guration and geometry of
hypoelastic gate.

at one end and free at the other end. The geometry of
this example is shown in Figure 8.

In this example, ISPH method is used to �nd the
pressure of uid particles, and WCSPH method is used
to calculate the pressure of solid particles.

The uid properties are � = 1000 kg
m3 and � =

0:001 N
m2s . The elastic plate properties are K =

2 � 107 N
m2 , �S = 4:27 � 106 N

m2 , and � = 1100 kg
m3 .

The accuracy of the SPH method can be improved by
increasing the number of particles, but the computa-
tional cost increases by increasing the total number of
particles. So, in the present work, smaller particles are
used close to the places of high gradient, and bigger
particles are used in other parts of the domain. For
particles a and b with di�erent sizes, the smoothing
length is set to h =

p
hahb. In this example, there

are 6672 particles in total. The initial spacing between
solid particles is set to 0.001 m, for uid particles close
to the gate is set to 0.001 m, and far from the gate
is set to 0.002 m. To insure numerical stability, the
time step is set to �t = 3 � 10�6 second. Figure 9
shows the comparison of the present results with the
results of Antoci et al. [13] with the increment of 0.04
second. The particle clustering near the free surface
ow is not seen in this research. It is due to the use
of the XSPH scheme which is a method to prevent the
particle clustering. The results are in good agreement
with each other. This example was also simulated
with 4945 particles and the results show no signi�cant
changes. To compare the implementation of WCSPH
and ISPH methods, the example is again solved by
WCSPH method (in both media, uid and solid) with
two sets of particles (6667 and 9069). As mentioned
earlier, in the present ISPH method, the repulsive force
is not used and this is an advantage of this work;
another merit is also the coupling of ISPH and WCSPH
methods.

Figure 10 shows the pressure distribution under a
hypo-elastic gate for four di�erent time steps.

Figures 11 and 12 show the comparison of the
present horizontal and vertical displacement compo-
nents of the free end of the plate with the experimental
results of Antoci et al. [13] and numerical results of
Ra�ee et al. [15].

Figures 11 and 12 depict that both ISPH and
WCSPH methods have reasonable accuracy, but the
ISPH method, especially in vertical displacement,
shows higher accuracy. The higher accuracy of ISPH
method is due to solving Poisson equation for �nding
the pressure distribution; therefore, it does not need
to use a repulsive force. Furthermore, the number of
particles used in the ISPH method is less than the
number of particles used in the WCSPH method (4945
particles versus 6667 particles).

Figures 11 and 12 show that ISPH method of
Ra�ee's work has also higher accuracy with respect to
WCSPH method. Ra�ee et al. [15] used the complex in-
tegral method algorithm of Antoci et al. [13] in coupling
the FSI problem, and they also used a highly pressure-
dependent formulation in their repulsive force. But,
in the present work, a simple coupling of FSI problem
without using any repulsive force in ISPH method is
used, and the results show good agreement with the
experiments, especially in the vertical displacement.
On the other hand, Ra�ee et al. simulated the problem
with 6928 particles, but only 4945 particles are used in
the present work.

4. Conclusion

In the present work, both the WCSPH and ISPH
methods are used to solve the uid part, and the
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Figure 9. Comparison of the present study with the results of Antoci et al. [13] with increment of 0.04 second from t = 0 s.

Figure 10. The pressure distribution of uid ow under a hypo-elastic gate: (a) 0.054 s; (b) 0.117 s; (c) 0.207 s; and (d)
0.288 s.

WCSPH method is used to solve the solid part of a FSI
problem. In the WCSPH method, an easy repulsive
force which is not pressure-dependent is introduced.
In the ISPH method, the pressure of uid particles is
obtained by solving the Poisson equation, and the in-
compressibility is satis�ed, also the uid and solid parts
are coupled without using any repulsive force. Results
of the present coupling of the ISPH and WCSPH are in

good agreement with other experimental and numerical
data. It is shown that the ISPH coupling with WCSPH
has higher accuracy with respect to the use of WCSPH
method in both uid and solid parts of a FSI problem.
Therefore, it is concluded that this coupling without
using any repulsive force is very easy to implement and
has enough accuracy and robustness to solve the FSI
problems.
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Figure 11. The horizontal displacement component of
the free end of the plate.

Figure 12. The vertical displacement component of the
free end of the plate.
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