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Abstract. This study is concerned with the problem of estimating the parameters of a
3-component mixture of Burr distributions using type-l right censored data. The closed-
form expressions for the Bayes estimators and their posterior risks assuming the non-
informative (uniform and Jeffreys’) priors under squared-error loss function, precautionary
loss function, and DeGroot loss function are derived. Performance of the Bayes estimators
for different sample sizes, test termination times (a point of time after which all other
tests are terminated), and parametric values under different loss functions is investigated.
The posterior predictive distribution for a future observation and the Bayesian predictive
interval are constructed. In addition, the limiting expressions for the Bayes estimators and
posterior risks are derived. Simulated data sets are designed for the comparisons and the
model is finally illustrated using the real data.
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1. Introduction

Finite mixtures of life distributions have proved to be of
considerable interest in terms of their both methodolog-
ical development and practical applications. Mixture
models play a dynamic role in many real-life applica-
tions. Saleem [1] discussed that using finite mixture
model became necessary when data from individual
component densities or conditional distributions were
not available, but were available from an overall mix-
ture distribution. The direct applications of mixture
models can be seen mostly in industrial engineering,
medicine, botany, zoology, paleoanthropology, agricul-
ture, economics, life testing, reliability and survival
analysis, etc. A detailed account on type-I and type-II
mixture models and their different features is given by
Li [2] and Li and Sedransk [3]. As noted by Tahir and
Aslam [4], the mixture of probability density functions
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from the same (different) family (families) is known as
type-I (type-II) mixture model. In many applications,
the available data can be considered as data from
a mixture of two or more distributions. This idea
enables us to mix statistical distributions to get a new
distribution.

Several authors have extensively applied mixture
modeling in different practical problems using classical
and Bayesian analyses. For a detailed review of classi-
cal estimation techniques, discussion, and applications
of mixture modeling, one can refer to [5-40].

Due to time and cost problems, it is sometimes
impossible to continue the testing up to the last
observation. The values which are greater than the
fixed test termination time are taken as censored obser-
vations. Due to this limitation, studying censored data
is inevitable in lifetime applications. For a detailed
review of censoring, one may refer to Romeu [41],
Gijbels [42], and Kalbfleisch and Prentice [43] and the
references cited therein.

Being able to express a wide range of distribution
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shapes, Burr distribution is considered as a very flexible
distribution. It can be fitted to empirical data of
different nature. Different sets of its skewness and
kurtosis can be covered by different parametric values.
Household income, crop prices, insurance risk, travel
time, flood levels, and failure data constitute a set of
data modeled by the Burr distribution. In his work,
Saleem [1] mentioned different cumulative distribution
functions, suggested by Burr [44], with a broader
range of values of skewness and kurtosis to model
any observed data set from a unimodal distribution.
Besides this, he discussed twelve forms for cumulative
distribution function of the Burr distribution given
in Johnson et al. [45]. Saleem [1] also noted that
Burr [46,47], Burr and Cislak [48], and Rodriguez
[49] gave special attention to one of these forms. A
useful discussion on Burr and related distribution is
presented by Tadikamalla [50]. Using graphical test,
Economou and Caroni [51] explained the utility of Burr
distribution. Further enhancing the work on Burr dis-
tribution, Saleem [1] presented a 2-component mixture
of one-parameter Burr type-XII distribution assuming
different priors under squared error loss function.

Motivated by wide application of mixture model-
ing, in this article, we plan to develop a mixture of Burr
distributions for efficient modeling of a given lifetime
data. A random variable Y is said to follow a finite
mixture distribution with h components if the density
function of Y can be written in the form: f(y) =
Zf;:l D fm (y), where p,,(m = 1,2,...,h) is the mth
mixing proportion such that p, = 1 — 221;11 P, 1.€.
2}72:1 Pm = 1, and fn(y) is the mth component
density function. Under this definition, a finite 3-
component mixture of Burr distributions with mixing
proportions p; and p, has the probability density
function (pdf), cumulative distribution function (cdf),
and survival function as:

Ty ) =p1 f1(y; U1) + p2 fo(y; U2)

+ (1 —p1 —p2) f3(y; ¥3),

P1,p2 >0, p1+p2 <1, (1)
F(y; ®) =p1 F1 (y; U1) + p2Fa(y; U)

+ (1= p1 — p2) F3(y; ¥3), (2)
S(y; ®) =p1S1(y; V1) + p252(y, ¥2)

+ (1 —p1 — p2)Ss(y, ¥3), (3)

Wherev ¥ = ()\1,)\2,/\37]717]32)7 v, = A'm7 m = 172737
and:

fm(y7 q]'m) = )\y(]_ + y)f(/\'rr1+1)7

0<y<o0, Am >0, m=1,23. (4)

The cdf, F,,.(y; ¥,,,), of the mth component density is
given by:

Fm(y7\lfm) =1- (1 _’_y)—Am7

O<y<oo, An>0 m=1,23, (3)

and S,,(y;¥,,), the survival function of the mth
component, is written as:

S (Y Um) =1 = Fou(y; Up) = (L+y) ™,

O<y<oo, Ay >0, m=1,2,3. (6)

The rest of the article is organized as follows. The
sampling scheme for a 3-component mixture of Burr
distributions is defined in Section 2. The expressions
for likelihood function and posterior distributions using
the non-informative priors are derived in Sections 3
and 4, respectively. In Section 5, the Bayes estimators
and posterior risks using the uniform and the Jeffreys’
priors under squared error loss function, precautionary
loss function, and DeGroot loss function are derived.
The posterior predictive distribution and the Bayesian
predictive intervals are given in Section 6. The limiting
expressions of the Bayes estimators and their posterior
risks are derived in Section 7. The simulation study and
the real-life data application are presented in Sections 8
and 9, respectively. Finally, the conclusion of this study
is given in Section 10.

2. Sampling scheme for a 3-component
mixture of Burr distributions

As defined in Tahir and Aslam [4,52], suppose n units
from the 3-component mixture of the Burr distribu-
tions, defined in Section 1, are used in a life testing
experiment with fixed test termination time ¢t. The
experiment is performed and it is observed that r out
of n units fail until fixed test termination time ¢ is over.
The remaining n — r units are still functioning. As
defined by Mendenhall and Hader [5], there are many
practical situations where only failed objects can be
easily recognized as subsets of either subpopulation I
or subpopulation IT or subpopulation III. For example,
based on cause of failure, an engineer may divide a
certain failed object as a member of either subpopu-
lation I or subpopulation II or subpopulation III. It
may be pointed out that out of r failures, r1, ry, and
r3 failures belong to subpopulation I, subpopulation
11, and subpopulation III, respectively, depending upon
the reason of failure. Thus, the number of uncensored
observations is 7 = r; + 79 + 73, and the remaining
n — 1 observations are censored observations. Define
Yik, 0 <y < t, to be the failure time of the kth unit
belonging to the Ith subpopulation, where [ = 1,2,3
and k =1,2,...,7.
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3. The likelihood function

For a 3-component mixture of the Burr distributions,
the likelihood function for the data collected through
sampling procedure explained in section 2 can be
written as:

L(¥|y)oo {IL,_ pr f1(y1r) } {I02 p2 fo(y2r) }

{2 (= p1 = p2) f3(yar) SO} (7)

On simplification, the likelihood function of the 3-
component mixture of the Burr distribution becomes:

s [£ 3 (") ()
exp{—)\l ((n — 7 —di)In(1+1)

+ iln(l + ylk)> }

k=1

exp{—)\g ((i —Nn(l+12)+ i In(1 + y%)> }

k=1

exp{—)\g ((j) In(1+¢) + 23: In(1 + y3k)> }

k=1
)\rl )\To )\;3 n—r— 1+7‘1p;7j+7“2(1_p1 _pZ)j+T3:| , (8)

Wherevy:(y117y127~"7y1r17y217y227~"7y2rzay317y327“'7
Ysry) 1s the set of observed failure times for the

uncensored observations and ¥ =(A1, As, A3, D1, P2)-

4. Posterior distributions assuming the
non-informative priors

When no or little prior information is available, the
Uniform Prior (UP) and the Jeffreys’ Prior (JP) are the
most commonly used priors for Bayesian estimation. In
this section, the posterior distributions of parameters

given in data y are derived assuming the UP and the
JP.

4.1. Posterior distribution assuming the
untform prior

Bayes [53] and Geisser [54] proposed that one might
consider the uniform distribution for the unknown
parameters of interest (see Tahir et al. [4] and Tahir
and Aslam [52]). We assume the improper UP for
the unknown component parameter A,,, i.e. A, ~
Uniform(0,00), m = 1,2,3, and the UP over the
interval (0,1) for the unknown proportion parameter
ps, i.6. ps ~ Uniform(0,1), s = 1,2. Assuming the
independence of parameters, the joint prior distribu-
tion of parameters Ai, Az, A3,p1, and ps is denoted
by m (¥) o< 1 (see [4,52]). Thus, the joint posterior
distribution of parameters Ay, Aa, A3, p1, and ps for the
given data y, assuming the UP, is defined by Eqgs. (9)
and (10) as shown in Box I, where:

An=r1+1, Ayy=ro+1 Az =r3+1,

1
Bi=n-r—i)hl+t)+> In(l+yu),
k=1

r2
Byr=(i—j)In(1+)+ Y In(1+yy),
k=1

T3
Bsi = (j)In(1+¢) + > _In(1+ yss),
k=1
A()l:n—’l“—i-f—?"l-f—l, B(n:i—j-f—Tg-i-l,
Con=j+r3+1,

o EE(7) ()

1=0 j=

Ql :F(AH)

B(Ao1, Boi, Co1 ) By By B A=

The marginal posterior distributions of parameters
A1, A2, Ao, p1, and ps using the UP are derived as:

(9)

L(®|y)m (¥
Tly) = :
DY) = By (2)w
Yico 23:0 (n;r) (;) exp(—Bi1 A1 )exp(—Bay Mg Jexp(—Bsy Ag)piot T pPort (1 — py — py)Cor—t
a(Ply) =

Ql/\%—Au/\%—Am)\%—Am (10)

Box I
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[(A2)D(A31) : (n — 7’) (z)
A = . )
g1(Mly) o ;j:o ; j
B3y B3 B(Ao1, Co1)B(Bot, Aoy
+ 001))\11411_16}(1)(—.811/\1),
A1 >0, (11)
A A n—r 1 . .
7 aly) = [(A11)T(A51) Z (n r) (z)
— J
1=0 j=
B B3, B(Ag1, Co1) B(Bot, Aot
+ 001))\51217165(1)(—321/\2),
AZ > 07 (12)
A A n—r 1 _ .
7 (sly) = ['(A21)0(A31) ZZ (nz r) (z)
1=0 7=0 J
J
B B3 B(Ao1, Co1)B(Bot, Aoy
+ 001))\§43l_lexp(—B31/\3),
Az >0, (13)
A A A n—r 7/ _ .
91(p1|y) ( 11) 21 31 ZZ(N ’I’) ()
1=05=0

—A — A p—A Ap1—
By By By 313(3017001)131 ot

(1 _ p1)301+(701+1

0<p <1, (14)

) PTG S5 0 (1)

1=035=0

Bl—lAn Bz_lA21 B?)—1A31 B(A017001)p2301_1

(1= p)or o,

0<py <l (15)

4.2. Postertor distribution assuming the
Jeffreys’ prior

Jeffreys [55,56] proposed a rule for obtaining the non-

informative prior as p(A) o< v/|[I(A)| if A is an h-vector

valued component parameter, where I(A) = (Lyy)nxh

is an h x h Fisher’s information matrix, in which the

2
(u,v)-th element is —F [%@&My)]v w,v =1,2,..., h.

The prior distributions of the proportion parameters
p1 and po are assumed to be the uniform distributions
over the interval (0, 1), i.e. ps ~ Uniform(0,1), s = 1,2.
Assuming the independence of parameters, the joint
prior distribution of parameters Ai, Az, A3, p1, and po
is m2(¥) AM;M:; The joint posterior distribution of
parameters Ay, Ag, Az, p1, and py for the given data y
using the JP is given by Egs. (16) and (17) as shown
in Box II, where:

A =1y, Ao =719,

Ass =73,

Biz=n—r—)hl+t)+> In(l+yu),
k=1

Bay = (i — j)In(1+1) + > In(1 + yai),
k=1

r3
Bsy = (j)In(1+) + > In(1 +ys),
k=1

A02:n—r—i+r1+1,
Bopx=i—j5+ra+1,

Cop=j+mr3+1,

s =T(A12)T(As9)T(Age) ZZ <” - T) ()

1=0 7=0

B(Ags, Boz, Coz) By ? By, B2,

The marginal posterior distributions of parameters
A1, A2, A3, p1, and po using the JP are worked out as:

a(ly) =22 ) ZZ(”‘)()

=0 j=0
B3,"* B3,"* B(Aga, Co2) B(Boz, Az

+ Coa) M exp(—BiaA1),

A >0, (18)

g(Aaly) = (Au A32 nz_: ; (n_r) (;)

i=0 j=
—A12 p—As2
B1,"? B3,"* B(Ao2, Co2)B(Boz, Aoz
+ Co2) A3 Lexp(—Baz\2),

Ao >0, (19)
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L(P|y)ms (¥
e(¥ly) = 16)
(] [ L(®]y)ms()d® (
n—r i n—r i Aqo — _ -
dic1 ijo ( i ) (J) ‘3XP(—B12)\1)GXI)(—BQQ/\Q)eXP(—332)\.3)17?02 110501 1(1 -—n —Pz)o‘” !
a(¥ly) = A 2y 1—Ass\1—Asm :
QoA ey e Ny e (17)
Box II
Table 1. Bayes estimators and posterior risks under SELF, PLF, and DLF.
Loss function Bayes estimators Posterior risks
SELF = L(),d) = (A — d)? d=Eyg () p(d) = Exig(\?) = {Expyn) )
PLF = L(\,d) = A= d={Ey,()\)}2 p(d) = 2{ By y(\2)} 2 — 2B, (\)
DLF = L\ d) = (359)"  d={Byy (N} Exy(3)  p(d) =1 = {Exy )P {Ery ()}
[(Ago)T(Azs) nort n—r\ (i under three different loss functions, namely, Squared
92(Aaly) = 0, : i j Error Loss Function (SELF), Precautionary Loss Func-

1=0 j=0
B2 B3,"22 B(Ags, Co2) B(Byz, Ags

+ Cp2)A3%2 " exp(—BsaA3),

Az >0, (20)
g2(p1]y) :T(Au)F(SjQ)T(Asz) Z Z (n Z_ r)

<;’> Bl—ZAlz 32—21422 BB_2A32 3(3027 002)

Agz—1 Bp2+Cpa—1
plr)z (1—171) 02+Co2 )

0<p <1, (1)
() = IR STy (1)
i=0 j=0

(D By By;"* B3, B(Agz, Cos)

pfoz—l(l _ pz)z‘\oz-l-coz—l7

0<py <1 (22)

5. Bayesian estimation

In this section, we present the derivation of the Bayes
estimators and posterior risks using the UP and the JP

tion (PLF), and DeGroot Loss Function (DLF). The
SELF, defined as:

L=(\d)=(A-d>,

was introduced by Legendre [57] to develop the least
square theory. Norstrom [58] discussed an asymmetric
PLF and also introduced a special case of a general
class of PLFs, which was defined as L(\,d) = %.
The DLF was presented by DeGroot [59] and was
defined as L(\,d) = (A—;d)z (see [4,52]). For a given
prior, the Bayes estimators and posterior risks under
SELF, PLF, and DLF are given in Table 1.

5.1. Expressions for the Bayes estimators and
posterior risks assuming the UP and the
JP under SELF

The expressions for the Bayes estimators and posterior

risks are derived as follows:

A, _D(4r, + 1)2(7JA21,)P(A3U) niz (n Z_ T) (;)

=0 7=0

By A By Az B-As B( Ay, Co,)

B(BOU7A01) + CO'U)7 (23)

- :F(A1v)]._‘<z4§;v+ 1) (Asy) nz—: Z (n Z_ T) (;)

i=0 j=0

B;}Alv BQ—W(AQ,U+1)B:;A3UB(AOU7 COv)

B(BOU7 AOU + COv)a (24)
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2 FAlUFAQvFAgv ]. — e n-—r ..
/\31;:( )(Qj( U 0(@')(”)

1=0 j=

B, By B T B(40,, Co)

B(Bgy, Agw + Coy), (25)
. :r(Alv)F(éjv)r(Agv) 2;) (n - r) (;)

B;}Ahr B;I}Az/U B:;UA?’EB(BOM COv)

B(AO@ + ]-7 BOv + COv)v (26)

1=0 j

P2 :F(Aw)l"(;;ljv)I‘(Agv) nor ;0 (n Z_ r) (;)

Br, v By B3/ B(Agy, Cou)

B(BO’U + 1, AOv + OO'U)7 (27)

p(j\l'u) — F(Alv +2)1;2(;421J)F(A3v)

S ("0

1=0 j=

_Bl—)U(Alv4—2)‘82—1;42,U B;UASUB(AOU7 COU)

B(BOU7 AOv + COv)

T(Ay, + 1T (A, )T (A5, ) el &
_{( )Q(v )T( )ZZ

1=0 57=0

(n Z_ T) (;) B;U(Alu+1)B;UA2v B?;;Asv

2
B(AO’U’ OO’U)B(BO’U’ AOv + OOv)} ) (28)

1=0 7=0

(n Z_ T> <;‘> Bl—vAln B;q;(AZU+2)BB’_UAM

B(Aoy, Cov)B(Bow, Aow + Coo)

(A1) T(Agy + 1)T(Asy) vt &
_{( )(Qv‘f')( )ZZ

=0 7=0

(n Z_ T) <;’> B;L)Alﬂ B;ﬂ(sz+1)B?;)A3u

2
B(A0v7 COv)B(BOv7 AOU + COv)} 5 (29)

p(As0) ZF(A“)T(ASU)F(A% 255

1=0 7=0

(n Z_ T) <;’> B;;Alv B;}AQ" B?;)(Asu‘F?)

B(Aoy, Cov)B(Bow, Aow + Cov)

n—r 1

~ {F(Alv)F(A%)F(AM +1) 3

2,

=0 57=0
n—r i — A1y p—Azy p—(Asu+1)
( ; ) < ) Blv BQv B3v

2
B(AO'm CO'U)B(BO'M AO’U + CO'U)} ) (30)

plre) = T2 T () 57 5 (=)

1=0 7=0

B;L)Alv B;WA% B?;,AMB(BOM COv)

B(Agy, + 2, B, + Coy)

_ {F<Alv)r(A2v)F(A3v) nz_fz

Qv 3 B
1=0 7=0
(” Z_ T) (;> By, By * By B(By,, Cou)
2
B(A0v+laBO'v+COU)} ) (31)
. T (A1) (AT (As,
) =T G T )

53 ()

k2
—A1y p—A2e p—Aszy
Blv ! BZv : B3v B(A()vaOv)

B(BOU + 27A011 + COv)
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K2

o) § 5

r
1=0 7=0

(n - T) (;)BlvAlv B;UAZU B?;)A&’B(Agm COU)

7

{ (A1)I'( Az@

2
B(BOv + 17A0v + COv)} 9 (32)

where v = 1 for the UP and v = 2 for the JP.

Similarly, the Bayes estimators and posterior risks
using the UP and the JP under PLF and DLF can
also be derived. For the sake of brevity, we have not
presented these expressions; but, these expressions are
available in the studies by the first author.

6. Posterior predictive distribution and
Bayesian predictive interval

The posterior predictive distribution contains the in-
formation about the future observation, X = Y¥,,41,
of a random variable given in the data, y, already
observed. Dependent on the observed data, it is defined
as the distribution of a new independent and identical
future observation drawn from the same population.
It is normally used in a Bayesian framework. Using
the entire posterior distribution of the parameter(s), a
probability distribution over an interval is derived as a
posterior predictive distribution of the future observa-
tion conditional on the observed data. To be more
specific, by marginalizing the posterior distribution
over the parameter(s), posterior predictive distribution
of future observation can be derived. Arnold and
Press [60], Al-Hussaini et al. [61], Al-Hussaini and
Ahmad [62], Bolstad [63], and Bansal [64] have given a
detailed discussion on prediction and predictive distri-
bution under the Bayesian paradigm. We, now, present
the derivation of posterior predictive distribution and
Bayesian predictive interval.

The posterior predictive distribution of a future
observation, X = Y41, for the given data, y, assuming
the UP and the JP, is written as:

Faly) = / 2 / | / 3 / ] st y)

d)\ld/\2d)\3dp1dp27 (33)

where:

S| ®) =py f1(@; 1) + pafola; o)+
—p2) f3(x; ¥3),

A (1 4 7)),

(1-p
Jm(z;9,,)

O<x<oo, Ap>0, m=1,23,

and ¢,(®|y) is defined as shown in Box III. Thus,
the posterior predictive distribution given in Eq. (33),
assuming the UP and the JP of a future observation,
X =Y,41, for the given data, y, is given by:

flaly) =" et DTN () 75

=0 7=0

("77) (5) @+ ma ety
BQ_U UBS_vASvB(AOv + ]-a CO'U)B(BOUa AOv

T(A1,)T (A2 + 1)T'(A3y)

S5 () (o o
1=0 7=0

+ Cop + 1) +

—(Azv+1)

+In(1 + x)) B3 B(Ag.,

COv)B(BO'U + 17A0v + OOv + 1)

n—r 7

A3v+1 ZZ

1=0 7=0

n—r ) — Ay p—Aay
( i ) (]) BlvAlvBQVAQ (B3v

—(Azy+1)
B(A0v + ]-7 COv

F(Alv) (AZv
(1+ )

+In(l+ x))

1)B(BO’U7A0’U + OOv + 1) (34)

To construct a Bayesian predictive interval, suppose L
and U are the two endpoints of the Bayesian predictive

7

n—r 7 n—r 7 o _
Y im0 Zj:()( . ) (]) eXp(—Bh,/\l)exp(—B%)\z)eXp(—B%,\3)plev poBOv 1

(1=p1 —po)ort

q,l,(‘11|y) =

1—A1y \1—Azy y1—-Az,
QA=A AT A2 )T

Box III



M. Tahir et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 2374-2390 2381

interval. These two endpoints can be obtained using
the posterior predictive distribution defined in Eq. (34).
A 100(1— x)% Bayesian predictive interval (L,U) can
be obtained by solving the following equations:

/ " flaly)dr = & = | Halyas

(A, + Qi(é%)mw = 1'0 (n - r) (z)

{Bi* = (Bio+1m(1+ 1) "}

B2_UA2“ BB’_UAMB(AOU + ]-7 COU)B(Bm” AOv + COU

I‘AlvFA2U+1FA3U Il n—r
oy 1L ><A2va )T )ZZ( @- )

1=0 7=0

(;) B {B;;“% — (Boy +1n(1 + L))’A“}

By, /** B(Agy, Cou)B(Boy + 1, Agy + Cop + 1)

RaCin)y (:2: UABUH ZZ(n—T) ()

1=0 7=0

Br/ By { B = (Bey +In(1+ 1))}

B(Apy, Coy +1)B(Boy, Agy + Cop + 1) = =

and:

(A1, + 1) (As,)0(A3,) <= . (n—r) (z)
Alv v Z ]

(Byy + In(1 4+ U)) 4 By A2 By A

B(Aopy +1,Coy)B(Bgy, Aoy + Coy + 1)

L T(A)r (j: tl (As,) Z Z <n - 7’)

1=0 7=0
(?) BLA (Byy +In(1+ 1)) By

B(Amn COU)B(BO’U + ]-7A0v + CO’U + ]-)

T(A1,)T(A2o)T(Asy + 1) o< [ — 7
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7. Limiting expressions for complete dataset

When test termination time ¢ tends to co, uncensored
observations r tends to sample size n and r; tends to n;,
1l =1,2,3. Consequently, all the censored observations
become uncensored and the amount of information
contained in the sample increases and results in the
reduction of the posterior risks of the Bayes estimators.
Thus, efficiency of the Bayes estimators increases,
because all the observations are incorporated in our
sample (see [4,52]). When ¢ tends to oo, the limiting
expressions for the Bayes estimators and posterior risks
are given in Tables 2-7.

Table 2. Limiting expressions for the Bayes estimators

assuming the UP and the JP under SELF.

Bayes estimators

upP JP
Jim A = s Jim = et
Jim As = s Jim da = st s
Jim = 22 Jim = 22
Jim 2 = 225 Jim e = 555

Table 3. Limiting expressions for the posterior risks

assuming the UP and the JP under SELF.

Posterior risks

UP JP

S p O = (e ey e = (e i o
Jim p(3) = (it fim e = (et
Jim P09 = (o iy e = e
tgn;p(pl)—% Jim p(p 0=

_ (n2+1)(n1+n3+2)

no+1)(n n 2
lim ,D(pz)_( +1)(n1+n3+2) e

Jim p(p9) = UG i p(j) =
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Table 4. Limiting expressions for the Bayes estimators

assuming the UP and the JP under PLF.
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Table 6. Limiting expressions for the Bayes estimators

assuming the UP and the JP under DLF.

Bayes estimators

Bayes estimators

up JP UP JP
172 172 T - (n) 2 (1)1 /2 - 2 RS ]
lim \; = (1 t1) /(g lim A\ = 1 1 lim A\ = # lim A = =t
(oo (L, (1 4y)? oo (L, m(ty)) > e LT ST In(I4y1r)  tmes b gL, In(l4yrg)
(n2+ D)2 (nop4)t/2 X (na)t 2 (np 1)t/ Lm Xy = —m2+2 i\, = . medtl
tlilgoA (X012, In(14yap)) '/ thi];oAz_(E"Q In(14yap)) "/ oo 0 Tplyn(ltyze) oo 0 g2y n(lfwar)
(na+1)/2 (ng+2)1/2 (n3)"/2 (na+1)1/2 lim As = =532 lim A\ = =gt
tlggoA (272, n(i4yz)) /2 hj{.lo/\?’_(Z"E‘ In(14ygi)) I A > ey
k=1 o k=1 o
_ +2 : Ao nt2
— (a4 )2 (ng )2 — (1412 (ny )12 Jim py = T lim 1 = THF
tli.nolopl W tlinolopl W feo e oo o
) i C e g2 s ngt2
(na+1)1/2(ng+2)1/2 (na+1)Y/2(ny+2)1/2 lim py = =2X= lim pp = =2E=
fhi{.lopz_ (n+3)172(n4)1/2 tlfgopz T (431244172 f=ae et f=oo nt

8. Simulation study

It is obvious that the analytical comparisons among
the Bayes estimators (under different priors and loss
functions) are not possible; a simulation study is con-
ducted to serve this purpose. The performance of Bayes

Table 7. Limiting expressions for the posterior risks
assuming the UP and the JP under DLF.

Posterior risks

estimators has been scrutinized under different priors,

loss functions, parametric values, sample sizes, and test
termination times. We calculated the Bayes estimates
and posterior risks of five parameters Ay, A, Az, p1, and
po of a 3-component mixture of Burr distributions given
in Egs. (1) and (4) through a Monte Carlo simulation

using the following steps.

1. A random sample of the mixtures is generated as

follows:

UP JP
Jim p(\) = 5 Jim p(A) = 7
Jim p(ho) = 1 Jlim p(ho) = s
fim p(3s) = i Jim () = 755
Jim p(pr) = fatra ) Jim p(p1) = =]

(n14+n3+2)

t—oo

lim p(p2) = o5t

; 5y — _(mitna+2)
lim p(p2) = 5 55 tTs)

(i) For each observation, a random number, wu, is
generated from the uniform distribution over
the interval (0,1);

If w < p;, then a random Variate y, is
generated by using Eq. (4) as y = F|~ ( ) (the
cdf of Burr distribution with parameter A;);
If p1 < uw < po, then a random Variate Yy, is
generated by using Eq. (4) asy = Fy, '(u ) (the
cdf of Burr distribution with parameter \;);

(iv) If w > po, then a random Variate y, is
generated by using Eq. (4) asy = F5 ( ) (the
cdf of Burr distribution with parameter Ag).

2. A sample censored at a fixed test termination time,
t, is selected. The observations which are greater
than a fixed test termination time, ¢, are taken as
censored ones;

3. Using the steps 1 and 2 for the fixed values of

Table 5. Limiting expressions for the posterior risks assuming the UP and the JP under PLF.

Posterior risks

UP P
fimph) = gt (B -1 et = gl {5 -
fim o) = g {2 -1}t = gl {9 - 1)
Jim p(3) = g S G 1) Jime09) = st { S 1)
Jim o) = G { GG e —1} i) = 05 { S e 1)
Jim p(p) = 2ozl { ot Dt DR gk i () = 2eath {2 Roue Tt g
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Table 8. Bayes Estimate (BE) and Posterior Risk (PR) using the UP with Ay = 6, A2 =5, A3 = 4, p1 = 0.5, and p> = 0.3.

l n Loss functions — - I:TP
A1 A2 As P1 P2
SELF BE 6.997260 6.691200 6.452920 0.489451  0.303943
PR 4.583960 7.799900 13.13170 0.006500 0.005796
50 PLF BE 7.348310 7.177890 7.604400 0.496734 0.314146
PR 0.608363 1.018170 1.685550 0.013223  0.018654
DLF BE 7.602530 7.528110 8.423640 0.505724  0.323751
PR 0.081876  0.143088 0.214871 0.026505 0.059566
SELF BE 6.538970 5.869170 5.618080 0.496233  0.303230
PR 2.186560 3.444070 5.482010 0.003609 0.003254
04 100 PLF BE 6.777700  6.231320 5.917420 0.498822  0.306856
PR 0.322962  0.555434 0.854331 0.007218 0.010590
DLF BE 6.803540 6.629790 6.353780 0.505517  0.309445
PR 0.048157 0.089911 0.145986  0.014627  0.035049
SELEF BE 6.287410 5.487840 4.825760 0.497838  0.301859
PR 1.124150  1.727490 2.467200 0.001986  0.001804
200 PLF BE 6.410030 5.681020 5.079700 0.499043  0.304370
PR 0.174347 0.301519 0.474581 0.003956  0.005892
DLF BE 6.505640 5.754450 5.421110 0.502216 0.308710
PR 0.026876 0.052632 0.091868 0.007846 0.019183
SELF BE 6.722710 6.012760 5.576240 0.492014  0.302771
PR 2.550230 3.742480 5.365850 0.004976  0.004285
50 PLF BE 6.813420 6.272540 6.039290 0.497186  0.310368
PR 0.36593  0.585562  0.874647 0.010155 0.014127
DLF BE 6.956670 6.507270  6.640960 0.501614 0.318774
PR 0.054030 0.092403 0.141637 0.020482  0.044960
SELF BE 6.324060 5.480920 4.857800 0.496323  0.301978
PR 1.237760  1.747910 2.352140 0.002645 0.002288
07 100 PLF BE 6.416690 5.696410 5.019710 0.499082  0.305470
PR 0.188655  0.303863  0.438772  0.005299  0.007493
DLF BE 6.524860 5.873160 5.230060 0.501384  0.308068
PR 0.029086 0.052747 0.085033 0.010579  0.024499
SELF BE 6.152260 5.292670 4.468900 0.498232  0.300575
PR 0.606736 0.861029 1.061440 0.001359 0.001177
200 PLF BE 6.245260 5.362640 4.599630 0.499281  0.303342
PR 0.098646 0.159784  0.231530 0.002727  0.003912
DLF BE 6.288950 5.436710 4.687870  0.500282  0.305337
PR 0.015778  0.029579  0.049803 0.005462  0.012845

parameters, test termination time, and sample size,

1000 samples are generated;

4. The Bayes estimates and posterior risks of param-
eters A1, A2, Az, p1, and po are calculated based on
1000 Monte Carlo repetitions by solving Eqs. (23)-

(32).

The above steps 1-4 are used for each of the sam-
ple sizes n = 50, 100, 200 and each choice of the vector

of the parameters (A1, A2, Az, p1,p2) = {(6,5,4,0.5,0.3)
(8,7,6,0.5,0.3)} taking ¢ = 0.4,0.7 The choice of the
test termination time is made in such a way that the
censoring rate in resulting sample is approximately 10%

to 25%.

From Tables 8-11, it is observed that component
parameters Aq, Ao, A3 and the proportion parameter po
are over-estimated assuming the UP and the JP under
SELF, PLF, and DLF at different sample sizes and
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Table 9. Bayes Estimate (BE) and Posterior Risk (PR) using the JP with Ay =6, A2 =5, A3 =4, p1 = 0.5, and p> = 0.3.

l n Loss functions - - IEP
A1 A2 As P1 P2
SELF BE 6.886140 5.918820 5.517360 0.484936  0.304609
PR 4.259220 6.490770 10.56210 0.006302  0.005679
50 PLF BE 7.069440 6.492790 6.093830 0.491957  0.311387
PR 0.570876  0.962736 1.461740 0.012899 0.018329
DLF BE 7.476850 7.149820 6.910650 0.497321  0.320983
PR 0.080904 0.147252  0.237096 0.026447  0.059106
SELF BE 6.502440 5.630090 4.806170 0.490801  0.302200
PR 2.134230 3.234210 4.423630 0.003535  0.003225
04 100 PLF BE 6.737250 5.781700 5.313280 0.494329  0.308441
PR 0.318232  0.527867 0.827861 0.007176  0.010588
DLF BE 6.808520 6.159180 5.810010 0.498101  0.313483
PR 0.047383  0.090698 0.151750 0.014603  0.034361
SELF BE 6.309370 5.383100 4.516600 0.495464 0.301536
PR 1.097750 1.642300 2.201910 0.001937 0.001772
200 PLF BE 6.365650 5.534190 4.784880 0.497933  0.303982
PR 0.170060 0.296000 0.455499 0.003905 0.005886
DLF BE 6.511610 5.666990 4.985940 0.499075 0.307124
PR 0.026479  0.052774 0.093847 0.007799  0.019238
SELF BE 6.378500 5.639130  4.849220 0.490331  0.302340
PR 2.365360  3.492550 4.609880 0.004974  0.004282
50 PLF BE 6.495760 5.848090 5.333080 0.495593  0.309936
PR 0.352190 0.561249 0.830935 0.010133  0.014048
DLF BE 6.736510 6.135530  5.741040 0.500727  0.316377
PR 0.054126  0.096276  0.153533  0.020386  0.045291
SELF BE 6.207900  5.388300 4.515750  0.495220 0.301770
PR 1.176680 1.675780 2.079240 0.002623 0.002262
07 100 PLF BE 6.346240 5.520510 4.653160 0.496980  0.305032
PR 0.186157  0.296435 0.417369 0.005297  0.007468
DLF BE 6.372050 5.622880 5.064280 0.500538  0.309661
PR 0.029411 0.053728 0.089035 0.010608  0.024308
SELF BE 6.141450  5.234200 4.264300 0.497463  0.300380
PR 0.604560 0.848853 0.994630 0.001353 0.001174
200 PLF BE 6.171870  5.245570  4.422600 0.499386  0.302403
PR 0.096162  0.154823  0.222537 0.002713  0.003891
DLF BE 6.222020 5.368450  4.499850  0.500209  0.304641
PR 0.015665 0.029549  0.050108 0.005442  0.012821

test termination times. The proportion parameter p;
is under-estimated assuming the UP and the JP under
SELF and PLF; but, under DLF, it is over-estimated
(under-estimated) using the UP (JP) at varying sample
sizes and test termination times. The extent of under-
estimation of component and proportion parameters
using the UP and the JP under SELF, PLF, and
DLF is lower for larger sample sizes in a fixed test

termination time. Also, the extent of over-estimation
of component and proportion parameters is higher
for smaller test termination times. The extent of
over-estimation (under-estimation) of component and
proportion parameters is higher for smaller values
of component parameters at varying test termination
times and sample sizes. The differences of the Bayes
estimates of component and proportion parameters
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Table 10. Bayes Estimate (BE) and Posterior Risk (PR) using the UP with A1 =8, Ao =7, A3 = 6, p1 = 0.5, and p> = 0.3.

l n Loss functions — - EIP
A1 A2 As P1 P2
SELF BE 9.101440 8.492790 8.341060 0.488651  0.303173
PR 5.452830 8.613770 13.44860 0.005265 0.004551
50 PLF BE 9.387530 9.211350 9.021220 0.494763  0.309361
PR 0.557451 0.929613 1.361310 0.010654  0.014711
DLF BE 9.499820 9.608110 9.681080 0.502075 0.316453
PR 0.059466 0.100828 0.151129 0.021450 0.047514
SELF BE 8.541580 7.919530 7.329280 0.494873  0.301242
PR 2.553910 4.068990 5.802390 0.002794  0.002410
04 100 PLF BE 8.770320 7.970950 7.656010 0.496402 0.306334
PR 0.292496 0.479138 0.731082 0.005641  0.007980
DLF BE 8.780040 8.437000 8.049320 0.500752  0.309444
PR 0.033399 0.059586  0.095045 0.011334 0.025918
SELF BE 8.312190 7.393980 6.726530 0.497286 0.301108
PR 1.284600 1.937140 2.730210 0.001458 0.001268
200 PLF BE 8.419090 7.594670 6.823740 0.498471  0.302694
PR 0.154238  0.259959  0.389658 0.002943  0.004202
DLF BE 8.404300 7.695930 7.070130 0.500196  0.304976
PR 0.018188  0.034037 0.056276  0.005889  0.013827
SELF BE 8.829450 8.229030 7.711900 0.490367  0.302182
PR 3.654050 5.515350 7.741740 0.004717  0.003997
50 PLF BE 8.911510 8.430550 8.160940 0.495091  0.309217
PR 0.387904 0.608145 0.872169 0.009580  0.013098
DLF BE 9.114080 8.784570 8.431350 0.500294  0.315044
PR 0.043606 0.072338 0.107143 0.019265 0.042162
SELF BE 8.316650 7.616550 6.771110  0.495054  0.300922
PR 1.668830 2.460720 3.105320 0.002461 0.002082
07 100 PLF BE 8.448940 7.723530  7.025970 0.497581  0.304828
PR 0.195833  0.306976 0.430101 0.004952  0.006867
DLF BE 8.590020 7.941750 7.215240 0.500142  0.307822
PR 0.023232  0.039958 0.061849 0.009933  0.022480
SELF BE 8.243320 7.280110 6.379610 0.497326  0.300765
PR 0.842157 1.176740 1.465400 0.001257  0.001065
200 PLF BE 8.255690  7.414080 6.545220 0.498936  0.302285
PR 0.099966 0.158283 0.221581 0.002522  0.003528
DLF BE 8.305860 7.510540 6.733040 0.500118  0.304104
PR 0.012069 0.021128 0.033458 0.005047 0.011618

from assumed values reduce to zero with an increase
in sample size at different test termination times and
same is the case for larger test termination times at
varying sample sizes.

It can be seen that the posterior risks of Bayes
estimators of parameters assuming the UP and the JP
under SELF, PLF, and DLF decrease with an increase
in sample size for a fixed test termination time. The

same observation is made for large test termination
times at different sample sizes. Also, the posterior
risks of Bayes estimators of component parameters
under SELF are small, but the posterior risks of Bayes
estimators of component parameters under DLF and
the posterior risks of Bayes estimators of proportion
parameters under SELF, PLF, and DLF are larger for
smaller values of component parameters at different
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Table 11. Bayes Estimate (BE) and Posterior Risk (PR) using the JP with \y =8, Ao =7, A3 = 6, p1 = 0.5, and p> = 0.3.

l n Loss functions — = IEP
A1 A2 As P1 >
SELF BE 8.641140 7.993400 7.302960 0.486916 0.303231
PR 4.932750 7.831050 11.54690 0.005218  0.004507
50 PLF BE 9.069250 8.355610 8.051480 0.494535 0.309745
PR 0.538713  0.881620 1.337550 0.010562  0.014658
DLF BE 9.389360 9.167340 &8.575960 0.498551  0.315971
PR 0.059978  0.105442 0.164111 0.021526  0.047375
SELF BE 8.463760  7.524270 6.767160 0.493152 0.301301
PR 2.515380  3.785490 5.310540 0.002779  0.002408
04 100 PLF BE 8.537750  7.926030 7.135560 0.496273  0.305022
PR 0.283743  0.477354 0.705170 0.005616  0.007888
DLF BE 8.741370 8.115590 7.531480 0.498788  0.309560
PR 0.033168  0.060628  0.098511 0.011309  0.025798
SELF BE 8.310270  7.296180  6.442230 0.495855  0.301205
PR 1.268940  1.885900  2.553720 0.001446 0.001259
200 PLF BE 8.340030  7.499810 6.596130 0.498042  0.302429
PR 0.150276  0.255460 0.377614  0.002915 0.004164
DLF BE 8.448250  7.586900 6.780790 0.499004  0.304982
PR 0.017835 0.033476  0.056154  0.005836  0.013655
SELF BE 8.531000  7.624840 6.894530 0.489826  0.302358
PR 3.516130 5.075680 6.841800 0.004713  0.003995
50 PLF BE 8.659990  7.913270 7.389920 0.495120 0.309025
PR 0.387680  0.603757  0.862288  0.009579  0.013006
DLF BE 8.957510  8.200370  7.768060  0.499207 0.315682
PR 0.044697 0.075846 0.115101 0.019314  0.042009
SELF BE 8.200430  7.296860 6.414750  0.495139  0.300922
PR 1.655160  2.356370  2.984730 0.002460 0.002080
07 100 PLF BE 8.333100  7.501960 6.719570 0.497522  0.304692
PR 0.195334 0.306449 0.430046  0.004949 0.006866
DLF BE 8.487190 7.660860 6.887420 0.499444  0.308210
PR 0.023485  0.040872  0.064067 0.009949  0.022428
SELF BE 8.077800  7.239740  6.283810 0.497620 0.300338
PR 0.808702 1.166490 1.434430 0.001256 0.001062
200 PLF BE 8.165370  7.298070  6.341300 0.498864  0.302261
PR 0.099229  0.157256  0.218314  0.002520 0.003525
DLF BE 8.207960  7.294920 6.446890 0.499748  0.304457
PR 0.012188  0.021579 0.034558  0.005055 0.011619
sample sizes and test termination times. However, On the other hand, the DLF is observed performing su-

the posterior risks of Bayes estimators of component
parameters under PLF do not follow a pattern.

As far as the problem of selecting a suitable prior
is concerned, it can be seen that the JP emerges as a
more efficient prior due to less associated posterior risk
than that of the UP under both SELF and PLF; but,
we cannot identify which prior is suitable under DLF.

perior to PLF and SELF for estimating the component
parameters; whereas, for estimating the proportion
parameters, SELF is observed performing better than
PLF and DLF. The selection of the best prior and loss
function does not depend on test termination time and
sample size. However, it is to be noted that selection of
the best prior (loss function) for a given loss function
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Table 12. Bayesian predictive interval (L, U) using the
UP and the JP with A1 =6, Ao =5, A3 =4, p1 = 0.5, and
p2 = 0.3.

upP JpP
L U L U
50 0.008340 1.078420  0.008993 1.266310
0.4 100 0.008950 0.970155 0.009284 1.040020
200  0.009286 0.893051 0.009451 0.922440
50 0.008642 0.929006  0.009194 1.045020
0.009114 0.868725 0.009398 0.917158
200  0.009420 0.838663  0.009563 0.861010

l n

Table 13. Bayesian predictive interval (L, U) using the
UP and the JP with Ay =8, Ao =7, A3 =6, p1 = 0.5, and
p2 = 0.3.

upP JP
L U L U
50 0.006151 0.611745 0.006568 0.683404
0.4 100 0.006570 0.572961 0.006786 0.601959
200  0.006816 0.550113  0.006925 0.563462
50 0.006337 0.565627  0.006722 0.620488
0.7 100 0.006675 0.545038  0.006874 0.569459
200  0.006867 0.533859  0.006969 0.545406

l n

(prior) is made based on posterior risks associated with
it.

The results in Tables 12 and 13 are the 90%
Bayesian predictive intervals assuming the UP and
the JP. It is observed that the Bayesian predictive
intervals become narrower with an increase in sample
size for a fixed test termination time. The same
observation can be made with larger test termination
times at a fixed sample size. The Bayesian predictive
intervals become narrower (wider) for larger (smaller)
component parametric values in each sample size and
test termination time considered in the simulation
study. Also, the Bayesian predictive intervals using the
JP are wider than the predictive intervals using the UP.

9. A real-life example

Davis [65] reported a mixture data, x = (211,12,
ey L1pg s 215, L2245 o053 L2953 L3115 X325 +voy L3y )7 on lifetimes
(in thousand hours) of many components used in
aircraft sets. A part of these data have also been
used in [4]. To illustrate the proposed methodology,
we take the data on three components, namely, R105
RESISTOR USED IN PE218 CONVERTER, 7303
NETWORK USED IN RF UNIT, and V7 TRANS-
MITTER TUBE. Davis showed that the data x could
be modeled by a mixture of exponential distributions.
The transformation y = exp(z) — 1 of an exponential

random data (x) yields the Burr random data (y).
This transformation allows us to use the Davis mixture
data for applying the proposed Bayesian analysis. It
is unknown that which component fails until a failure
occurs at or before the test termination time (1 hour).
The tests are conducted 582 times. The data summary
required to evaluate the Bayes estimates and posterior
risks is given by:

n=2>582, ri =252, ro=>54, r3=175

r=ry+ry+r3=481, n—r =101,

T1 T1
> In(l+yik) =Y 21k = 90.60,
k=1 k=1
T2 T2
Zln(l +yor) = szk = 23.20,
k=1 k=1

T3 T3
Z In(1+ysx) = ngk = 46.125.
k=1 k=1

Since n — r = 101, we have almost 17.35% type-I
right censored sample. The Bayes estimates and their
posterior risks are shown in Table 14.

From Table 14, it is noticed that the results
obtained through real-life data are compatible with the
simulated results. The performance of the Bayes esti-
mators using the JP is seen as the best in comparison
with the UP under all the loss functions considered
in this study. It is also observed that DLF (SELF)
is better than PLF and SELF (PLF and DLF) for
estimating component (proportion) parameters.

10. Conclusion

A 3-component mixture of Burr distributions is de-
veloped to model lifetime data. Type-I right cen-
soring sampling scheme is considered. Assuming the
availability of the non-informative priors and different
loss functions, expressions of the Bayes estimators
and their posterior risks are derived. To judge the
relative performance of the Bayes estimators and also
to deal with the problem of selecting the priors and
loss functions at different sample sizes and test ter-
mination times, a comprehensive simulation and real-
life study have been conducted. The simulation study
revealed some important and interesting properties
of the Bayes estimators. From numerical results,
we observed that an increase in sample size or test
termination time provided improved Bayes estimators.
The effect of test termination time, sample size, and
parametric values on the Bayes estimators is in the
form of over-estimation or under-estimation. To be
more specific, the smaller (larger) sample size results
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Table 14. Bayes Estimates (BEs) and Posterior Risks (PRs) assuming the UP and the JP under SELF and DLF with

Davis real-life mixture data.

Prior Loss functions Xl 5\3 P P2
UP BE 1.75303781  0.93662706  3.32539143  0.52658110 0.16052665
SELF PR 0.04102084  0.07309535 0.11130084 0.00098376  0.00080169
P BE 1.76753121  0.89014676  3.30209669  0.52349272  0.16349037
PR 0.04066844  0.06212724  0.11052237 0.00095621  0.00077923
UP BE 1.76469896  0.97486696  3.34208453  0.52751438  0.16300459
PLF PR 0.02332229 0.07647981 0.03338620 0.00186654  0.00495588
Ip BE 1.77899832  0.92438546  3.31878968  0.52440522 0.16585636
PR 0.02293422 0.06847741 0.03338597  0.00182501 0.00473198
UpP BE 1.77643767  1.01466809  3.35886142  0.52844930 0.16552078
DLF PR 0.01317235 0.07691287  0.00996468 0.00353524  0.03017225
P BE 1.79053982  0.95994113 3.33556705 0.52531932  0.16825660
PR 0.01285010 0.07270693 0.01003438 0.00347712  0.02832712

in larger (smaller) extent of over-estimation or under-
estimation at a fixed test termination time. On the
other hand, the extent of over-estimation or under-
estimation of parameters is quite smaller (larger) with
relatively larger (smaller) test termination times for a
fixed sample size. Also, the extent of over-estimation or
under-estimation of parameters is less for larger values
of component parameters and vice versa. However,
as sample size (test termination time) increases (de-
creases), the posterior risks of Bayes estimators of pa-
rameters decrease (increase) for a fixed test termination
time (sample size). As the cut-off test termination
time tends to infinity, the limiting expressions (for
complete dataset) of the Bayes estimators and posterior
risks are greatly simplified. Moreover, the posterior
risks of the Bayes estimators (for complete dataset) are
expected to reduce further as there is no more effect
of test termination time. Finally, we conclude that
for a Bayesian analysis of mixture data, the JP paired
with SELF and both the UP and the JP paired with
DLF are preferable choices for estimating proportion
and component parameters, respectively. When PLF is
considered, the JP is the suitable prior for estimating
component parameters. Also, the results obtained
through real-life data coincide with the simulated
results.
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