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Abstract. One of the important aspects neglected in the literature related to cell
formation problem is human issues. In this study, a bi-objective mathematical model is
developed in which human issues and dynamic cell formation are taken into consideration
simultaneously. The �rst objective function deals with costs associated with machines and
human issues. The costs of human issues relate to salary, hiring, �ring, reward/penalty
policy, and worker assignment. The second objective function takes into account labor
utilization as a criterion for reward/penalty policy. Since the available time in di�erent
real conditions is not constant, we include learning e�ect to consider the real workers time.
The nature of dynamic cell formation problem is NP-hard, and thus a Linear Programming
embedded Genetic Algorithm (LP-GA) is employed to solve the model. In order to improve
the performance of the applied GA, its parameters are tuned by means of Central Composite
Design (CCD) method. Moreover, to validate the LP-GA, some test problems are solved
and the results are compared with those obtained from an exact method and GA. The
computational results show that the near optimal solutions yielded by LP-GA are better
than GA in large-sized problems.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Group Technology (GT) is a manufacturing approach
that has positive impacts on batch-type production.
Cellular Manufacturing System (CMS) is one of the
aspects of GT which corresponds to the layout of
manufacturing �rms that can be used to enhance both

exibility and e�ciency of the manufacturing system in
today's global competitive environment. Aryanezhad
et al. [1] and Ra�ei and Ghodsi [2] stated that the
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most outstanding bene�ts of CMS can be summarized
as the reduction in lead time, setup time, and lot
size. Also, Work-In-Process (WIP) and �nished goods
inventories as well as the throughput times are reduced,
and working 
exibility are improved. Designing a CMS
consists of the following steps: �rst, part families are
formed according to their processing requirements or
geometric design; second, the machines are grouped
into manufacturing cells; and third, part families are
assigned to the cells [3]. The design of CMSs is called
Cell Formation (CF). CF is a part of the CMS that
attempts to group machines and part families into
speci�ed manufacturing cells. CF is one of the �rst
and most important steps in designing CMSs. Owing
to high production variety, short product life cycle,
volatile demand, and short delivery time, CMSs are
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performed under dynamic environments [4]. In order
to reach an optimal solution under this condition,
changes, such as machine modi�cation, should be taken
into account.

Human issues should be considered in cellular
manufacturing, because failing to take into account
this factor can signi�cantly reduce the bene�ts of cell
manufacturing [4]. Bidanda et al. [5] stated that
important human issues include worker assignment
strategies, training, skill identi�cation, reward/penalty
system, communication, worker roles, teamwork, and
con
ict management. This study presents a bi-
objective model for the CF problem which considers
learning e�ect, human issues, and some aspects of
motivation in the �rst objective function. The costs
related to human issue consist of salary cost, hiring
cost, �ring cost, and worker assignment cost. Aspects
of motivation such as reward/penalty policy are also
taken into consideration. In addition, relevant costs
of Dynamic Cell Formation Problem (DCFP) such as
operational cost, inventory cost, and outsourcing cost
are taken into account concurrently. Second objective
function attempted to maximize the labor utilization.
The problem being NP-hard, a Linear Programming
embedded Genetic Algorithm (LP-GA) is employed,
and its parameters are tuned by means of CCD method
to solve the model. Also, the obtained results are
compared with other approaches.

The remainder of the paper is organized as fol-
lows. Section 2 presents the related literature review.
Sections 3 and 4 present the model in details. In
Section 5, the solution based on the methodology
adopted is explained. In Section 6, some numerical
examples are given to validate the model. Finally,
the conclusion and directions for future research are
presented in Section 7.

2. Literature review

Nowadays, manufacturing systems have become very
important to the global business. A number of factors
such as dynamic cell recon�guration, sequence of op-
erations, alternate part routings, operation time and
cost, cost subcontracting, etc. are typically considered
in manufacturing CF [6]. Paydar et al. [7] investigated
CF and supply chain simultaneously. They presented
a mixed integer linear programming and used a robust
optimisation model to solve the proposed model. Jabal-
Ameli and Moshref-Javadi [8] proposed a mathematical
model for CF and layout design problems while consid-
ering factors such as intra-cell and inter-cell layouts,
part demands, operations sequence, etc. Saeidi et
al. [9] developed a multi-objective mathematical pro-
gramming model while considering production volume,
machine redundancy, processing time, and sequence of
operations to design a CMS and used a GA to solve

the proposed model. Bootaki et al. [10] presented a
bi-objective model for cube CF. The �rst part of the
model sought to minimize the inter-cell movements,
and the second part attempted to maximize a part
quality index. Paydar and Saidi-Mehrabad [11] pre-
sented a linear programming model in an attempt
to maximize the grouping e�cacy and developed a
hybrid GA and Variable Neighborhood Search (VNS)
to validate the model. Solimanpur et al. [12] took into
account a number of intercellular movements and the
number of voids simultaneously in a CF problem. Lian
et al. [13] proposed a bi-objective model to minimize
workload imbalance among manufacturing cells and
applied a GA to solve it.

Rezazadeh et al. [14] proposed a new model that
attempted to determine the optimal number of virtual
cells and minimize the di�erent costs such as produc-
tion, material handling, subcontracting, etc. Kashan et
al. [15] studied manufacturing CF problem that deals
with grouping parts into families and machines into
cells, with the aim of maximizing grouping e�cacy.
Saxena and Jain [16] dealt with Dynamic CF Prob-
lem (DCFP) and presented a mixed integer nonlinear
programming with the objective of minimizing costs as-
sociated with machine operation, machine breakdown,
production planning-related, etc. Bajestani et al. [17]
proposed a multi-objective DCFP in an attempt to
minimize the total cell load variation and the sum of
the miscellaneous costs simultaneously. Shiyas and
Pillai [18] developed an algorithm for the design of
manufacturing cells and part families with the aim
of maximizing grouping e�cacy. Wang et al. [19]
considered DCFP with three con
icting objectives:
the utilization rate of machine capacity, the total
number of inter cell moves, and the machine relocation
costs.

There are few studies on human issues in cellular
manufacturing for several reasons, such as the di�culty
in the quanti�cation of these issues. Failing to take
into account human aspect of cellular manufacturing
can considerably decrease the bene�ts of this mode.
Quantitative studies have demonstrated that labor-
related issues have a critical impact on attaining
optimal system performance in a CM [5]. Aryanezhad
et al. [1] considered worker assignment and DCF
simultaneously. They addressed machine 
exibility,
part routing, and multi skill workers along with human
cost issues related to hiring, �ring, training, and
salary. Ra�ei et al. [4] presented a mathematical
model that considered DCFP and worker assignment
problem simultaneously as well as motivation, learning
e�ect, and reward. They also incorporated machine-
based and human-based costs in their model. Norman
et al. [20] presented a model involving human skills,
training, worker assignment, and output quality with
the objective of maximizing organization e�ectiveness.
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Ghotboddini et al. [21] studied dynamic CMS and
presented a model considering lean production. They
attempted to minimize the reassignment cost of human
resource, overtime cost of equipment, and labors;
attempt was also made to maximize utilization rate
of human resource. Ra�ei and Ghodsi [2] investigated
DCFP by a bi-objective mathematical formulation and
attempted to minimize machine-based costs and also
maximize labor utilization. They developed a hybrid
ant colony optimization-GA approach to solve the
model.

A list of the important features in CFP is given
in Table 1. Also, Table 2 provides a summary of the
researches reported on CFP in the literature.

In comparison with Aryanezhad et al. [1], Ra�ei
and Ghodsi [2], and Ra�ei et al. [4], we de�ned a policy

Table 1. List of important features in CFP.

1 Material handling cost
2 Machine investment cost
3 Processing time/cost
4 Production volume/demand
5 Cell size limit
6 Outsourcing
7 Overtime
8 Inventory
9 Worker assignment
10 Reward/penalty policy
11 Labor utilization
12 Environment type

for reward and penalty costs based on labor utilization
and considered labor utilization levels for reward and
penalty costs into the proposed model. However, a
policy for reward and penalty was not considered in
those two papers, and Ra�ei et al. [4] took into account
reward cost only as a part of objective function. Also,
some relevant costs of DCFP, such as inventory and
outsourcing, were taken into account in our proposed
model, and we addressed labor utilization as the second
objective function. Compared to Paydar et al. [7],
Saxena and Jain [16], Defersha and Chen [22], and
Arikan and G�ung�or [27], we considered human issues,
namely, worker assignment, reward/penalty policy, and
labor utilization. Also, we considered outsourcing,
overtime, and inventory costs simultaneously.

3. Proposed model

In this section, a bi-objective mathematical model
is presented in which the �rst objective is to min-
imize the costs of DCFP associated with machine
procurement, inter-cell movement, machine relocation,
machine variable, overtime, inventory, outsourcing, as
well as human-related costs including �ring, hiring,
salary, reward/penalty policy, and worker assignment
costs. The second objective function aims to maximize
labor utilization. In this model, a CMS is conceived to
comprise a number of machines for processing di�erent
parts. Learning curve is considered in the model to
improve bene�ts and organizational productivity in
reward systems [4]. Newly hired labors are less e�cient
than the experienced ones, but they can improve
their productivity by repeating their tasks [28,29].

Table 2. Overview of the literature on CFP.

Paper Feature
1 2 3 4 5 6 7 8 9 10 11 12�

Aryanezhad et al. [1] x x x x x x 1
Ra�ei and Ghodsi [2] x x x x x x x 1
Ra�ei et al. [4] x x x x x x 1
Paydar et al. [7] x x x x x x 2
Saeidi et al. [9] x x x x 2
Saxena and Jain [16] x x x x x x x 1
Wang et al. [19] x x x x 1
Defersha and Chen [22] x x x x x x x 1
Cao et al. [23] x x x x 1
Egilmez et al. [24] x x 2
Sudhakara Pandian and Mahapatra [25] x 1
Chung et al. [26] x x x x 1
Arikan and G�ung�or [27] x x x x x x 2
This paper x x x x x x x x x x x 1
� Note. 1: Deterministic; 2: Uncertain.
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According to the learning curve, the time of an action
will be equal to t0ib after some iterations, where t0 is
the initial time of the job activity, i is the number of
iterations, and b is a negative coe�cient [25,26].

3.1. Mathematical model
Assumptions
� Demand for each part type, time capacity of each

machine type, and processing time for all operations
of a part type in each period are known and
deterministic;

� All machines of type m can process all part types,
p;

� Each machine type m can perform one or more
operations, called machine 
exibility;

� Each operation can be performed on one or more
machine types with di�erent times, called routing

exibility [1];

� The machines purchasing costs are known and they
are purchased with a certain limit;

� Machines are grouped into relatively independent
cells with minimum inter-cell movement of the parts;

� Parts are moved between cells in batches (regardless
of the distance traveled);

� The maximum number of used cells, bounds, and
quantity of machines in each cell need to be speci�ed
in advance, and maximum number of cells remains
constant over time;

� Each machine needs just one labor;
� Relocation cost of each machine between periods is

known;
� In order to process a certain operation, the related

machine and labor must be available at the same
time [1];

� Backorders are not allowed;
� Workload of the cells should be balanced [16];
� Inventory is equal to zero in the beginning and at

the end of the planning horizon;
� Learning curve is considered in the model to increase

the bene�ts and organizational productivity of the
systems.

Indices
c Manufacturing cell (c = 1; � � � ; C);
m Machine type (m = 1; � � � ;M);
p Part type (p = 1; � � � ; P );
t Time period (t = 1; � � � ; T );
j Operations belonging to part

p (j = 1; � � � ; Op);
t0 Time period labors hired (t0 =

1; � � � ; T ).

Parameters
C Number of cells;
M Number of machines;
P Number of part types;
T Number of periods;
Op Number of operations for part type p;
Dpt Demand for part type p in time period

t;
Binter
p Batch size for inter-cell movements of

part type p;

inter
p Inter-cell movement cost per batch of

part type p;
�m Purchase cost of machine type m;
 m Marginal revenue from selling machine

type m;
�m Fixed cost of machine type m in each

time period;
Cm Variable cost of machine type m for

each unit time in regular time intervals;
�mt Variable cost of processing on machine

type m per hour in overtime in time
period t;

�+
m Relocation cost of installing one

machine of type m;
��m Relocation cost of removing one

machine of type m;
ICpt Inventory cost of per part type p in

time period t;
OCpt Outsourcing cost of part type p in time

period t;
Sct Salary cost of each labor in cell c in

time period t;
hct Hiring cost of each labor used in cell c

in time period t;
fct Firing cost of each labor �red from cell

c in time period t;
�rct Reward cost for labors in cell c in time

period t;
�pct The value earned from each labor

penalty in cell c in time period t;
Tmt Time capacity of machine type m in

time period t at regular time intervals;
T 0mt Time capacity of machine type m in

time period t in overtime;
A Available working time for each worker

in hours per time period;
LB Lower bound of the cell size;
UB Upper bound of the cell size;
tjpm Processing time required to perform

operation j of part type p on machine
type m;
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t0jpm Manual workload time required to
perform operation j of part type p on
machine type m;

b Learning index;
q Balancing factor of inter-cell workload,

(0 � q � 1);
R A big number;
AW Level of labor utilization which

deserves reward;
PU Level of labor utilization which

deserves penalty.

Decision variables
Nmct Number of machines type m allocated

to cell c in time period t;
Xjpmct Number of parts type p processed by

operation j on machine type m in cell
c in time period t;

I+
mt Number of machines type m purchased

in period t;
I�mt Number of machines type m sold in

period t;
K+
mct Number of machines type m added in

cell c in period t;
K�mct Number of machines type m removed

in cell c in period t;
Xpt Number of parts type p processed in

period t;
Qpt Number of part inventory of type p

kept in period t and carried over to
period t+ 1;

Opt Number of parts type p to be
subcontracted in period t;

Wct0t Number of labors assigned for cell c in
period t hired in period t0;

Wct Number of labors assigned for cell c in
period t;

Hct Number of labors hired for cell c in
period t;

Fct Number of labors �red for cell c in
period t;

LUct Labor utilization in cell c in period t;
Zjpct 1, if operation j of type p is done in

cell c in period t; 0 otherwise;
#pt 1, if part p is set up for production in

period t; 0 otherwise;
T 0mct Amount of extra time required by

machine m located in cell c in period t;
yrct 1, if LUct is more than AW ; 0

otherwise;
ypct 1, if LUct is less than PU ; 0 otherwise.

Objective function

min z1 =
TP
t=1

CP
c=1

MP
m=1

Nmct�m

(1)

+
TP
t=1

CP
c=1

MP
m=1

PP
p=1

OpP
j=1

CmXjpmcttjpm

(2)

+
TP
t=1

MP
m=1

I+
mt�m �

TP
t=1

MP
m=1

I�mt m

(3) (4)

+
TP
t=1

CP
c=1

MP
m=1

�+
mK

+
mct

(5)

+
TP
t=1

CP
c=1

MP
m=1

��mK�mct

(6)

+ 1
2

TP
t=1

CP
c=1

PP
p=1

Op�1P
j=1


inter
p
Binter
p

:Xpt
���Z(j+1)pct � Zjpct���

(7)

+
TP
t=1

PP
p=1

ICptQpt +
TP
t=1

PP
p=1

OCptOpt

(8) (9)

+
TP
t=1

CP
c=1

MP
m=1

T 0mct�mt

(10)

+
TP
t=1

CP
c=1

TP
t0=1

SctWct0t

(11)

+
TP
t=1

CP
c=1

hctHct +
TP
t=1

CP
c=1

fctFct

(12) (13)

+
TP
t=1

CP
c=1

TP
t0=1

�rctWct0tyrct

(14)

� TP
t=1

CP
c=1

TP
t0=1

�pctWct0ty
p
ct

(15)



2346 M. Rabbani et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 2341{2354

max z2 =
TP
t=1

CP
c=1

LUct

(16)

Subject to:

CX
c=1

Zjpct = #pt 8j; p; t; (17)

Xjpmct � R:#pt 8j; p;m; c; t; (18)

PX
p=1

OpX
j=1

XjpmcttjpmZjpct � TmtNmct + T 0mct

8m; c; t; (19)

CX
c=1

T 0mct � T 0mt 8m; t; (20)

wct = wc(t�1) +Hct � Fct 8c; t; (21)

where:

wct =
TX

t0=1

Wct0t 8c; t;

A
CX
c=1

�
(t� t0)bWct0t +Hct � Fct�
�

CX
c=1

MX
m=1

TmtNmct +
CX
c=1

MX
m=1

T 0mct

8t; t0 < t; (22)

CX
c=1

Nmct �
CX
c=1

Nmc(t�1) = I+
mt � I�mt 8m; t; (23)

Nmc(t�1) +K+
mct �K�mct = Nmct; 8m; c; t; (24)

MX
m=1

Nmct � LB 8c; t; (25)

MX
m=1

Nmct � UB 8c; t; (26)

Qp(t�1) +Opt +Xpt �Qpt � Dpt 8p; t; (27)

where:

Xpt =
CX
c=1

MX
m=1

Xjpmct 8j; p; t;

MX
m=1

PX
p=1

OpX
j=1

XjpmcttjpmZjpct

� q
24 1
C

CX
c=1

MX
m=1

PX
p=1

OpX
j=1

XjpmcttjpmZjpct

35
8c; t; (28)PM
m=1

PP
p=1

POp
j=1Xjpmctt0jpmZjpct
WctA

� LUct
8c; t; (29)

LUct �AW � Ryrct 8c; t; (30)

LUct � PU � R(1� ypct) 8c; t; (31)

Zjpmct;yrct; y
p
ct; #pt; amct 2 f0; 1g; LUct

2 [0; 1]; Xjpmct; Xpt; Qpt; Opt; T 0mct � 0;

8j; p;m; c; t; (32)

Nmct;I+
mt; I

�
mt;K

+
mct;K

�
mct;Wct0t;Wct;Hct; Fct

� 0 and integer 8m; c; t; t0: (33)

The �rst objective function consists of di�erent cost
terms as follows: Term (1) represents �xed cost of
machines and depends on the number of machines.
Term (2) indicates machine variable cost. Term (3)
shows machine procurement cost. Term (4) denotes
machine selling income. Terms (5) and (6) represent
machine relocation cost which consists of installing and
removing costs. Term (7) shows inter-cell movement
cost. Term (8) represents part holding cost. Term (9)
indicates part outsourcing cost. Term (10) represents
overtime cost. Terms (11)-(13) show labors salary,
hiring, and �ring costs. Terms (14) and (15) refer
to reward and penalty costs. Lastly, labor utilization
is maximized by the second objective function (i.e.,
Term (16)).

Eq. (17) and Constraint (18) guarantee that
parts are processed if they are planned to produce.
Constraint (19) ensure time capacities of planning
periods. Constraint (20) limit the utilized extra
time. Eq. (21) represent the labor balancing equation.
Constraint (22) satisfy the total demand in each period.
Eqs. (23) and (24) balance machine quantities between
any successive planning periods. Constraints (25)
and (26) ensure lower and upper bounds of the number
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of machines in cells. Constraint (27) show that demand
of part type p in each time period t is satis�ed
through internal part production, part outsourcing,
and/or part inventory carried over from the previous
period t� 1. Constraint (28) enforce workload balance
among cells. Labor utilization is modeled by inequality
Constraint (29). Constraints (30) and (31) indicate
the applied reward or penalty policy, which depends
on labor utilization value. Finally, types and ranges of
all variables are presented in Constraints (32) and (33).

The model is then converted into a single objec-
tive model using the Weighted Sum Method (WSM).
Term (16) is incorporated into the �rst objective
function with a negative coe�cient as follows:

�
TX
t=1

CX
c=1

LUct: (34)

In order to prevent scaling problem, normalization of
the objective functions should be taken into account.
It is assumed that F1 refers to the �rst objective
function and F2 is the second objective function. yI1
and yI2 are ideal solutions of the �rst and second
objective functions, respectively. yN1 and yN2 are nadir
solutions of the �rst and second objective functions,
respectively. Also, W1 and W2 are weights of the
�rst and second objective functions, respectively. The
integrated objective function is given as follows:

F = W1 � F1 � yI1
yN1 � yI1 +W2 � F2 � yI2

yI2 � yN2 : (35)

3.2. Model simpli�cation
The presented model is nonlinear due to the 7th, 14th,
and 15th terms of the objective function, the time
capacity constraints (Eq. (19)), the workload balancing
constraints (Eq. (28)), and labor utilization constraints
(Eq. (29)). The nonlinear term XptjZ(j+1)pct � Zjpctj
in the 7th term can be linearized by Eqs. (36)-(40)
and is then replaced by variable �jpmct. The nonlinear
term Wct0t:yrct in the 14th term and Wct0t:y

p
ct in the

15th term can be linearized through Eqs. (41)-(43)
and (44)-(46) and are replaced by variables Ect0t and
EEct0t, respectively. The nonlinear term Xjpmct:Zjpct
in Eqs. (19), (28), and (29) are linearized by Eqs. (47)-
(49) and is replaced by the variable Gjpmct.

Z(j�1)pct � Zjpct � �jpct 8j; p; c; t; (36)

�Z(j�1)pct + Zjpct � �jpct 8j; p; c; t; (37)

�jpmct � Xjpmct 8j; p;m; c; t; (38)

�jpmct � R:�jpct 8j; p;m; c; t; (39)

�jpmct�Xjpmct�R(1��jpct) 8j; p;m; c; t; (40)

Ect0t �Wct0t 8c; t0; t; (41)

Ect0t � R:yrct 8c; t0; t; (42)

Ect0t �Wct0t �R(1� yrct) 8c; t0; t; (43)

EEct0t �Wct0t 8c; t0; t (44)

EEct0t � R:ypct 8c; t0; t; (45)

EEct0t �Wct0t �R(1� ypct) 8c; t0; t; (46)

Gjpmct � Xjpmct 8j; p;m; c; t; (47)

Gjpmct � R:Zjpct 8j; p;m; c; t; (48)

Gjpmct�Xjpmct�R(1�Zjpct) 8j; p;m; c; t; (49)

�jpct 2 f0; 1g; �jpmct; Ect0t; EEct0t; Gjpmct � 0

8j; p;m; c; t: (50)

4. Solution methodology

In this section, the hybrid LP-GA approach as the
applied methodology is discussed in detail.

4.1. LP-GA approach
Due to the NP-hard nature of the problem, a LP-
GA approach is applied to solve it. GA is one of the
optimization approaches based on the mechanism of
natural selection. This algorithm attempts to mimic
natural processes in order to create optimization proce-
dures. GA has gained increasing popularity for solving
di�erent optimization problems and has been used
in di�erent areas such as engineering, manufacturing,
etc. [30]. A GA starts with a feasible solution and in
each iteration, the current solution is replaced with a
new one [31]. To reproduce and generate o�springs,
GA uses genetic operators which generally consist of
selection, crossover, and mutation. Also, GA utilizes a
�tness function to measure the quality of each encoded
solution. Some of the typical unique features of
GA that distinguish it from other algorithms include
population-based search, searching and evaluating a
large number of feasible points in the solution space,
implicit parallelism, 
exibility of hybridizing with other
domain-dependent heuristics, and taking advantage of
the probabilistic theory for selection to direct their
search [30]. Based on the foregoing discussion, GA
can decrease the possibility of being trapped in a local
optima. In the developed algorithm, the values of
the integer variables are obtained by decoding the
solution representation. Also, using an optimization
software, a linear programming is solved to �nd the
corresponding values of the continuous variables and
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those of the objective function. The advantage of LP-
GA approach is that when the LP is solved, values
that optimally correspond to the integer solution can
be yielded simply. Also, while it appears to be hard
to satisfy several constraints with continuous variables
through only GA, the LP satis�es them easily [22].

4.2. Chromosome representation
The �rst step in GA is designing chromosome charac-
teristics to devise a suitable representation scheme and
maintaining the feasibility of the generated chromo-
somes. Each chromosome is represented by a sequence
of genes which can be a set of real, binary or integer
numbers, symbols, and matrices. Two approaches are
used to represent the chromosome: direct and indirect
encodings. In a direct encoding, a chromosome totally
represents a solution, while in an indirect encoding, a
chromosome involves data which are used to achieve
a solution [31]. In this paper, both direct and indirect
coding schemes are used to represent the chromosomes.
In the proposed representation, four types of chromo-
somes (i.e., N , W , #, and L) are considered. The
�rst two chromosomes which are related to decision
variables, Nmct and Wct0t, are m� c� t and c� t0 � t
matrices, respectively. The last two chromosomes
which relate to decision variables, #pt and Ljp, are p�t
and j � p matrices, respectively. The chromosome N
which denotes the number of machines type m installed
in cell c during time period t takes a positive integer
value. The second chromosome is W which takes a
positive integer value. It indicates the number of labors
assigned to cell c during time period t which is used in
time period t0. The chromosome # is a binary variable
that shows whether or not part p has been planned for
production in time period t. The chromosome L takes
a value in f1; � � � ; Cg and shows the index of the cell
in which operation j of part type p is to be processed.

4.3. Decoding chromosomes
The values of decision variables Nmct, Wct0t, and #pt
are read directly from the chromosome, while the
decision variable, Zjpct, is determined using Eq. (51).
Based on this equation, the constraint in Eq. (17) can
be satis�ed.

Zjpct =

(
#pt if the subscript c = Ljp
0 otherwise

(51)

Also, decision variables K+
mct, K

�
mct, I

+
mt, I

�
mt, Hct, and

Fct can be determined using Eqs. (52)-(57), respec-
tively. These equations satisfy Constraints (21)-(24).

K+
mct =

(
Nmct if t = 1
maxf0; Nmct �Nmc(t�1)g if t > 1

(52)

K�mct =

(
0 if t = 1
maxf0; Nmc(t�1) �Nmctg if t > 1

(53)

I+
mt =

8>><>>:
CP
c=1

Nmct if t=1

max
�

0;
CP
c=1

Nmct�CP
c=1

Nmc(t�1)

�
if t>1 (54)

I�mt =

8<:0 if t=1

max
�

0;
CP
c=1

Nmc(t�1)�
CP
c=1

Nmct
�

if t>1 (55)

Hct =

8>>>>>>>>>><>>>>>>>>>>:

TP
t0=1

Wct0t

if t = 1; t0 � t

max
�

0;
TP

t0=1
Wct0t �

TP
t0=1

Wct0(t�1)

�
if t > 1; t0 � t

(56)

Fct =

8>>>>>>>><>>>>>>>>:

0
if t = 1

max
�

0;
TP

t0=1
Wct0(t�1) �

TP
t0=1

Wct0t

�
if t > 1; t0 � t

(57)

4.4. LP method
The values of all the integer decision variables are
obtained by decoding a chromosome and using the
penalty method as explained in the previous sections.
The constraints containing only the integer variables
are satis�ed by decoding the chromosomes except
Constraints (25) and (26), which are dealt with by the
penalty method. The corresponding continuous values
are determined by solving a linear programming. The
objective function of this LP involves Terms (2), (7)-
(10), and (34) subject to the constraints in Eqs. (18)-
(20), (22), and (27)-(31). First, the integer variables
are satis�ed by proposed GA, and the model with
the corresponding continuous values are solved by
branch and bound algorithm using GAMS optimization
software.

4.5. Fitness function
Fitness function is used to evaluate the candidate
solutions in the population and reproduce new chro-
mosomes, called o�springs. In the proposed algorithm,
the �tness value of a chromosome is de�ned as the
objective function value (Terms (1)-(15) and (34)) and
the penalty term of constraints violation. The factor
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PV is used to scale the penalty term.

Fitness function = model objective function

+ PV
TX
t=1

CX
c=1

max

(
0; LB

�
MX
m=1

Nmct;
MX
m=1

Nmct � UB
)
: (58)

4.6. Selection
The Roulette Wheel selection procedure is a �tness-
proportional selection in which an individual with
higher �tness will be selected with a higher probabil-
ity [32]. In this procedure, all individuals will have a
chance to be selected, but superior individuals will have
a higher selection probability.

4.7. Genetic operators
Crossover and mutation, as two genetic operators,
are used to produce new o�springs from the selected
parents. The crossover and mutation used in the
proposed model are discussed below.

4.7.1. Crossover
Crossover as the main genetic operator combines in-
formation from two parents and reproduces two new
chromosomes. In this paper, a uniform crossover is
applied to produce new chromosomes. In the uniform
crossover, the binary chromosome � is randomly gener-
ated as large as the main chromosome. For o�spring 1,
if � = 1, the gene is taken from parent 1; if � = 0, the
gene is taken from parent 2. For o�spring 2, if � = 1,
the gene is taken from parent 2; if � = 0, the gene
is taken from parent 1. Eq. (59) shows the proposed
crossover:

O�spring 1 = �� parent 1 + (1� �)� parent 2;

O�spring 2=�� parent 2+(1��)� parent 1: (59)

The pseudo code of the proposed crossover operator for
variable Nmct is shown in Figure 1.

4.7.2. Mutation
Mutation operator is used to keep the diversity of
the population at a reasonable level with producing
random changes in a chromosome. In this paper, a

binary mutation is applied to produce new chromo-
somes. In the binary mutation, �rst, we determine
parameter � usually equal to 0.001 or 0.01. The
number of mutations (nm) is then speci�ed by means of
the equation represented below (where N denotes the
number of genes in the chromosome). Subsequently,
genes are selected randomly and mutation operator is
applied to the chromosome. Based on the chromosome
type, the selected genes can take di�erent values.

nm = [��N ] + 1: (60)

For example, a random value is generated between
[1; C], and assigned to the selected gene in chromosome
L for Ljp.

4.8. Parameters tuning
The performance of GA strongly relies on its param-
eters including population size, number of iterations,
crossover probabilities, and mutation probabilities. As
a single set of GA, the parameters are not guaranteed to
obtain a near-optimum solution for the problem. The
Central Composite Design (CCD) method is applied
to tune GA parameters so as to determine appropriate
population size and number of iterations, as well as
crossover and mutation probabilities. CCD, also called
response surface methodology, extracts the relationship
between responses and e�ective factors [33]. By imple-
menting the CCD, regression coe�cients for e�ective
factors are extracted. Then, an optimization software
is applied to �nd the optimum combination of e�ective
factors. Factors and their levels are shown in Table 1.

5. Computational results

To demonstrate the performance of the proposed al-
gorithm and to verify the feasibility of the proposed
model, 25 numerical samples are tested. Tables 3 and 4
present data of the numerical examples. In Table 5, the
range of parameters used in the model is presented.
These parameters are generated uniformly. The LP-
GA approach has been coded in Matlab 7 and run on
a PC core i5, 1.8 GHz speed with 6 GB of RAM.

In these tests problems, lower and upper bounds
are 2 and 6, respectively. Batch size is 40 and the
cost of each batch is equal to 30. Di�erent learning
rates have been considered in the literature. Heizer
and Render [34] showed that the learning rate could

Figure 1. Pseudo code of the proposed crossover.
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Table 3. Designed factors and their levels.

Factors
Levels

Low High

Iteration (maxit) 150 250

Population size (npop) 100 200

Crossover probability (pc) 0.7 0.8

Mutation probability (pm) 0.3 0.4

Table 4. Test problems.

No. J P M C T

1 3 4 4 2 2

2 4 4 4 2 2

3 5 5 5 2 2

4 6 5 5 2 2

5 6 6 5 3 2

6 6 6 6 3 3

7 7 7 6 3 3

8 8 7 7 3 3

9 7 8 7 3 3

10 8 8 7 3 2

11 8 8 8 3 3

12 9 8 8 3 3

13 9 9 9 3 3

14 10 10 10 3 2

15 11 11 11 3 3

16 12 12 12 3 3

17 14 14 12 3 3

18 15 15 15 4 3

19 17 17 15 4 3

20 18 20 16 4 2

21 19 19 16 4 2

22 19 22 17 4 2

23 20 23 18 4 2

24 20 25 20 4 2

25 22 27 20 4 2

range between 0.7 and 0.9 for di�erent industries. Also,
several studies, such as [35,36], considered the learning
rate to be at the interval of [0:7 0:9]. In this paper, this
rate is assumed to be 0.85. It should be mentioned that
the learning index (b) is calculated as the logarithm

Table 5. Data of the test problems.

Parameter Data
range

Parameter Data
range

Dpt [200 300] t0jpm [5 8]

�mt [20 35] �m [550 680]

Sct [150 180]  m [300 500]

hct [140 170] �m [5 10]

fct [15 17] Cm [5 10]

Tmt [700 800] �+
m [30 40]

T 0mt [140 160] ��m [30 40]

tjpm [3 5]

to base 2 of learning rate (i.e., b = �0:2). The
parameters of AW , PU , and q are determined with
the coordination of three academic and two industrial
experts. Based on their opinions, the value of AW , PU ,
and q are assumed to be 0.8, 0.4, and 0.5, respectively.
The inventory cost is 150, outsourcing cost is 300,
and the reward and penalty values are 40 and 30,
respectively.

To improve the performance of the proposed
approach, e�ective GA parameters are tuned by CCD.
Each parameter takes values in di�erent levels. So,
to obtain reasonable computational results, a CCD
method is adopted to determine the best levels of the
parameters including maxit, npop, pc, and pm. More-
over, regression coe�cients are extracted and shown in
Table 6. Also, the optimum solutions obtained from
GAMS are shown in Table 7. The values maxit = 150,
npop = 200, pc = 0:7, and pm = 0:4 are selected to
improve the performance of proposed algorithm.

The obtained results of the problems are shown in
Table 8. In this table, numbers in each cell correspond
to the machines and demonstrate the ones that are
assigned to the cells. Also, the CPU running time of
algorithm is presented in Table 8. Table 9 shows the
results of the 10 test problems applying two methods
(GA and an exact method) and shows a comparison of
these methods and our proposed GA-TS. In the exact
method, the branch and bound algorithm is applied
using GAMS optimization software. The following
formula is used for computing the gaps:

Gap 1 =
proposed approach� exact method

proposed approach
; (61)

Gap 2 =
GA� proposed approach

GA
: (62)

Table 9 shows the performance of proposed GA-TS
algorithm with respect to the GA algorithm and the
exact method. Each test problem is solved 15 times
and we choose the minimum cost. Table 9 shows
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Table 6. Estimated regression coe�cients.

Term Coef. SE coef. T P

Constant 421576 550855 0.765 0.445

Maxit 6018 1342 4.483 0.000

Npop -221 1305 -0.169 0.886

Pc -608078 787436 -0.772 0.441

Pm -3102328 1506105 -2.060 0.040

maxit �maxit 3 2 1.669 0.096

npop � npop 5 2 3.171 0.002

pc � pc 871820 399475 2.182 0.030

pm � pm 3794461 1597901 2.375 0.018

maxit � npop -2 2 -1.066 0.287

maxit � pc -8283 1068 -7.755 0.000

maxit � pm -518 2136 -0.243 0.808

npop � pc 874 1068 0.819 0.414

npop � pm -6357 2136 -2.976 0.003

pc � pm 1775040 1068097 1.662 0.098

S = 16888 R� Sq = 55:7% R� Sq(adj) = 53:6%

Table 7. Optimum values of GA factors obtained from
CCD.

Maximum
iteration
(maxit)

Population
size

(npop)

Crossover
probability

(pc)

Mutation
probability

(pm)

150 200 0.7 0.4

that the proposed approach has acceptable capacity to
obtain a good solution in large-sized problems. Also,
if the results of the proposed algorithm are compared
with those of GA, the proposed algorithm obviously
outperforms this algorithm. The values of Gaps 1 and
2 are presented in Table 9.

6. Conclusions and directions for future
research

Human-related issues such as problems associated with
salary, hiring, �ring, and worker assignment are among
the most important issues in DCFP, which have been
ignored in the literature. In this paper, a new bi-
objective mathematical model was proposed to deal
with dynamic CF and human-related issues. The �rst
objective function was separated into two parts. The
�rst part was related to machine-based costs, such as
operational cost, inter-cell movement cost, machine
procurement cost, relocation cost, machine variable
cost, inventory cost, outsourcing cost, and overtime

cost. The second part was related to human-related
costs including salary, hiring, �ring, and worker assign-
ment costs. In this part, some aspects of motivation,
namely reward/penalty policy, were also taken into
account. The second objective function considered
labor utilization which is a criterion for reward/penalty
policy. Since, in the real world, the available time
in di�erent conditions is not constant, in order to
indicate the real workers time, learning e�ect was
incorporated in the model. The problem was NP-
hard, and thus a LP-GA approach was employed to
solve the model. Also, to improve the performance
of the proposed approach, e�ective GA parameters
were tuned by the CCD. Furthermore, to validate
the proposed approach, several test problems with
di�erent sizes were generated randomly and solved by
an exact method, GA, and the proposed approach.
Lastly, the results obtained were compared with each
other. Computational results show that the proposed
approach enjoys the potential to obtain good solution
in large-sized problems. Also, it outperforms the GA
in most of the test problems.

In order to increase system 
exibility, cross-
training is often used. It results in multi-skilled
operators and reduces the processing time and the time
periods that depend on operator. Considering cross-
training can be a signi�cant contribution to continue
the current research directions. Also, Our purpose
was to investigate human issues theoretically, and their
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Table 8. Cell con�gurations of the test problems.

Test
no.

CPU
time
(sec)

T = 1 T = 2 T = 3

C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4

1 52 2 2,3,4 1,2 3,4

2 81 1,2 2,3,4 1,2 3,4

3 103 2,3,5 2,3,
4,5

2,3,5 2,3,
4,5

4 139 2,3,5 2,3,
4,5

2,3,5 2,3,
4,5

5 218 2,3,5 2,4 1,2,
3,5

2,3 2,3

6 353 2,3,6 2,3,4 2,4 2,3 1,4 3 6 1 2

7 409 2,3,6 2,3,4 2,4 2,3,6 2,3,4 2,4 1 2 2

8 473 2,4,7 2,3,1 2,3,7 2,4,7 2,3 2,3,7 2,4,7 2,3,1 2,3,7

9 458 2,4,7 2,3 2,3,7 2,4,7 2,3 2,3,7 2,4,7 2,3 2,3,7

10 512 2,4,7 2,1 1,3,7 2,4,7 2,1 1,3,7 2,4,7 2,1 1,3,7

11 574 2,3,4,7 2,6,7 2,4,7 2,3,4,7 2,4,7 2,4,7 2,3,4,7 2,4,7 24,7

12 632 2,3,
4,7

2,6,7 2,4,7 2,3,
4,7

2,4,7 2,4,7 2,3,4,7 2,4,7 24,7

13 682 2,3,
4,7

2,6,7 2,4,
7,1

2,3,
4,7

2,4,7 2,4,
7,1

2,3,
4,7

2,4,7 24,7,1

14 619 2,4,7 2 3,7,9 2,4,7 2,10 3,7,9

15 746 1,5,6 3,4,7 1,5,8 6,9,11 1,3,
4,9

2,4,6 3,4,10 9,11 1,8,10

16 805 1,4,
5,6

3,4,7 3,5,
8,9

6,9,11 1,3,5,
6,12

2,4,6 4,10,12 11,12 1,8,
10,12

17 974 4,5,
8,11

3,4,7 6,7,
8,12

1,3,
6,8

3,7,
9,11

1,10,12 4,8,
9,11

1,2,
8,10

3,6,13 1,4,10 9,14 1,6,12

18 989 2,5,8,
10,11

3,4,14 6,8,
12,14

1,3,
6,15

3,7,
11,15

12,13,14 4,8,
9,11

1,2,
10,14

3,6,13 1,3,4,
6,10

9,14 12,13,15

19 1071 4,5,8,
10,11

3,4,
7,14

7,8,
13,15

1,3,6,
8,9

3,7,
11,15

12,13,14 4,5,8,
9,11

1,2,
10,14

3,6,13 1,3,4,
6,10,11

8,9,14 12,13,15

20 1190 2,4,
10,15

1,8,
12,13

6,7,
9,10

5,7,13 8,5,
11,12

1,3,6,
13,10

1,8,9,
12,16

1,4,
8,14

21 1173 3,4,10,
11,15

3,8,
12,13

1,2,5,
7,10

5,7,13 8,5,11,
12,14

1,3,6,
13,16

1,8,9,
12,14

1,4,
8,10

22 1261 2,3,10,
11,13,15

3,8,
12,14

2,4,5,
7,10

5,7,
13,17

5,8,11,
12,16

1,3,6,
12,13,16

1,8,9,
12,14

1,4,8,
10,17

23 1275 1,3,10,
13,15,18

3,8,12,
14,16

2,4,5,
7,10

5,7,
13,17

5,8,10,
11,16,18

1,3,11,12,
13,16,18

1,8,9,
12,14

1,4,8,
11,17,18

24 1330 1,3,10,13,
15,18,20

3,5,8,
12,14,16

2,4,5,
7,10,19

5,7,13,
17,19

5,8,10,11,
16,18,20

1,3,11,12,
13,16,18

8,9,12,
14,19,20

1,4,8,
11,17,18

25 1358 1,3,10,13,
15,18,20

3,5,8,12,
14,10,16

2,4,5,
7,10,17

2,5,7,
13,17,19

1,5,10,11,
16,18,20

1,3,11,12,
13,16,18

4,8,9,12,
14,19,20

1,4,8,11,
15,17,18
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Table 9. Performance of proposed method compared to other approaches.

Test number Proposed approach GA Exact method Gap 1 (%) Gap 2 (%)
1 2309.24 2319.85 2301.53 0.3338 0.4576
2 2452.05 2491.36 2425.97 1.0637 1.5780
3 3733.57 3779.03 3703.27 0.8115 1.2031
4 8790.14 9064.5 8595.46 2.2148 3.0268
5 9174.11 9139.46 8893.5 3.0587 -0.3791
6 10904.76 11318.05 N/A | 3.6516
7 18566.35 18834.11 N/A | 1.4217
8 27717.15 27299.01 N/A | -1.5317
9 43290.27 45433.02 N/A | 4.7163
10 71935.41 75907.66 N/A | 5.2330

applications could be considered as future research
direction for interested researchers.
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