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Abstract. This paper studies dynamic pricing and freight network equilibrium problem
on a system consisting of one dominant producer called the shipper and multiple
oligopolistic carriers who serve the shipper's origin-destination orders. The shipper sells
a homogeneous commodity to spatially separated demand markets. The demand received
by the shipper is price-sensitive, while the prices set for each market are inuenced by the
pricing strategies of the oligopolistic carriers. We formulate the problem as a di�erential
Stackelberg-Nash game to �nd the equilibrium production, price, and routing decisions
over a planning horizon. A �nite dimensional discretization method and a penalty function
algorithm are proposed to solve the model. The existence and uniqueness of properties
are also explored. Finally, some numerical examples are presented and a comprehensive
sensitivity analysis on the critical parameters is conducted to show the e�ciency of the
proposed model and solution method.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

With the deregulation of transport industry and the
emergence of private carriers, including transportation
and Third Party Logistics companies (3PLs), relation-
ships among players of freight transportation service
chain have become extremely complex. In today's com-
petitive market place, the key stockholders involved
in freight transportation networks, including shippers,
carriers, and infrastructure companies, typically ex-
press a pro�t maximization behavior. Hence, the
negotiation and pricing mechanisms applied by them
noticeably impact on freight ows over the network.

Urban freight transportation markets can be
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characterized by oligopolistic behavior of a few large
carriers or third party logistics providers who compete
to win transportation contracts [1,2]. Chanut and
Pache [3] noted that the French freight market is
oligopolistic as the top �ve 3PL hold a third of the
market. Arvidsson et al. [4] carried out a similar
empirical study on Sweden cargo market and showed
that the two dominant players in the market typically
have controlled over 80% of the freight ows.

In contrast to passenger individual route choice,
freight route choices reect the collective e�ect of the
decisions made by multiple agents. The freight ow
prediction models are able to understand and analyze
the impact of freight route choices on the transporta-
tion network planning. An early classi�cation of the
models predicting freight ows presented by Harker and
Friesz [5] is distinguished in three categories:

1. The econometric model which uses time series
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to predict the relationship between transportation
supply and demand;

2. The spatial price equilibrium model in which the act
of distributing goods by shippers between spatially
separated markets to �nd minimum costs leads to
an equilibrium of prices and transportation ows on
a simpli�ed network;

3. The freight network equilibrium model which con-
siders the interaction of shippers and carriers on a
real network to predict the equilibrium freight ows.

Recently, Tavasszy et al. [6] have reviewed freight trans-
portation demand models by integrating the classical
4-step modelling approach into spatial computable gen-
eral equilibrium models, supply chain choice models,
and hyper-network models. In this paper, we focus
on trip distribution on the network to estimate freight
ows related to a certain commodity traded in a market
where a dominant producer tries to deliver goods to his
customers through oligopolistic carriers. Our model
can be categorized as a freight network equilibrium
model integrated with supply chain decisions, including
production, inventory, price, and rout choices.

The �rst signi�cant predictive freight network
model was introduced by Kresge and Roberts [7] study-
ing a multi-modal multi-commodity network, in which
shippers decide on mode choice and general routing
is calculated by the shortest path. Friesz et al. [8]
determined freight network equilibrium ows taking
into account the interaction between shippers and
carriers. This model was then extended by Friesz and
Harker [9] and Harker and Freisz [10]. Friesz et al. [11]
proposed a sequential shipper-carrier model in which
the shippers are cost-minimization agents who decide
on the purchase location, the products, and the carrier
to transport the products to their destinations, after
which the carriers make routing decisions in response
to the shippers. Hurley and Petersen [12] presented an
equilibrium solution approach for the freight network
problem in a system consisting of multiple pro�t maxi-
mizing shippers and carriers, where the carriers decide
on tari�s and the shippers determine their production
levels to minimize their costs. Altman and Wyn-
ter [13] gave an overview of network equilibrium models
and discussed pricing issues in transportation and
telecommunication networks. King and Topaloglu [14]
modeled the freight transportation pricing problem
which presents a linear sensitive demand function. This
study was then extended by Topaloghlu and Powell [15]
for the situation that the transportation demand is
uncertain. Topal and Bing�ol [16] studied the inventory
replenishment problem for a retailer who needs the
transportation services in the availability of a truckload
(TL) carrier and a less-than-ruckload (LTL) carrier.
Ulku and Bookbinder [17] investigated a logistic market
with price- and time-sensitive demand, considering

that the delivery time is guaranteed by a Third Party
Logistics (3PL) provider. Lin and Lee [18] proposed
a model to simultaneously determine the zone prices
and operational plan for a freight carrier with limited
capacity. The carrier aims to maximize his pro�t while
meeting the expected service level and operational
requirements.

Recently, many researchers have utilized game
theory to analyze the interactions between freight
network stockholders and studied the equilibrium ow.
A dynamic freight network assignment model was
developed by Agrawal and Ziliaskopoulos [19] in which
the shippers choose the carrier with the lowest cost and
the market reaches the equilibrium when no shipper
can reduce his costs by changing the carriers for
a shipment. They applied a variational inequality
method to obtain the Nash equilibrium point. Xiao
and Yang [20] addressed the equilibrium ow in a
system consisting of shippers, carriers, and infrastruc-
ture companies as pro�t maximizing agents. They
considered the shipper as a non-cooperative agent,
while the carriers and infrastructure companies make
their decisions cooperatively. Friesz and Holguin-
Veras [21], and Friesz et al. [22] studied a dynamic
pricing and freight network equilibrium problem on
an urban transportation market consisting of multiple
shippers and carriers. They formulated the problem
as a di�erential game and applied a nonlinear comple-
mentarity problem to �nd the equilibrium of the non-
cooperative game between the players. Mozafari and
Karimi [23] investigated pricing decisions for truckload
carriers in a duopoly market, considering two scenarios
of non-cooperative and cooperative games. Price and
frequency competitions between freight carriers were
formulated by Shah and Bruckner [24] using game
theoretic models. Naimi Sadigh et al. [25] exam-
ined channel pricing problem comparing two scenar-
ios of centralized and decentralized structures using
game theory. Mutlu and Cetinkaya [26] analyzed
two di�erent structures of a carrier-retailer supply
chain with common-carriage option. In the former,
the carrier and the retailer simultaneously compete
and choose strategies to optimize their own bene�t;
in the latter, both the carrier and retailer try to
maximize the total channel payo�. Lee et al. [27]
modeled the oligopolistic behavior of the carriers in
maritime fright transportation networks using a multi-
level hierarchical game theoretical approach. Moza-
fari et al. [28] proposed a generalized Nash equilib-
rium problem to analyze dynamic pricing and eet
planning decisions of oligopolistic freight carriers who
compete to win transportation contracts on a net-
work. Nagurney et al. [29] developed both static and
dynamic supply chain network models with multiple
manufacturers and freight service providers compet-
ing on price and quality. They analyzed the Nash
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equilibrium of the market using variational inequality
problem.

However, all the researches above studied the
simultaneous decisions of the freight network stock-
holders, where all the agents have almost the same
decision power, and there are comparatively fewer
studies which concern the sequential behavior of the
shipper-carrier relationship when one of the agents
possesses the dominant power in the transportation
service chain. Brotcorne et al. [30] focused on freight
tari�-setting problem where the leader is one among
a group of competing carriers and the follower is the
shipper while ignoring the allocation of the freight ows
among the rival carriers. Zhang et al. [31] established
an equilibrium problem with equilibrium constraint
for a container transportation super-network in which
the upper level ports are involved in non-cooperative
competition, while the lower level shippers compete
for the path of minimum cost. Holgu��n-Veras et
al. [32] discussed the theoretical and empirical evidence
on the freight mode choice problem, considering the
interactions between shippers and carriers. They
compared the experiment of perfect cooperation with
the setting in that the shipper selects the shipment
size as the leader through game theory framework.
Friesz et al. [33] studied a dynamic shipper carrier
problem in which the carrier acts as the leader and
several shippers compete on the sale of products as
the followers under the Cournot-Nash behavior. A
bi-level modeling approach that captures hierarchical
relationships between shippers and carriers in maritime
freight transportation networks was proposed by Lee et
al. [34] where the carriers are the leaders and shippers
are the followers.

This paper addresses the dynamic pricing behav-
ior of the main stockholders in a freight transportation
service chain, where a dominant shipper acts as a pro�t
maximizing leader and multiple oligopolistic carriers
act as Cournot-Nash followers who try to capture
transportation service demand from the transactions
between the shipper and spatially separated demand
markets. The shipper decides on the production
level and the sale's price of a homogeneous product,
while the carriers compete on prices and make routing
decisions simultaneously to optimize their own pro�ts.
Also, all the players' strategies can be changed contin-
uously regarding the time. In other words, there exists
continuous-time dynamic equilibrium points for the
freight network game while the time value of money is
considered. We propose a di�erential Stackelberg-Nash
game using a bi-level programming approach to model
the problem in such an environment. Then, the bi-level
model is transformed into a single level optimization
model by including the equilibrium conditions of the
carriers' Nash game at the lower level as a set of
constraints for the shipper's model at the upper level.

A �nite dimensional time discretization method is
proposed to approximate the model as a mathematical
program with linear constraints. The existence and
uniqueness of properties are investigated. Finally, a
penalty function algorithm is presented to solve the
single level mathematical model.

The rest of the paper is organized as follows: Sec-
tion 2 describes the problem in detail while declaring
the assumptions, notations, variables, and parameters.
In Section 3, the di�erential Stackelberg-Nash pricing
game between the shipper and carriers is formulated
as a bi-level optimal control problem. In Section 4,
we explore the equilibrium conditions at the lower
level using a �nite dimensional discretization method
and the equivalent single level model is formulated.
Existence and uniqueness of properties are examined
in this section. Section 5 is devoted to numerical study
and sensitivity analysis. Finally, concluding remarks
are discussed in Section 6.

2. Problem de�nition

In this section, a detailed description of the problem in-
cluding the structure of the network, the assumptions,
and notations is presented.

2.1. Network structure
We study a freight transportation market structure in
which N + 1 decision makers interact with each other.
The set of players includes a dominant shipper who is
responsible for producing and shipping a homogeneous
commodity to the demand markets within the network
and N competing carriers who are providing freight
transportation services to the shipper. The transporta-
tion network consists of, L, nodes representing the
locations of the demand markets, or where the shipper's
and carriers' facilities have been placed, and, A, arcs
which connect the origin and destination nodes. All
the players are pro�t maximizing agents and try to
optimize their own objectives by choosing their decision
variables dynamically over a planning horizon.

In the network of Figure 1, it is assumed that
the shipper has two production sites at nodes 1 and 6.
Each node has a market with a predetermined potential
demand for the commodity produced by the shipper.

Figure 1. A schematic view of an instance of the network.
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Furthermore, there are several carriers which compete
to get transportation service demand of the shipper
at the shipper's locations by pricing decisions. Each
selected carrier makes routing decisions to optimize his
bene�t. For example, to serve a transportation order
from node 1 to node 3, one carrier may choose the route
1-2-3 or 1-4-3.

2.2. Assumptions
The model presented in this paper is based upon the
following assumptions:
1. Customers are price sensitive and the quantity

demanded at each market will decrease signi�cantly
as price increases;

2. The shipper possesses As di�erent locations, each
producing the same commodity, but with di�erent
production capacity in the network;

3. Regardless of the site of shipping the commodity,
each market has its own price which could be
di�erent from other markets;

4. The shipper as the leader, taking into account
the followers' reactions, declares his strategies to
optimize his own bene�t function over a time-
continuous planning horizon;

5. The e�ect of time value of money is investigated;
6. There is a competition among the followers (i.e.

carriers) to achieve more demand from the trans-
actions between the shipper at di�erent production
sites and customers at di�erent demand markets;

7. The demand captured by each carrier between
origins and destinations is inuenced by his own
price as well as his competitors' prices;

8. The routing decisions made by the carriers collec-
tively determine the freight ows in the market over
the planning horizon;

9. Each carrier is able to hire extra eets whenever
the demand is more than his own eet, thus
the transportation eet capacity of each carrier is
assumed to be unlimited.

2.3. Notations
The notations used to formulize the game theoretical
model are listed in the following:

Sets:
L The set of nodes in the network;
A The set of arcs connecting nodes in the

network;
Ls The set of locations for the shipper's

production facilities;
Rij The set of paths between origin i and

destination j;
C The set of competing carriers;
T The planning horizon T = [t0; tf ].

Shipper's variables:

pj(t) The price charged by the shipper to
demand market placed on node j 2 L
at time t;

dj(t) The amount of demand received from
market j 2 L at time t;

qi(t) The production quantity at the
shipper's facility placed on node i 2 LS
at time t;

Ii(t) The inventory held by the shipper at
the facility placed on node i 2 LS at
time t.

Carriers' variables:
'cij(t) The price charged by carrier c to the

shipper for providing transportation
services between origin i 2 LS and
destination j 2 L at time t;

vcij(t) The ow of shipments received by
carrier c for transportation services
between origin i 2 LS and destination
j 2 L at time t;

hcr;ij(t) The ow of shipments from carrier c
on path r between origin i 2 LS and
destination j 2 L at time t;

fca(t) The ow of shipments from carrier c
on arc a 2 A in the network at time t.

Parameters:
� The constant nominal discount rate of

future cash ows representing the time
value of money;

 i(t) The inventory cost of the shipper at
location i 2 LS and time t;

�i(t) The production cost of the shipper at
location i 2 LS and time t;

Capi The maximum production capacity of
the shipper at his facility placed on
node i 2 LS ;

�Dj(t) The potential market demand at node
j 2 L and time t;

�j The price elasticity of the market
demand at node j 2 L;

�Ii The initial inventory at node i 2 LS ;
kca The travel cost on arc a at time t;
�a;r This parameter is equal to 1 if arc a

exists in the path r, and 0 otherwise;
c The elasticity of demand for carrier c

to his own price;
�c;�c The elasticity of demand for carrier c

to his rivals' prices.
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3. The di�erential Stackelberg-Nash game
model

In this section, we apply a bi-level modeling approach
to formulize the Stackelberg-Nash game of the shipper-
carrier problem de�ned in the previous section. Since
the decisions made by the players are changing contin-
uously by time, the corresponding game is a di�erential
Stackelberg-Nash game.

3.1. The shipper's objective functional,
dynamics, and constraints

The shipper in the upper level acts as the leader and
tries to maximize his net pro�t over the �nite planning
horizon, T = [t0; tf ], considering the followers' reac-
tions. The shipper dynamically determines the price
of the commodity charged to each demand market,
the quantity produced at each production site, and
the quantity shipped from each production site to
each market. The quantity shipped to each market
is a�ected by the price of the commodity set for that
demand market, as well as the price charged by the
carriers for the transportation. The shipper's model is
de�ned as follows:

max
p;d;q

tfZ
t0

e��t:
(X
j2L

pj(t):dj(t)� X
i2LS

 i(Ii(t); t)

�X
i2LS

�i(qi(t); t)�X
i2LS

X
j2L

X
c2C

'cij(t):v
c
ij(t)

�
dt:

(1)

Subject to:

dIi(t)
dt

= qi(t)�X
j2L

X
c2C

vcij(t) 8i 2 Ls; (2)

Ii(t0) = Ii 8i 2 Ls; (3)

Ii(t) � 0 8i 2 Ls; (4)

dj(t) = �Dj(t)� �j :pj(t) 8j 2 L; (5)

0 � qi(t) � Capi 8i 2 Ls; (6)

pj(t) � 0 8j 2 L: (7)

Eq. (1) represents the objective functional of the
shipper as its revenue minus the inventory, production,
and transportation costs, respectively, where the trans-
portation term is determined by the followers' reactions
at the lower level. Constraint (2) shows the state
dynamics as the changes in the inventory level of each
production site i 2 LS . Constraint (3) determines the
initial level of the inventory at the beginning of the
planning horizon t = t0. Constraint (4) ensures posi-
tive inventory and prohibits shortage or backlog. The

demand is de�ned as a linear price-sensitive function by
Constraint (5). Constraint (6) guarantees the capacity
of each production site. Finally, boundaries on decision
variables are de�ned by Constraint (7).

3.2. The carriers' objective functional,
dynamics, and constraints

The carriers in the lower level are in oligopolistic
Cournot-Nash competition. They simultaneously set
the price of transportation services and make the
routing decisions for di�erent origins and destinations
on the network. This is with respect to the decisions
made by the shipper with the goal of maximizing
their own net pro�ts over a �nite planning horizon,
t 2 [t0; tf ]. The routing decisions made by the carriers
collectively determine the overall freight ow on the
network. Each carrier tries to achieve more demand
from the transactions between the shipper and his
customers at di�erent demand markets. We de�ne
the transportation demand for each carrier as a linear
function in which the potential demand is inuenced
by the carrier's own price as well as the competitors'
price given as:

vcij(t) = �Dj(t)� c'cij(t) +
X

g2C�fcg
�c;g:'gij(t): (8)

No shortage or backlog is allowed, thus the whole
demand of each market must be shipped by the set
of carriers. The sub-model of each carrier is de�ned as
follows:

max Jc
';v;h

=

tfZ
t0

e��t:
(X
i2Ls

X
j2L

'cij(t):v
c
ij(t)

�X
a2A

kca:f
c
a(t)

)
dt: (9)

Subject to:

vcij(t) = �Dj(t)� c'cij(t) +
X

g2C�fcg
�c;g:'gij(t)

8i 2 Ls; 8j 2 L; (10)

f ca(t) =
X
i2Ls

X
j2L

X
r2Rij

�a;r:hcr;ij(t) 8a 2 A; (11)

X
r2Rij

hcr;ij(t) = vcij(t) 8i 2 Ls; 8j 2 L; (12)

X
c2C

X
i2Ls

vcij(t) = dj(t) 8i 2 Ns; 8j 2 L; (13)

'cij(t) � 0; vcij(t) � 0 8i 2 Ls; 8j 2 L; (14)

f ca(t) � 0 8a 2 A; (15)
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hcr;ij(t) � 0 8i 2 Ls; 8j 2 L; 8r 2 Rij : (16)

Eq. (9) represents the objective functional of each
carrier as its revenue minus the transportation costs.
Constraint (10) shows the transportation demand func-
tion. Constraint (11) de�nes the ow on di�erent arcs
of the network. Constraint (12) states that the sum of
ows on the paths connecting origin i to destination
j must be equal to the total transportation demand
between i and j. Constraint (13) ensures that the
demand of each market is collectively shipped by the
carriers. Finally, Constraints (14) to (16) de�ne the
boundaries on the decision variables.

4. The Stackelberg-Nash equilibrium

In this section, we investigate the equilibrium condi-
tions for the proposed di�erential Stackelberg game
between the shipper and the carriers; we explore the
existence and uniqueness of properties of the equilib-
rium.

4.1. The Cournot-Nash price equilibrium
condition at the carriers' level

The game among competing carriers at the lower level
is a Generalized Nash Equilibrium Problem (GNEP)
with joint constraint, in which both the objective
function and the constraint set for each player depend
on the strategies taken by rival players [35,36]. To �nd
the best responses, we �rst take the time discretization
approach for the optimal control problem of each
carrier. The optimal control models (9)-(16) become
time discretized by assigning a discrete instant of time
tz = t0 +z�t, where �t is the length of each time step.
The number of time discretization can be calculated
by M = tf�t0

�t and tM = tf . In this way, we convert
the optimal control problem to a �nite dimensional
mathematical program for which the optimal solution
can be achieved through Karush-Kuhn-Tucker (KKT)
optimality conditions. When the optimal control model
is a convex model, the discretized solution will be a
good approximation of the optimal controls.

Proposition 1. (Convexity) For every carrier (c 2
C), the objective function is concave and the feasible
set is convex.

Proof. See Appendix A.
A necessary and su�cient condition for a given

solution to be an optimal one for each carrier's sub
problem is that a suitable constraint quali�cation holds
and there exists Lagrangian multiplier vectors (�tj , �

c;t
ij )

and (�c;tzij ; $c;tz
r;ij ) � ~0 which satisfy the following system

of equations:

Lc =
MX
z=0

e��tz
(X
i2Ls

X
j2L

'c;tzij

:

 
�Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij

!
�X
a2A

kca:
X
i2Ls

X
j2L

X
r2Rij

�a;r:hc;tzr;ij +
X
i2Ls

X
j2L

�c;tzij

:

0@ �Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij �
X
r2Rij

hc;tzr;ij

1A
+
X
j2L

�tzj :

 
�Dtz
j ��j :ptzj �

X
i2Ls

X
c2C

 
�Dtz
j �c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij

!!
+
X
i2Ls

X
j2L

�c;tzij :'c;tzij

+
X
i2Ls

X
j2L

X
r2Rij

$c;tz
r;ij :h

c;tz
r;ij

)
:

(17)

@Lc
@'c;tzij

= e��tz :
(

�Dtz
j � 2c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij

� c:�c;tzij + �tzj :

0@c� X
g2C�fcg

�g;c

1A+ �c;tzij

)
=0;

(18)

@Lc
@hc;tzr;ij

= e��tz :
(
�X
a2A

�a;r:kca+$c;tz
r;ij ��c;tzij

)
= 0;

(19)

�Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij �
X
r2Rij

hc;tzr;ij = 0;
(20)

�Dtz
j � �j :ptzj �

X
i2Ls

X
c2C

 
�Dtz
j � c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij

!
= 0; (21)

�c;tzij :'c;tzij = 0; (22)

$c;tz
r;ij :h

c;tz
r;ij = 0; (23)

where Eq. (17) de�nes the Lagrange function, Eqs. (18)
and (19) show stationary conditions, and Eqs. (20)
to (23) are complementary slackness equations.
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Proposition 2. The Slater constraint quali�cation
holds for every carrier's sub problem.

Proof. See Appendix B.
When the GNEP satis�es the convexity as-

sumption (proposition 1), the vector ( �'c;tzij ; �hc;tzr;ij ; ��tj ;
��c;tij ; ��c;tzij ; �$c;tz

r;ij ) which solves the system of equations
obtained by concatenating the KKT optimality con-
ditions of all carriers is an equilibrium point of the
GNEP [35,37]. According to Proposition 1, X(�c) is
de�ned as the feasible set of each carrier depending on
price strategies of the rival carriers, which is convex
for every carrier. Therefore, if X(�c) is closed, then
there exists at least one Nash equilibrium point for the
Cournot GNEP among carriers.

Proposition 3. (Existence property) The GNEP of
the carriers has an equilibrium point.

Proof. See Appendix C.

4.2. The equivalent single level optimization
problem

A solution for the lower level Nash game can be
expressed implicitly as a function of the upper level
problem's controls. If the uniqueness of solution for the
lower level problem is guaranteed, we can transform
the bi-level di�erential problem into an equivalent
single level dynamic model by adding the optimality
conditions of the lower level Nash game to the shipper's
model constraints set.

Proposition 4. (Uniqueness of property) The equi-
librium point of GNEP among rival carriers is unique.

Proof. See Appendix D.
As it is shown in Propositions 3 and 4, there exists

a unique equilibrium point for the followers' GNEP at
the lower level. Therefore, we can convert the bi-level
dynamic Stackelberg-Nash game between shipper and
carriers to the following time discretized single level
dynamic optimization problem:

max Ĵs
p;q;';h

MX
z=0

e��tz :
(X
j2L

ptzj :
� �Dtz

j � �j :ptzj �
� X
i2LS

 tzi :I
tz
i �

X
i2LS

�tzi :q
tz
i �

X
i2LS

X
j2L

X
c2C

'c;tzij

:

 
�Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij

!)
: (24)

Subject to:

Itzi =Itz�1
i + qtzi �

X
j2L

X
c2C

( �Dtz
j � c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij )

8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (25)

It0i = Ii 8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (26)

�Dtz
j ��j :ptzj � 0 8j 2 L; 8z 2 f0; 1; � � � ;Mg; (27)

0 � qtzi � Capi 8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (28)

ptzj � 0 8j 2 L; 8z 2 f0; 1; � � � ;Mg; (29)

Itzi � 0 8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (30)

�Dtz
j � 2c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij � c:�c;tzij

+ �tzj :

 
c � X

g2C�fcg
�g;c

!
+ �c;tzij = 0

8i2Ls; 8j2L; 8c2C; 8z2f0; 1; � � � ;Mg;(31)

$c;tz
r;ij �

X
a2A

�a;r:kca � �c;tzij = 0

8i 2 Ls; 8j 2 L; 8r 2 Rij ; 8c 2 C;
8z 2 f0; 1; � � � ;Mg; (32)

�Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij �
X
r2Rij

hc;tzr;ij = 0

8i 2 Ls; 8j 2 L; 8c 2 C;
8z 2 f0; 1; � � � ;Mg; (33)

�Dtz
j � �j :ptzj �

X
i2Ls

X
c2C

 
�Dtz
j � c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij

!
= 0

8j 2 L; 8c 2 C; 8z 2 f0; 1; � � � ;Mg; (34)

�c;tzij :'c;tzij = 0 8i 2 Ls; 8j 2 L; 8c 2 C;
8z 2 f0; 1; � � � ;Mg; (35)

$c;tz
r;ij :h

c;tz
r;ij = 0 8i 2 Ls; 8j 2 L; 8c 2 C;

8r2Rij ; 8z2f0; 1; � � � ;Mg; (36)
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�c;tzij �0; 'c;tzij �0; $c;tz
r;ij �0; hc;tzr;ij �0: (37)

Note that the state variables Itzi in the discretized
model are intermediate variables and can be easily
replaced by the control variables qtzi and 'c;tzij as
follows:

Itzi =It0i +
zX

n=1

(
qtni �

X
j2L

X
c2C

 
�Dtn
j � c'c;tnij

+
X

g2C�fcg
�c;g:'g;tnij

!)
: (38)

Since setting the transportation price equal to zero
makes the objective function of the carrier negative, we
can be sure that at the equilibrium point of the Nash
game, all the carriers choose non-zero transportation
prices and 'c;tzij � 0. Hence, we can �x the Lagrange
multiplier, �c;tzij = 0, and remove Constraint (34).
According to Propositions 3 and 4, the GNEP of the
carriers at the lower level has a unique equilibrium
solution for any given (�ptzj ; �qtzj ) from the shipper, and
also the shipper's objective function is concave and the
feasible set is convex regarding the shipper's decision
variables (see Appendix E for the proof). Then, it
is concluded that the Stackelberg-Nash problem has
a unique equilibrium point. This equilibrium can be
obtained by solving the model (24)-(37).

4.3. Penalty function method
To handle nonlinear constraints, we employ a penalty
function method which appends the nonlinear con-
straints to the objective function. It assigns a penalty
when a given nonlinear constraint is violated and
approximates the solution of the original problem [38].
So in this case, a penalty vector:

� = (�c1;tzr;ij ; �
c2;tz
r;ij ; � � � ; �cNr;ij ; tz);

is de�ned, where �c;tzr;ij 2 R+ is a large number. When
�c;tzr;ij approaches in�nity, the approximation becomes
increasingly accurate. Then, we can reformulate the
model (24) to (36) as a nonlinear programming model
with linear constraints as follows:

max Ĵs
p;q;';h

MX
z=0

e��tz :
(X
j2L

ptzj :
� �Dtz

j � �j :ptzj �
�X
i2LS

 tzi :

 
It0i +

zX
n=1

(
qtni �

X
j2L

X
c2C

 
�Dtn
j �c'c;tnij

+
X

g2C�fcg
�c;g:'g;tnij

!)!
� X
i2LS

�tzi :q
tz
i

�X
i2LS

X
j2L

X
c2C

'c;tzij :

 
�Dtz
j �c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij

!

�X
c2C

X
i2LS

X
j2L

X
r2Rij

�c;tzr;ij :($
c;tz
r;ij :h

c;tz
r;ij )

)
: (39)

Subject to:

�Dtz
j ��j :ptzj � 0 8j 2 L; 8z 2 f0; 1; � � � ;Mg; (40)

0 � qtzi � Capi 8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (41)

ptzj � 0 8j 2 L; 8z 2 f0; 1; � � � ;Mg; (42)

It0i +
zX

n=1

(
qtni �

X
j2L

X
c2C

 
�Dtn
j � c'c;tnij

+
X

g2C�fcg
�c;g:'g;tnij

!)
� 0

8i 2 Ls; 8z 2 f0; 1; � � � ;Mg; (43)

�Dtz
j � 2c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij � c:�c;tzij

+ �tzj :

0@c � X
g2C�fcg

�g;c

1A+ �c;tzij = 0

8i2Ls; 8j2L; 8c2C; 8z2f0; 1; � � � ;Mg; (44)

$c;tz
r;ij �

X
a2A

�a;r:kca��c;tzij =0 8i2Ls; 8j2L;

8r 2 Rij ; 8c 2 C; 8z 2 f0; 1; � � � ;Mg; (45)

�Dtz
j � c'c;tzij +

X
g2C�fcg

�c;g:'g;tzij �
X
r2Rij

hc;tzr;ij = 0

8i2Ls; 8j2L; 8c2C; 8z2f0; 1; � � � ;Mg; (46)

�Dtz
j � �j :ptzj �

X
i2Ls

X
c2C

 
�Dtz
j � c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij

!
= 0

8j 2 L; 8c 2 C; 8z 2 f0; 1; � � � ;Mg; (47)

'c;tzij � 0; $c;tz
r;ij � 0; hc;tzr;ij � 0: (48)
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We employ an initial penalty parameter vector and
iteratively increase the penalty parameters until the
algorithm converges. In each iteration, we apply an
optimization technique to solve the model (39) to (48)
by starting from the optimum solution of the previous
iteration. The steps of the penalty function method
are listed below:

- Step 1: Set the iteration counter K = 0, choose
an initial solution S0 = (pt

0
z
j ; q

t0z
i ; '

c;t0z
ij ; hc;t

0
z

r;ij ; $
c;t0z
r;ij )

which is the optimal solution of the model (24)
to (37), ignore Constraint (36). Also, set the initial
values for penalty parameters vector, �0;

- Step 2: Solve the model (39) to (48) and set SK+1 =
(ptz�j ; qtz�i ; 'c;tz�ij ; hc;tz�r;ij ; $

c;tz�
r;ij );

- Step 3. If the penalty function is equal to or less
than a prede�ned " > 0, i.e.:X
c2C

X
i2LS

X
j2L

X
r2Rij

�c;t
K
z

r;ij :($
c;tzK+1
r;ij :hc;tzK+1

r;ij ) � ";

then stop, the optimal solution is found, otherwise
set:

�c;tzK+1
r;ij =�:�c;t

K
z

r;ij ; 8i2Ls; j2L; r2Rij ;
c 2 C; z 2 f0; 1; � � � ;Mg;

where � > 1. Also, set K = K + 1 and go to Step 2.

To solve the mathematical model in Step 2, we
employ a multi-start global optimization algorithm in
GAMS software using the MINOS solver. Bringing
together all we discussed, the penalty function algo-
rithm will converge to the equilibrium point of the
Stackelberg-Nash game among a dominant shipper and
multiple competing carriers.

5. Numerical results and sensitivity analysis

In this section, we present several examples to demon-
strate the applicability of the proposed di�erential
Stackelberg-Nash game model and examine the e�ec-
tiveness of the proposed solution approach. Further-
more, we conduct a comprehensive sensitivity analysis
on the main parameters, which illustrates some im-
portant features of the model and highlights several
managerial aspects.

In order to solve each example, we transform
the bi-level di�erential Stackelberg-Nash game into
a single level optimization model by including the
equilibrium conditions of the lower level Nash game in
the shipper's problem as a set of constraints. A �nite
dimensional time discretization and a penalty function
method are then applied to approximate the model
as a mathematical program with linear constraints.
Finally, the penalty function algorithm is coded in
GAMS software solved using the MINOS solver as a
multi start global optimization tool.

Example 1. Consider a network consisting of 8 nodes
and 13 bidirectional arcs. There is one dominant
shipper who possesses two production sites with limited
capacities over the nodes 3 and 8. Also, there are two
freight carriers who serve transportation demands from
the shipper's nodes to customers' nodes on the network.
The carriers compete with each other by setting their
pricing decisions simultaneously in an oligopolistic
market. Every node on the network is assumed as a
particular demand market for the commodity produced
by the shipper. Figure 2 illustrates the schematic
network of the example.

The planning time interval is considered to
be [0,10]. As can be seen in Figure 2, the origin and
destination of a commodity ow may be connected
through di�erent routes. The relationships between
arcs and routes for O-D pairs are summarized in
Table 1. The transportation costs for carrier c on
di�erent network arcs are generated randomly from the
uniform distribution kca � U(1; 10). Table 2 shows the
values of the other parameters used in this example.

In the Stackelberg-Nash equilibrium point, the
Net Present Value (NPV) of bene�t for the shipper is
J�s = 67655161:32, while the carriers c1 and c2 gain net
present values of bene�t equal to J�c1 = 14065980:17
and J�c2 = 7956465:29, respectively. Figure 3 shows the
inventory and production trajectories for the shipper
at di�erent production sites. As it can be seen, the
trajectories start from the initial inventory levels Ii
at time t0, then the shipper gradually reduces his

Figure 2. Transportation network structure of
Example 1.

Figure 3. Inventory and production trajectories (I�i (t)
and q�i (t)) of the shipper at production nodes.
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Table 1. Route-arc relationship for O-D pairs.

O-D pairs Rijs' arc sequences O-D pairs Rijs' arc sequences

(3,1) f3.1g (8,1) f8.6,6.3,3.1g,f8.5,5.2,2.1g,f8.7,7.4,4.1g
(3,2) f3.2g (8,2) f8.5,5.2g
(3,3) f3.3g (8,3) f8.6,6.3g
(3,4) f3.4g (8,4) f8.7,7.4g
(3,5) f3.2,2.5g,f3.6,6.5g (8,5) f8.5g
(3.6) f3.6g (8.6) f8.6g
(3.7) f3.4,4.7g,f3.6,6.7g (8.7) f8.7g

inventory levels to keep the inventory holding cost low
and meet the terminal inventory condition Itfi = 0.
In contrast, the production quantity levels at di�erent
production sites start from zero at time t0 to allow
the shipper to sell o� his existing inventories, and then
increase to meet the quantity of commodity demanded
by di�erent markets up to prede�ned production capac-
ities Capi. The capacity constraints force the shipper
to produce in advance for future demand, when the
quantity demanded in future will be more than the
available production capacity.

Figures 4 illustrates the price trajectories for the
commodity sold to di�erent demand nodes and the
realized demand received by the shipper from each
market. As expected, the demand market at node 8
received higher prices from the shipper, because its
demand is less price sensitive regarding the parameter
�8 = 1, and there is no competitor for the shipper

Table 2. Values of the parameters.
Parameter Value Parameter Value

�j � U(1; 5) � 0.01
�Dt
j � U(1000; 5000) c1 15
�ti � U(8; 30) c2 17
 ti 0:2 � �ti �c1;c2 0.4

Capi(i=3;8) f6000,5500g �c2;c1 0.6
�Ii(i=3;8) f9000,9000g � 1

at the market; however, the quantity demanded from
node 8 is about the demand from other nodes.

The transportation price trajectories for di�erent
Origin-Destinations (ODs) and the allocations of de-
mand to freight carriers in the equilibrium point of
the GNEP are illustrated in response to the shipper's
actions in Figures 5 and 6. To enhance clarity of these
�gures, the transportation demands originated from
node 8 are ignored.

As can be observed in Figures 5 and 6, carrier
c1 o�ers higher prices and captures more demand
from transactions between the shipper and the demand
markets. The reason is the lower elasticity to own
price as well as the rival's price that carrier c1 has.
The lower price elasticity factor typically denotes the
higher reputation for the carrier in the market, which
enables him to set higher prices, get more transporta-
tion demand, and gain more bene�t at the end of
the planning horizon. In the following, we present
several examples to analyze the sensitivity to the main
parameters involved in the proposed model.

In order to investigate the sensitivity of the
Stackelberg-Nash equilibrium to the price elasticity
parameter of the demand nodes, we change parameter
�j at the interval [0:6�j ; 1:5�j ] for Example 1, while
all the other parameters are �xed.

As it can be seen in Figure 7, when �j increases,
the quantity demanded by the shipper decreases; the

Figure 4. Price and demand trajectories (p�j (t) and d�j (t)) of the shipper's commodity for di�erent markets.
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Figure 5. Transportation price trajectories, 'c�ij (t), between di�erent O-D pairs for the two carriers.

Figure 6. Transportation ow trajectories, vc�ij (t), on di�erent O-D pairs for the two carriers.

Figure 7. The impact of �j on the players' bene�t in the equilibrium point.

shipper chooses lower rates to keep his demand level,
and his bene�t will decline. On the other side, both
carriers gain degraded demand according to the smaller
market of the shipper. We have enhanced �j up to 50%
and observed that carriers c1 and c2 lose up to 8% and
16% of their bene�ts, respectively. The reason is the
lower pricing power which carrier c2 possesses in the
freight transportation market regarding parameter c2 .

To investigate the sensitivity of the Stackelberg-
Nash equilibrium to the potential demand factor, we
change parameter �Dt

j at the interval [0:6 �Dt
j ; 1:5 �Dt

j ] in
Example 1, while all the other parameters are �xed.

As it is observed in Figure 8, the shipper chooses
higher prices when he faces with a larger potential
market demand and he gains more bene�t at the end
of the planning horizon. Since the carriers' market
is de�ned by the shipper's transactions, the realized
demand for both carriers' increases for a larger �Dt

j .
Here, we examine whether any changes in each

carrier's own price elasticity can inuence the equilib-
rium point of the game or not. We �x c1 at its value in
Example 1 and alter c2 at the interval [0:6c2 ; 1:5c2 ].
A growth in parameter c2 implies a reduction in the
pricing power of carrier c2. Hence, the lower pricing
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Figure 8. The impact of �Dt
j on the players' bene�t in the equilibrium point.

Figure 9. The impact of c on the players' bene�t in the equilibrium point.

power carrier c2 has, the lower prices he may choose
and the less bene�t he will gain. On the other side,
by decreasing the pricing power of c2, c1 becomes
much powerful in the market, captures more demand
from the shipper's transactions, and gets more bene�t.
When c2 approaches c1 , carriers achieve almost the
same demand shares (Figure 9).

We examine whether any changes in the rivals'
price elasticity can inuence the equilibrium point of
the game. We �x �c2;c1 at its value in Example 1
and change �c1;c2 at the interval [1=5�c1;c2 ; 5�c1;c2 ].
Regarding the demand function de�ned in Eq. (8), a
larger �c1;c2 implies that a small increment in the prices
set by carrier c2 leads to a signi�cant enhancement in
the transportation service demand, and consequently
to a higher bene�t for carrier c1. Since the carriers

compete for a constant demand de�ned by the shipper;
the demand for carrier c1 will decrease as the demand
for carrier c2 increases. Therefore, carrier c2 is encour-
aged to reduce his prices for keeping his demand share,
therefore, he will gain lower bene�t (Figure 10).

Example 2. In order to investigate the impact of
the competitive environment on the equilibrium point
of the game, here we add a new rival carrier servicing
on the network of Example 1. Since the new carrier
has lower reputation in the market, we assume higher
price elasticity for him:

c3 = 19 and �c;g =

0@ 0 0:4 0:4
0:6 0 0:6
0:7 0:7 0

1A :

Figure 10. The impact of �c1;c2 on the players' bene�t in the equilibrium point.
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In the Stackelberg-Nash equilibrium point of Exam-
ple 2, the shipper achieves J�s = 66865521:04, while
the carriers c1, c2, and c3 gain J�c1 = 13718644:67,
J�c2 = 7486998:65, and J�c3 = 1523108:71, respectively.
As it is expected, when a new carrier is added to the
market, a certain demand share will be allocated to
him regarding his prices. Thus, the previous carriers
may lose some demand and their bene�t will decrease
consequently.

6. Concluding remarks and future work

This paper addressed a shipper-carrier problem in
which a dominant shipper aims at selling a homoge-
neous commodity to several spatially separated mar-
kets with price sensitive demand and pursues the goal
of maximizing his bene�t over a �nite planning horizon.
The shipper requires transportation services to deliver
goods to his customers, and multiple oligopolistic
carriers compete to capture these service demands on
a geographic network. The freight carriers dynamically
set their prices for origin-destination services and make
their routing decisions to gain more transportation
demand from the transactions between the shipper
and his customers. All the players' strategies can
be changed dynamically regarding the time; there
exists continuous-time dynamic equilibrium for the
freight network game while the time value of money
is considered.

The problem has been formulated as a di�erential
Stackelberg-Nash game to �nd the equilibrium price
trajectories and routing decisions over the planning
horizon. A �nite dimensional discretization approach
has been applied to append the equilibrium conditions
of the carriers to the shipper's model and to trans-
form the bi-level model to an equivalent single level
mathematical program; a penalty function algorithm
has been proposed to solve the resulting model. Some
numerical studies have been done to show how the
mathematical model and the proposed solution ap-
proach can approximate the equilibrium trajectories of
the di�erential Stackelberg-Nash game of the shipper-
carrier problem. Finally, a comprehensive sensitivity
analysis has been conducted on the critical parameters
and some managerial highlights have been discussed.
For future research, one can consider nonlinear demand
functions and the uncertainty of the demand function
parameters. Furthermore, investigating other decisions
of the carriers such as mode choice or eet assignment
are worthwhile.
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Appendix A

Time discretizing of each carrier's optimal control prob-
lem and substituting Eqs. (10) and (11) into Eq. (9)
give that:

Ĵc =
MX
z=0

e��tz :
(X
i2Ls

X
j2L

'c;tzij :

 
�Dtz
j � c'c;tzij

+
X

g2C�fcg
�c;g:'g;tzij

!
�X
a2A

kca

:
X
i2Ls

X
j2L

X
r2Rij

�a;r:hc;tzr;ij

)
: (A.1)
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If a function f is convex, then �f is concave [39].
The Gradient of �Ĵc('c;tzij ; hc;tzr;ij ) can be calculated as
follows:

r��Ĵc �'c;tzij ; hc;tzr;ij
��

=

264�@Ĵc(';h)
@'

�@Ĵc(';h)
@h

375

=

266664
�
 

�Dtz
j � 2c'c;tzij +

P
g2C�fcg

�c;g:'g;tzij

!
P
a2A

�a;r:kca

377775 :(A.2)

The Hessian of �Ĵc('c;tzij ; hc;tzr;ij ) can be given as:

H
��Ĵc �'c;tzij ; hc;tzr;ij

��
=

264�@2Ĵc(';h)
@'2 �@2Ĵc(';h)

@'@h

�@2Ĵc(';h)
@h@'

�@2Ĵc(';h)
@h2

375
=
�
2c 0
0 0

�
:

(A.3)

Then, we have:

('; h):
h
H
��Ĵc('; h)

�i
:('; h)T

= ('; h):
�
2c 0
0 0

�
:('; h)T = 2c'2 � 0: (A.4)

Thus, the Hessian matrix, H(�Ĵc('c;tzij ; hc;tzr;ij )) , is
positive-semi-de�nite, �Ĵc is convex, and consequently
Ĵc is concave. Since all the constraints are linear, the
feasible set of each carrier is convex and the proof is
completed.�

Appendix B

If the feasible set is convex and there exists a feasible
point such that every inequality constraint is satis-
�ed strictly, then the Slater's constraint quali�cation
holds, [39].

As it is shown in Proposition 1, the feasible set
for every carrier is convex. Moreover, we can easily
de�ne a price vector �'tzij = ( �'c1;tzij ; �'c2;tzij ; � � � ; �'cN ;tzij ) =
("; "; � � � ; "), where " is a small positive number, then
the transportation demand will be divided between
rival carriers and vcij(t) > 0, 8c 2 C. In addition, each
carrier is able to decompose his own origin-destination
transportation demand into the possible paths, then we
have hcr;ij(t) > 0, 8r 2 Rij and consequently f ca(t) > 0,
8a 2 A. Therefore, the interior feasible set of every
carrier is nonempty with regard to the rival carriers'
action sets, and the Slater's constraint quali�cation
holds. So, the proof is completed.�

Appendix C

We can easily de�ne conceptual upper bounds for the
decision variables. According to Eq. (8), if 'c;tij goes
to in�nity, the transportation demand for carrier c will
be negative which is not allowed; thus, the variable
is bounded from above and we have 0 � 'c;tij � �'.
In addition, according to Eqs. (12) and (13), it is
concluded that hc;tr;ij and vc;tij are bounded from above
and we have 0 � hc;tr;ij � vc;tij and 0 � vc;tij � dj . Since:

f c;ta =
X
i2Ls

X
j2L

X
r2Rij

�a;r:hc;tr;ij ;

then f c;ta is also a bounded variable. Thereby, the
feasible set of every carrier is closed and the proof is
completed.�

Appendix D

De�ning a functional vector F (x) on X, such that:

F (x) :=
�rxc Ĵc(x)

�c=N
c=1

;

and X is the joint feasible set of all players, if F (x)
is monotone, then the GNEP has a unique equilibrium
point which can be obtained by concatenating KKT
system of equations for all the players [35].

According to Facchinei and Kanzow [35], for a
maximization problem, F (x) will be monotone if for
any two x; y 2 X, it holds that:

h(F (x)� F (y)); (x� y)i � 0: (D.1)

For the GNEP of the carriers, F (x) can be formed as:

F (x) =

0BBBBBBB@
�Dtz
j � 2c1'

c1
ij ; tz +

�c1 ;gP
g2C�fc1g

:'g;tzij

...

�Dtz
j � 2cN'

cN ;tz
ij +

�cN ;gP
g2C�fcNg

:'g;tzij

� P
a2A

�a;r:kc1a
...

� P
a2A

�a;r:kcNa

1CCCA : (D.2)

Let S0 = ('c;t
0
z

ij ; hc;t
0
z

r;ij ) and S00 = ('c;t
00
z

ij ; hc;t
00
z

r;ij ) be two
solutions in X, then for Inequality (D.1), we have:
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h(F (S0)� F (S00)); (S0 � S00)i

=
MX
z=0
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a2A
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00
z

r;ij

�
=

MX
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e��tz :
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(�2c)

:
�
'c;t

0
z

ij � 'c;t
00
z

ij

�2 � 0: (D.3)

Since c > 0, we conclude that Eq. (D.3) is negative.
Therefore, the GNEP has a unique equilibrium point,
and the proof is completed.�

Appendix E

Proposition E.1. The shipper's objective function
is concave and his feasible set is convex regarding his
own decision variables.

Considering the objective function of the shipper's
model in Eq. (1), we can immediately remove the last
term from the objective function, because the decision
variables 'c;tzij and vc;tzij are obtained uniquely from the
lower level's KKT system of Eqs. (43) to (47). The
second and the third terms are linear; consequently,
they are concave regarding qtzi . For the �rst term,
the second order optimality condition regarding ptzj is
de�ned by:

�@2Ĵs(p; q; '; h)
@p2

j
= �2�j < 0: (E.1)

Since �j > 0, Eq. (E.1) is negative and the �rst term
is concave. Regarding the fact that the sum of concave

functions is a concave function, we can conclude that
the shipper's objective is concave with respect to his
decision variables. In addition, since all the constraints
of the model are linear, the feasible set is convex
regarding the shipper's variables. Then, the proof is
completed.�
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