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Abstract. This paper investigates the optimal multi-product dynamic pricing and
inventory policies over a multi-period planning horizon with deteriorating products and
a fuzzy demand function. The objective is maximization of the discount pro�t. A dynamic
programming model is presented to determine retail price and replenishment quantities.
Also, due to the existence of uncertainties in the values of parameters, such as cost,
deterioration rate, and the optimal strategies in general, they cannot be obtained with
high feasibility. Thus, the concept of fuzzy set theory can be applied to cope whit this
issue. Since the presented model is a fuzzy partial deferential equation, three novel fuzzy
expansion methods, including Jacobi polynomials, airfoil polynomials, and fuzzy collocation
methods, are proposed for solving this problem. Finally, this paper carries out various
computational experiments to assess the proposed model and solution approaches.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, with respect to the increase of competition
among companies, the performance of the companies
can be enhanced by employing di�erent marketing
policies for di�erent product groups. One of the most
e�ective policies is coordination of dynamic pricing
and inventory management, since using this policy
makes it possible to take the appropriate decision
about the production, planning, and inventory. Hence,
unnecessary costs can be prevented, thus, increasing
pro�ts [1]. Therefore, since the maximum pro�t is
the main goal during the planning horizon of any
organization, integration and cooperation of produc-
tion and marketing policies to achieve the maximum
pro�t are the main priorities of each organization. In
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recent years, many researchers have increasingly placed
emphasis on integrating production and inventory poli-
cies. But, in many of these research works, demand
function and parameters are certain and deterministic.
However, in many real-world problems, achieving the
desired data is not possible [2]. In order to consider
the uncertainty in the parameters and the data for this
category of problems, the use of the concept of fuzzy
sets is an appropriate approach, which is introduced by
Negoita et al. [3]. On the other hand, in a signi�cant
number of these research works, in which parameters
and data are considered to be fuzzy sets, the values
obtained for the objective function and decision vari-
ables are deterministic, while it is reasonable that, in
a fuzzy environment, a fuzzy result should be made
to meet the assumptions. However, in a signi�cant
number of these research works, time is assumed to be
discrete. Moreover, the price of the product can change
in these �xed points. This paper investigates the
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optimal multi-product dynamic pricing and inventory
policies over a multi-period planning horizon with
deteriorating products and a fuzzy demand function
and fuzzy parameters. For this purpose, a fuzzy
dynamic programming model is presented to deter-
mine retail price and replenishment quantities. Since
the presented model is a fuzzy deferential equation,
three novel fuzzy expansion methods including Jacobi
polynomials, airfoil polynomials, and fuzzy collocation
methods for solving this problem are proposed. Our
contributions are twofold. First, a fuzzy multi-product
dynamic pricing and inventory policies over a multi-
period planning horizon with deteriorating products
in continuous time are proposed. Second, to the best
of our knowledge, this is the �rst e�ort that uses the
fuzzy expansion methods for solving problems in the
�eld of pricing and inventory management. Hence, we
proposed three novel fuzzy expansion methods includ-
ing Jacobi polynomials, airfoil polynomials, and fuzzy
collocation methods for solving the proposed model.
The remainder of the paper is organized as follows.
Section 2 presents a brief review of the literature. Some
basic de�nitions are described in Section 3. Problem
de�nition and formulation are described in Section 4.
The proposed fuzzy expansion methods are given in
Section 5. Computational experiments are provided in
Section 6. Finally, the paper is concluded in Section 7.

2. Literature review

Deterministic models and fuzzy model and the ap-
proaches are discussed here. Numerous research works
have been carried out in relation to the deterministic
models and approaches. Jrgensen and Kort [4] investi-
gated an optimal control model of pricing and inventory
strategy in a multi-stage system. Gupta et al. [5]
studied a discrete-time model with considering time-
dependent reservation prices of clients in deterministic
environment. Jung and Klein [6] considered three
inventory problems with respect to di�erent functions
of cost. They utilized a geometric programming
approach to obtain selling price and order quantity. Pal
et al. [7] considered a partially integrated production
and marketing policy model for obtaining selling price,
production rate demand, marketing expenditure, and
the length of a product's life cycle. They assumed
that the planning was done for a product. Moreover,
they proposed a generalized reduced gradient method
and simple genetic algorithm for the proposed model.
Transchel and Minner [8] studied the impact of the
relation between dynamic pricing and inventory control
on single product economic order decision. Pang [1]
investigated an inventory control system and dynamic
pricing policies over a multi-period system. The unmet
demand of customers might be partially backlogged.
Moreover, the inventory might deteriorate in the plan-

ning horizon. Herbon et al. [9] proposed a non-linear
mixed-integer mathematical programming model for
investigating an inventory control system, considering a
perishing product with price- and freshness-dependent
consumption. They also considered exponential deteri-
oration for the product price and life cycle of products.
Moreover, they proposed a local search algorithm for
solving the proposed model. Chen [10] proposed an
optimal control model of pricing and inventory strategy
in a vertically decentralized supply chain over a multi-
period time horizon. The objective function considered
in this research was the maximization of the discount
pro�t. Moreover, the author considered two options for
applying business, namely Retailer Managed Inventory
(RMI) and Vendor Managed Inventory (VMI). Regard-
ing the fuzzy models and approaches, little research has
been carried out. Liu [11] presented an optimal model
of pricing and inventory strategy with price-dependent
demand and order-quantity-dependent unit cost in the
fuzzy environment. Moreover, he proposed a solution
approach based on Geometric Programming (GM)
approach for solving the proposed model. Sadjadi et
al. [12] developed a pricing and inventory model for
marketing planning in the fuzzy environment. Also,
they proposed a solution methodology based on GM
approach for solving the proposed model. Samadi et
al. [2] presented a fuzzy inventory-marketing model
with shortages. They formulated their problem as
GM approach. Soni and Joshi [13] presented a simple
inventory model in the fuzzy environment for coor-
dinating pricing and inventory strategies in a supply
chain. They formulated their problem utilizing a
trade credit policy approach, in which the provider
granted the retailer a permissible delay period and the
retailer, sequentially, o�ered providers a permissible
delay period. Cosgun et al. [14] proposed an IF-
THEN-rule based approach in the fuzzy environment
for dynamic pricing problem. The objective was to
�nd the optimal prices utilizing fuzzy possibilistic
programming and dynamic programming approaches.
Zhao and Wang [15] studied the retail service decisions
and pricing in a supply chain. They considered one
manufacturer and two retailers. Also, demands of
customers, manufacturing costs, and service costs were
fuzzy. Moreover, they presented three di�erent game
structures including manufacturer-leader stackelberg,
retailer-leader Stackelberg, and vertical Nash. Sadeghi
and Akhavan Niaki [16] proposed a bi-objective vendor
managed inventory model for a supply chain problem.
They considered single vendor and multiple retailers.
Also, the customers' demand was fuzzy. The two ob-
jectives that had to be optimized were the minimization
of the total inventory cost and the minimization of
the warehouse space. Moreover, they proposed two
multi-objective evolutionary algorithms for solving this
problem.
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3. Basic de�nitions

In this section, we represent some basic de�nitions of a
fuzzy set and its operations.

De�nition 1. An arbitrary fuzzy number, eu, is
denoted by an ordered pair of functions (u; u) that
satisfy the following three conditions [17,18]:

(i) u : r ! u�r 2 R is a bounded left-continuous
non-decreasing function over [0; 1];

(ii) u : r ! u+
r 2 R is a bounded left-continuous

non-increasing function over [0; 1];
(iii) u � u, 0 � r � 1.

De�nition 2. For arbitrary fuzzy numbers, we utilize
the Hausdor� distance [17] where (E, D) is a complete
metric space and the properties are as follows:

D (eu� ew; ev � ew) = D (eu; ev) ; 8 eu; ev 2 E;
D (keu; kev) = jkjD (eu; ev) ; 8 k 2 R; eu; ev 2 E;
D (eu� ev; ew � ee) � D (eu; ew) +D (ev; ee) ;
8 eu; ev; ew; ee 2 E:

De�nition 3. Consider ex; ey 2 E. If there exists ez 2
E such that ex = ey� ez then ez is called the H-di�erence
of ex and ey, and is denoted by ex	 ey [15].

De�nition 4. Let ef : (a; b)! E and x0 2 (a; b). We
say that f is generalized di�erentiable at x0 (Bede-Gal
di�erentiability) if there exists an element ef 0(x0) 2 E,
such that [17]:

(i) For all su�ciently small h > 0, 9 ef(x0 + h) 	ef(x0); 9 ef(x0)	 ef(x0� h) and the limits, we have
the following relation:

lim
h!0

ef(x0 + h)	 ef(x0)
h

= lim
h!0

ef(x0)	 ef(x0 � h)
h

= ef 0(x0);

or:
(ii) For all su�ciently small h > 0, 9 ef(x0) 	 ef(x0 +

h);9 ef(x0�h)	 ef(x0) and the limits, we have the
following relation:

lim
h!0

ef(x0)	 ef(x0 + h)
�h

= lim
h!0

ef(x0 � h)	 ef(x0)
�h = ef 0(x0);

or:

(iii) For all su�ciently small h > 0, 9 ef(x0 + h) 	ef(x0);9 ef(x0� h)	 ef(x0) and the limits, we have
the following relation:

lim
h!0

ef(x0 + h)	 ef(x0)
h

= lim
h!0

ef(x0 � h)	 ef(x0)
�h = ef 0(x0);

or:
(iv) For all su�ciently small h > 0, 9 ef(x0) 	 ef(x0 +

h); 9 ef(x0)	 ef(x0�h) and the limits, we have the
following relation:

lim
h!0

ef(x0)	 ef(x0 + h)
�h

= lim
h!0

ef(x0)	 ef(x0 � h)
h

= ef 0(x0):

De�nition 5. Let ef : (a; b) ! E. We say that ef
is (i)-di�erentiable on (a; b) if ef is di�erentiable in the
sense (i) of De�nition (4). Similarly, we can derive
di�erentiability of relations (ii), (iii), and (iv) [18].

De�nition 6. Let ef : T ! E be Hukuhara di�eren-
tiable and be denoted by [f(t)]r = [fr�; fr+]. Then, the
boundary functions fr� and fr+ are di�erentiable and:

f 0(t)]r = [(fr�)0(t); (fr+)0(t)]; t 2 T; r 2 [0; 1]:

De�nition 7. We say that ef satis�es the condition
(H1) at x 2 (a; b) if ef(x+ h)	 ef(x) and ef(x)	 ef(x�
h) exist su�ciently small for h. Also, we say that ef
satis�es the condition (H2) at x 2 (a; b) if ef(x)	 ef(x+
h) and ef(x� h)	 ef(x) exist for h su�ciently small.

4. Model formulation

In this section, we propose a discount pro�t maxi-
mization inventory model in the fuzzy environment.
This paper considers a fuzzy inventory system with
perishable multi products, where the fuzzy selling
price of products by retailer and scheduling fuzzy
replenishment order quantity are evaluated periodically
at each time t; t = 0; 1; 2; ;H, where H is the planning
horizon. Moreover, we assume that the replenishment
of products is immediate without in-transit inventory
of the product and no shortage happens. Hence, the
decision in each time period includes scheduling fuzzy
replenishment order quantity and its associated fuzzy
selling price of products. Therefore, this problem is
proper to obtain the optimal order of issuance for new
replenishment zi�1; i = 1; 2; :::; n, with the selling price
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of products being reorganized by the retailer and the
order quantities identi�ed simultaneously to maximize
the discount pro�t over [0;H]. It should be noted
that the new replenishment of products at zi�1 is an
arrangement for a selling period over [zi�1; zi] [10].

The fuzzy multivariate demand function consid-
ered in this study, which is shown by eH(xd; t), is de�ned
as follows:eH(xd; t) = ef(xd)eg(t);

where d is number of products type, ef(xd) = ( ead 	ebdxd); both D(ead;e0) � 0, D(ebd;e0) � 0 and eg(t) = ee�dt,
since D(ee�dt;e0) � 0 is nonnegative for all e�d. The
fuzzy multivariate demand function should satisfy the
following assumptions:

(i) eH(xd; t) is decreasing in xd;

(ii) limxd!0D( eH(xd; t);e0) < +1 and limxd!0D( eH
(xd; t);e0) = 0 for t � 0;

(iii) D( eH(xd; t);e0) � 0 for xd > 0 and t � 0.

It should be noted that the intended fuzzy multivariate
demand function satis�es the three assumptions above.

Moreover, e�d is the sales fuzzy trend of each product
over a life cycle. This parameter indicates that the
demand rate changes over the planning horizon. On
the other hand, since the objective is the maximization
of the pro�t, the total cost should be deducted from the
total revenue. Since these costs, including inventory
costs, involve deterioration, replenishment, production,
holding costs, etc., in general, all factors which are
e�ective in the calculation of revenue and costs over
time are subject to discount and in
ation rates. During
the planning period, the net discount rate of in
ation
is assumed constant; that is R =  � �, where � is the
in
ation rate and  is the discount rate, demonstrating
the time value of money. The discounted cash 
ow
value is calculated by Yte�Rt for t � 0, where Yt is
the value of Y at time t. The following notations are
utilized throughout this study:

ecd : Per unit production cost of product
type d for the manufacturer;ehd Per unit holding cost of product type
d for a given unit of time;ewd : Per unit purchase cost of product type
d for the retailer;e�d : Deterioration rate of product type d;esxd : Replenishment operations cost of
product type d per lot;

esMd : Production setup cost of product type
d per run;eARd : Per unit transaction cost of product
type d for the retailer;eAMd : Per unit transaction cost of product
type d for the manufacturer;eut(xd; t) : Inventory of product type d at time t;eQ(xd) : Replenishment quantity of product
type d;e�(xd; t) : Pro�t obtained for product type d over
period t 2 [zi�1; zi];e�zi(xd; t) : Pro�t obtained for product type d over
period t 2 [0; zi].

Also, in order to get more realistic results, we assumed
that the deterioration rate of products is variable and
time-dependent.

Based on the aforementioned descriptions and
with respect to the demand requirement and e�ect of
deterioration rate over a selling period [zi�1; zi], the
inventory at time t in the fuzzy environment can be
denoted by the di�erential equation as follows:eut(xd; t) = 	e�deu(xd; t)	 (ead 	ebdxd)ee�dt;

0 � zk�1 � t � zk � T; (1)

where:e�d = f(t):

By utilizing Eq. (1), the replenished-order quantity is
the inventory level at the start of replenishment and
can be calculated as follows:eQ(xd) = eu(xd; zk�1): (2)

Based on the aforementioned considerations, we can
calculate discount pro�t of the retailer in the selling
period [zi�1; zi] based on the total revenue and various
costs as follows:

e�(xd; t)R =
zkX

j=zk�1

xde�Rtj
�ea	ebxd� e�tj

	 ewde�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	
zkX

j=zk�1

ehde�Rtj nX
i=0

eaip�;�i (xd)p�;�i (t)

	 eARde�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 eSRde�Rzk�1 : (3)
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Moreover, we can calculate discount pro�t of the
manufacturer in the selling period [zi�1; zi] based on
the total revenue and various costs as follows:e�(xd; t)M = ewde�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 ece�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 eAMde
�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 eSMde
�Rzk�1 : (4)

Since the proposed model is a fuzzy partial di�erential
equation, to obtain a fuzzy decision, we have to use
the advanced fuzzy methods, such as fuzzy collocation
approaches, instead of regular fuzzy methods. This
is because in these methods, parameters and data are
fuzzy numbers, but the values obtained for the objec-
tive function and decision variables are deterministic.

5. Solution methodology

In this section we describe the proposed fuzzy ex-
pansion methods including Jacobi polynomials, airfoil
polynomials and fuzzy collocation methods for solving
proposed model.

5.1. Description of the Jacobi polynomials
method

In this section, we describe the proposed fuzzy ex-
pansion methods including Jacobi polynomials, airfoil
polynomials, and fuzzy collocation methods for solving
the proposed model.

To obtain the approximation solution of Eq. (1),
according to the Jacobli polynomials method [19], we
can write:eun(xd; t) = w(xd)w(t)

nX
i=0

eaip�;�i (xd)p�;�i (t);

�; � > �1; (5)

where:

w(xd) =
(1� xd)�
(1 + xd)�

; w(t) =
(1� t)�
(1 + t)�

;

p�;�i (xd) =
(1� xd)��(1 + xd)��

(�2)ii!

di

dxid
[(1� xd)i+�(1 + xd)i+� ];

(p�;�i )0(xd) =
1
2

(i+ �+ � + 1)p(�+1;�+1)
i�1 (xd);

p�;�i (t)=
(1�t)��(1+t)��

(�2)ini!
di

dti
[(1�t)i+�(1+t)i+� ];

(p�;�i )0(t) =
1
2

(i+ �+ � + 1)p(�+1;�+1)
i�1 (t): (6)

Now, from airfoil polynomials method, we have three
cases as follows:

Case (1): If
Pn
i=0 eaip�;�i (xd)p�;�i (t) is (i)-di�eren-

tiable, then w(xd)w(t)
Pn
i=0 eaip�;�i (xd)p�;�i (t) is (i)-

di�erentiable and we have:

@
@t
eun(xd; t) = eu0n(xd; t)

= (w(xd)w(t):
nX
i=0

eaip�;�i (xd)(p�;�i (t))0

= w(xd)w0(t)
nX
i=0

eaip�;�i (xd)p�;�i (t)

� w(xd)w(t)
nX
i=0

eaip�;�i (xd)(p�;�i )0(t)

=
nX
i=0

eaiw0(t)w(xd)p�;�i (xd)p�;�i (t)

�
nX
i=0

eaiw(xd)w(t)(p�;�i )0(t)p�;�i (xd)

=
nX
i=0

eaiw0(t)w(xd)p�;�i (xd)p�;�i (t)

�
nX
i=0

eaiw(xd)w(t)
1
2

(i+ �+ � + 1)

p(�+1;�+1)
i�1 (t)p�;�i (xd): (7)

Case (2): If
Pn
i=0 eaip�;�i (xd)p�;�i (t) is (ii)-di�eren-

tiable and w(xd)w(t)
Pn
i=0 eaip�;�i (xd)p�;�i (t) satis�es

(H1) at t, then w(xd)w(t)
Pn
i=0 eaip�;�i (xd)p�;�i (t) is

(ii)-di�erentiable and we have:

eu0n(xd; t) = (w(xd)w(t):
nX
i=0

eai(p�;�i (t))0p�;�i (xd)

= w0(t)w(xd)
nX
i=0

eaip�;�i (t)p�;�i (xd)

	 (�w(xd)w(t))
nX
i=0

eai(p�;�i )0(t)p�;�i (xd)
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=
nX
i=0

eaiw0(t)w(xd)p�;�i (xd)p�;�i (t)

	
nX
i=0

eai(�w(xd)w(t))(p�;�i )0(t)p�;�i (xd)

=
nX
i=0

eaiw0(t)w(xd)p�;�i (xd)p�;�i (t)

	
nX
i=0

eai(�w(xd)w(t))
1
2

(i+ �+ � + 1)

p(�+1;�+1)
i�1 (t)p�;�i (xd): (8)

Case (3): If
Pn
i=0 eaip�;�i (xd)p�;�i (t) is (ii)-di�eren-

tiable and w(xd)w(t)
Pn
i=0 eaip�;�i (xd)p�;�i (t) satis�es

(H2) at t, then w(xd)w(t)
Pn
i=0 eaip�;�i (xd)p�;�i (t) is

(ii)-di�erentiable and we have:

eu0n(xd; t) = (w(xd)w(t)
nX
i=0

eaip�;�i (t))0p�;�i (xd)

= w(xd)w(t)
nX
i=0

eai(p�;�i )0(t)p�;�i (xd)

	 (�w0(t)w(xd))
nX
i=0

eaip�;�i (xd)p�;�i (t)

=
nX
i=0

eaiw(xd)w(t)(p�;�i )0(t)p�;�i (xd)

	
nX
i=0

eai(�w0(t)w(xd)p�;�i (xd)p�;�i (t)

=
nX
i=0

eaiw(xd)w(t)
1
2

(i+ �+ � + 1)

p(�+1;�+1)
i�1 (t)p�;�i (xd)

	
nX
i=0

eai(�w0(t)w(xd))p�;�i (xd)p�;�i (t): (9)

Based on the aforementioned considerations, we can
write Eq. (5) as follows:

	f(t)w(xd)w(t)
nX
i=0

eaip�;�i (xd)p�;�i (t)	�ead	ebdxd�ee�dt
=

 
w(xd)w(t)

nX
i=0

eaip�;�i (xd)p�;�i (t)

!0
� eRn(xd; t):

(10)

Thus, we have:

	f(t)w(xd)w(t)
nX
i=0

eaip�;�i (xd)p�;�i (t)

	 �ead 	ebdxd� ee�dt
	
 
w(xd)w(t)

nX
i=0

eaip�;�i (xd)p�;�i (t)

!0
= eRn(xd; t); (11)eRn(xdj ; tj) = e0: (12)

It means that:

Rrn(xdj ; tj) = 0; Rrn(xdj ; tj) = 0; 8 r 2 [0; 1];

where, xdj and tj (j = 1; � � � ; n) are collocation points.
Therefore, we can write:

	f(tj)w(xdj)w(tj)
nX
i=0

eaip�;�i (xdj)p�;�i (tj)

	 �ead 	ebdxdj� ee�dtj
	
 
w(xdj ; tj)

nX
i=0

eaip�;�i (xdj)p�;�i (tj)

!0
=e0:

(13)

Depending on the type of derivative that was de�ned
in Eq. (7), for

�
w(xd)w(t)

Pn
i=0 eaip�;�i (xd)p�;�i (t)

�0
Eq. (5) can be written as follows when

Pn
i=0 eaip�;�i

(xdj)p�;�i (tj) is (i)-di�erentiable:

	f(tj)w(xdj)w(tj)
nX
i=0

eaip�;�i (xdj)p�;�i (tj)

	 �ead 	ebdxdj� ee�dtj
	
 

nX
i=0

eaiw0(tj)w(xdj)p�;�i (xdj)p�;�i (tj)

�
nX
i=0

eaiw(xdj)w(tj)
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (t)p�;�i (xdj)

!
= e0: (14)

Eq. (14) can be written in the following operator form:

	Aea	 eH 	 (Bea� Cea) = e0; (15)
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X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
�X
bij<0

bijeaj �X
cij�0

cijeaj �X
cij<0

cijeaj!=e0;
where:

(A)ij = f(tj)w(xdj)w(tj)p�;�i (xdj)p�;�i (tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij = w0(tj)w(xdj)p�;�i (xdj)p�;�i (tj);

(C)ij =w(xdj)w(tj)
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (t)p�;�i (xdj): (16)

Depending on the type of derivative that was de�ned
in Eq. (8), for

�
w(xd)w(t)

Pn
i=0 eaip�;�i (xd)p�;�i (t)

�0
,

Eq. (5) can be written as follows when
Pn
i=0eaip�;�i (xdj)p�;�i (tj) is (ii)-di�erentiable and w(xd)w(t)Pn

i=0 eaip�;�i (xd)p�;�i (t) satis�es condition H1:

	f(tj)w(xdj)w(tj)
nX
i=0

eaip�;�i (xdj)p�;�i (tj)

	 �ead 	ebdxdj� ee�dtj
	
 

nX
i=0

eaiw0(tj)w(xdj)p�;�i (xdj)p�;�i (tj)

	
nX
i=0

eai(�w(xdj)w(tj))
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (tj)p�;�i (xdj)) = e0: (17)

Eq. (17) can be written in the following operator form:

	Aea	 eH 	 (Bea	 Cea) = e0; (18)

X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
�X
bij<0

bijeaj 	X
cij�0

cijeaj �X
cij<0

cijeaj! = e0;
where:

(A)ij = f(tj)w(xdj)w(tj)p�;�i (xdj)p�;�i (tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij = w0(tj)w(xdj)p�;�i (xdj)p�;�i (tj);

(C)ij =(�w(xdj)w(tj))
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (tj)p�;�i (xdj): (19)

Depending on the type of derivative that was de�ned
in Eq. (9), for

�
w(xd)w(t)

Pn
i=0 eaip�;�i (xd)p�;�(t))

�0
Eq. (5) can be written as follows when

Pn
i=0eaip�;�i (xdj)p�;�i (tj) is (ii)-di�erentiable and w(xd)w(t)Pn

i=0 eaip�;�i (xd)p�;�i (t) satis�es condition H2:

	f(tj)w(xdj)w(tj)
nX
i=0

eaip�;�i (xdj)p�;�i (tj)

	 �ead 	ebdxdj� ee�dtj
	
 

nX
i=0

eaiw(xdj)w(tj)
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (tj)p�;�i (xdj)

	
nX
i=0

eai(�w0(tj)w(xdj))p�;�i (xdj)p�;�i (tj)

!
=e0:(20)

Eq. (20) can be written in the following operator form:

	Aea	 eH 	 (Bea	 Cea) = e0; (21)X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
�X
bij<0

bijeaj 	X
cij�0

cijeaj �X
cij<0

cijeaj! = e0;
where:

(A)ij = f(tj)w(xdj)w(tj)p�;�i (xdj)p�;�i (tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij =w(xdj)w(tj)
1
2

(n+ �+ � + 1)

p(�+1;�+1)
n�1 (tj)p�;�i (xdj);

(C)ij = (�w0(tj)w(xdj))p�;�i (xdj)p�;�i (tj): (22)
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5.2. Description of the Airfoil polynomials
method

In order to obtain the approximation solution of
Eq. (1), according to the airfoil polynomials fuzzy
collocation method [20], we can write this equation as
follows:eun(xd; t) = w(xd)w(t)

nX
i=0

eaisi(xd)si(t);
where:

w(xd) =
r

1 + xd
1� xd ;

w(t) =
r

1 + t
1� t ;

si(xd) =
cos
��
i+ 1

2

�
arccosxd

�
cos
� 1

2 arccosxd
� ;

si(t) =
cos
��
i+ 1

2

�
arccos t

�
cos
� 1

2 arccos t
� ;

ui(xd) =
sin
��
i+ 1

2

�
arcsinxd

�
cos
� 1

2 arcsinxd
� ;

ui(t) =
sin
��
i+ 1

2

�
arcsin t

�
cos
� 1

2 arcsin t
� ;

(1 + xd)s0i(xd) =
�
i+

1
2

�
ui(xd)� 1

2
si(xd);

(1 + t)s0i(t) =
�
i+

1
2

�
ui(t)� 1

2
si(t):

Now, from airfoil polynomials method, we have three
cases as follows:

Case (1): If
Pn
i=0 eaisi(xd)si(t) is (i)-di�erentiable,

then w(xd)w(t)
Pn
i=0 eaisi(xd)si(t) is (i)-di�erentiable

and we have:
@
@t
eun(xd; t) = eu0n(xd; t)

=

 
w(xd)w(t):

nX
i=0

eaisi(xd)si(t)!0
= w(xd)w0(t)

nX
i=0

eaisi(xd)si(t)
� w(xd)w(t)

nX
i=0

eaisi(xd)s0i(t)
=

nX
i=0

eaiw0(t)w(xd)si(xd)si(t)

�
nX
i=0

eaiw(xd)w(t)(si(xd)s0i(t))

=
nX
i=0

eaiw0(t)w(xd)si(xd)si(t)

�
nX
i=0

eaiw(xd)w(t)

 �
i+

1
2

�
ui(t)

� 1
2
si(t)

!
si(xd): (23)

Case (2): If
Pn
i=0 eaisi(xd)si(t) is (ii)-di�erentiable

and w(xd)w(t)
Pn
i=0 eaisi(xd)si(t) satis�es (H1) at

t, then w(xd)w(t)
Pn
i=0 eaisi(xd)si(t) is (ii)-di�eren-

tiable and we have:

eu0n(xd; t) = (w(xd)w(t):
nX
i=0

eaisi(xd)s0i(t)
= w0(t)w(xd)

nX
i=0

eaisi(xd)si(t)
	 (�w(xd)w(t))

nX
i=0

eaisi(xd)s0i(t)
=

nX
i=0

eaiw0(t)w(xd)si(xd)si(t)

	
nX
i=0

eai(�w(xd)w(t))si(xd)s0i(t)

=
nX
i=0

eaiw0(t)w(xd)si(xd)si(t)

	
nX
i=0

eai(�w(xd)w(t))
��

i+
1
2

�
ui(t)

� 1
2
si(t)

�
si(xd): (24)

Case (3): If
Pn
i=0 eaisi(xd)si(t) is (ii)-di�erentiable

and w(xd)w(t)
Pn
i=0 eaisi(xd)si(t) satis�es (H2) at

t, then w(xd)w(t)
Pn
i=0 eaisi(xd)si(t) is (ii)-di�eren-

tiable and we have:

eu0n(xd; t) = (w(xd)w(t)
nX
i=0

eaisi(xd)s0i(t)
= w(xd)w(t)

nX
i=0

eaisi(xd)s0i(t)
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	 (�w0(t)w(xd))
nX
i=0

eaisi(xd)si(t)
=

nX
i=0

eaiw(xd)w(t)si(xd)s0i(t)

	
nX
i=0

eai(�w0(t)w(xd)si(xd)si(t)

=
nX
i=0

eaiw(xd)w(t)

 �
i+

1
2

�
ui(t)� 1

2
si(t)

!
si(xd)

	
nX
i=0

eai(�w0(t)w(xd))si(xd)si(t):
(25)

We can write Eq. (5) as follows:

	f(t)w(xd)w(t)
nX
i=0

eaisi(xd)si(t)	�ead 	ebdxd�ee�dt
=

 
w(xd)w(t)

nX
i=0

eaisi(xd)si(t)!0 � eRn(xd; t):
(26)

Thus, we have:

	f(t)w(xd)w(t)
nX
i=0

eaisi(xd)si(t)	�ead	ebdxd�ee�dt
	
 
w(xd)w(t)

nX
i=0

eaisi(xd)si(t)!0= eRn(xd; t): (27)

By collocation method:eRn(xdj ; tj) = e0: (28)

It means:

Rrn(xdj ; tj)=0; Rrn(xdj ; tj)=0; 8 r2 [0; 1]:

where, xdj and tj(j = 1; � � � ; n) are collocation points.

xdj = � cos
2j � 1
2n+ 3

�; j = 0; 1; � � � ; n;

tj = � cos
2j � 1
2n+ 3

�; j = 0; 1; � � � ; n:
Therefore, we can write:

	f(tj)w(xdj)w(tj)
nX
i=0

eaisi(xdj)si(tj)
	 �ead 	ebdxdj� ee�dtj
	
 
w(xdj ; tj)

nX
i=0

eaisi(xdj)si(tj)!0=e0: (29)

Depending on the type of derivative that was de�ned
in Eq. (23), for (w(xd)w(t)

Pn
i=0 eaisi(xd)si(t))0, Eq. (5)

can be written as follows when
Pn
i=0 eaisi(xdj)si(tj) is

(i)-di�erentiable:

	f(tj)w(xdj)w(tj)
nX
i=0

eaisi(xdj)si(tj)
	 �ead 	ebdxdj� ee�dtj
	
 

nX
i=0

eaiw0(tj)w(xdj)si(xdj)si(tj)
�

�
nX
i=0

eaiw(xdj)w(tj)

 �
i+

1
2

�
ui(tj)

� 1
2
si(tj)

!
si(xdj) = e0: (30)

Eq. (30) can be written in the following operator form:

	Aea	 eH 	 (Bea� Cea) = e0; (31)

X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
�X
bij<0

bijeaj �X
cij�0

cijeaj �X
cij<0

cijeaj!= e0;
where:

(A)ij = f(tj)w(xdj)w(tj)si(xdj)si(tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij = w0(tj)w(xdj)si(xdj)si(tj);

(C)ij=w(xdj)w(tj)

 �
i+

1
2

�
ui(tj)� 1

2
si(tj)

!
si(xdj):(32)

Depending on the type of derivative that was de�ned
in Eq. (24), for (w(xd)w(t)

Pn
i=0 eaisi(xd)si(t))0, Eq. (5)

can be written as follows when
Pn
i=0 eaisi(xdj)si(tj) is

(ii)-di�erentiable and w(xdj)w(tj)
Pn
i=0 eaisi(xdj)si(tj)

satis�es condition H1:

	f(tj)w(xdj)w(tj)
nX
i=0

eaisi(xdj)si(tj)
	 �ead 	ebdxdj� ee�dtj
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nX
i=0

eaiw0(tj)w(xdj)si(xdj)si(tj)

	
nX
i=0

eai(�w(xdj)w(tj))

 �
i+

1
2

�
ui(tj)

� 1
2
si(tj)

!
si(xdj) = e0: (33)

Eq. (33) can be written in the following operator form:

	Aea	 eH 	 (Bea	 Cea) = e0; (34)X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
� X
bij<0

bijeaj 	 X
cij�0

cijeaj � X
cij<0

cijeaj! = e0;
where:

(A)ij = f(tj)w(xdj)w(tj)si(xdj)si(tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij = w0(tj)w(xdj)si(xdj)si(tj);

(C)ij =(�w(xdj)w(tj))

 �
i+

1
2

�
ui(tj)

� 1
2
si(tj)

!
si(xdj): (35)

Depending on the type of derivative that was de�ned
in Eq. (25), for (w(xd)w(t)

Pn
i=0 eaisi(xd)si(t))0, Eq. (5)

can be written as follows when
Pn
i=0 eaisi(xdj)si(tj) is

(ii)-di�erentiable and w(xdj)w(tj)
Pn
i=0 eaisi(xdj)si(tj)

satis�es condition H2:

	f(tj)w(xdj)w(tj)
nX
i=0

eaisi(xdj)si(tj)
	 �ead 	ebdxdj� ee�dtj
	
 

nX
i=0

eaiw(xdj)w(tj)

 �
i+

1
2

�
ui(tj)

� 1
2
si(tj)

!
si(xdj)

�
	

nX
i=0

eai(�w0(tj)w(xdj))si(xdj)si(tj) = e0:
(36)

Eq. (36) can be written in the following operator form:

	Aea	 eH 	 (Bea	 Cea) = e0: (37)

X
aij�0

aijeaj � X
fij<0

fijeaj 	 ehij 	 X
bij�0

bijeaj
�X
bij<0

bijeaj 	X
cij�0

cijeaj �X
cij<0

cijeaj! = e0;
where:

(A)ij = f(tj)w(xdj)w(tj)si(xdj)si(tj);� eH�
ij

=
�ead 	ebdxdj� ee�dtj ;

(B)ij=w(xdj)w(tj)

 �
i+

1
2

�
ui(t)� 1

2
si(tj)

!
si(xdj);

(C)ij = (�w0(tj)w(xdj))si(xdj)si(tj): (38)

5.3. Description of the fuzzy collocation
method

In order to obtain the approximation solution of
Eq. (1), according to the fuzzy collocation method [20],
we can write this equation as follows:

eu(xd; t) � eun(xd; t) =
nX
i=0

eai hi(xd)hi(t); (39)

where hj(xd) and hj(t) (j = 0; 1; � � � ; n) are orthogonal
functions.

The collocation condition is as follows:eRn(xdj ; tj) = e0: (40)

It means that:

Rrn(xdj ; tj)=0; Rrn(xdj ; tj)=0; 8 r2 [0; 1];

where, xdj and tj (j = 1; � � � ; n) are collocation points.
We integral from Eq. (1) with respect to t.

It should be noted that
Pn
i=1 eaihi(xd)hi(t) is (i)-

di�erentiable.

eu(xd; t) =	
tZ

0

f(u)eu(xd; u)du

	
tZ

0

�ead 	ebdxd� ee�dudu: (41)
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tZ

0

f(u)eun(xd; u)du	
tZ

0

�ead 	ebdxd� ee�dudu
= eun(xd; t)� eRn(xd; t); (42)

	
tZ

0

f(u)eun(xd; u)du	
tZ

0

�ead 	ebdxd� ee�dudu
	 eun(xd; t) = eRn(xd; t): (43)

According to the fast collocation condition, Eq. (43)
can be written in the following operator form:

	Aea	 eH 	Bea = e0; (44)

	
0@X
aij�0

aijeaj � X
aij<0

aijeaj1A	 ehij
	
0@X
bij�0

bijeaj � X
bij<0

bijeaj1A = e0;
where:� eH�

ij
=
Z tj

0

�ead 	ebdxdj� ee�dudu;
(A)ij =

Z tj

0
f(u)hi(u)hj(xdj)dt;

(B)ij = hi(xdj)hi(tj): (45)

We integral from Eq.(1) with respect to t. It should be
noted that

Pn
i=0 eaihi(xd)hi(t) is (ii)-di�erentiable:

eu(xd; t) =	
 
	

tZ
0

f(u)eu(xd; u)du

	
tZ

0

�ead 	ebdxd� ee�dudu!; (46)

	
 
	

tZ
0

f(u)eun(xd; u)du	
tZ

0

�ead 	ebdxd� ee�dudu!
= eun(xd; t)� eRn(xd; t);

(47)

	
 
	

tZ
0

f(u)eun(xd; u)du	
tZ

0

�ead 	ebdxd� ee�dudu!
	 eun(xd; t) = eRn(xd; t): (48)

According to the fast collocation condition, Eq. (48)
can be written in the following operator form:

	�	Aea	 eH�	Bea = e0; (49)

	
 
	
0@X
aij�0

aijeaj � X
aij<0

aijeaj1A	 ehij!

	
0@X
bij�0

bijeaj � X
bij<0

bijeaj1A = e0;
where:� eH�

ij
=
Z tj

0

�ead 	ebdxdj� ee�dudu;
(A)ij =

Z tj

0
f(u)hi(u)hj(xdj)dt;

(B)ij = hi(xdj)hi(tj): (50)

5.4. Existence and convergence analysis
In this section, we are going to prove the existence
and uniqueness of the solution and convergence of the
proposed methods by using the following assumptions:

j f(t) j�M1;

D
��ead 	ebdxd� ee�dxd ;e0� �M2:

Let:

�1 = T (M1 +M2):

According to Eqs. (12) and (28), we have Rrn = Rrn = 0,
so, D( eRn;e0)! 0. Therefore, we can write:

D
�ea;ea(n)

� � c1n�z; z > 1:

Lemma 1: If eu; ev; ew 2 En and � 2 R, then:

(i) D(eu	 ev; eu	 ew) = D(ev; ew);

(ii) D(	�eu;	�ev) =j � j D(eu; ev):

The proof of this Lemma is provided by [21].

Theorem 1. Let 0 < �1 < 1; then, Problem (1) has
a unique solution when eu0(xd; t) is (ii)-di�erentiable.
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Proof. Let eu(xd; t) and eu�(xd; t) be two di�erent
solutions of Problem (1); then:

D (eu(xd; t); eu�(xd; t))
=D

 
	
 
	

tZ
0

f(u)eu(xd; u)du	
tZ

0

�ead	ebdxd� ee�dudu!;
	
 
	

tZ
0

f(u)eu�(xd; u)du	
tZ

0

�ead	ebdxd� ee�dudu!!

= D

 
	
 
	

tZ
0

f(u)eu(xd; u)du;

	
 
	

tZ
0

f(u)eu�(xd; u)du

!
� T (M1 +M2)D (eu(xd; t); eu�(xd; t))
= �1D (eu(xd; t); eu�(xd; t)) ;

from which we get (1 � �1)D(eu(xd; t); eu�(x; t)) � 0.
Since 0 < �1 < 1, then D(eu(xd; t); eu�(xd; t)) = 0.
Hence, implies that eu(xd; t) = eu�(xd; t), so Problem (1)
has a unique solution.

Theorem 2. Suppose that:

tZ
0

j f(u) j du � L1; L1 < 1;

tZ
0

D
��ead 	ebdxd�ee�dudu� ;e0)�L2; L2 < 1:

Then, the solution of Problem (1) is bounded.

Proof. Let eu(xd; t) be an unbounded solution of
Problem (1). Then, for every r > 0, there exists an
element x1d and t1 2 [0; T ] such that:

D
�eu(xd; t1);e0� < r; 8 x2 [0; x1d]; 8 t2 [0; t1];

D
�eu(x1d; t1);e0� = r: (51)

Clearly, we can �nd a positive number r with:

L1 + rL2 < r: (52)

By Relations (51) and (52) and the assumptions of the
theorem, we have:

r = D
�eu(x1d; t1);e0� = D

 
	
 
	

t1Z
0

f(u)eu(x1d; u)du

	
t1Z

0

�ead 	ebdx1d

�
ee�du du

!
;e0!

�
t1Z

0

j f(u) j D(u(x1d; u);e0)du

+
t1Z

0

D
��ead 	ebdx1d

�
ee�dudu� ;e0!�L1 + rL2<r;

which is a contraction. Thus, u(xd; t) is bounded.
Therefore, we can write D(ea(n);e0) � c2��z, z > 1. �

Remark 1. The proof of other cases is similar to that
of the previous theorems.

Theorem 3. The maximum absolute truncation er-
ror of the solution eun(xd; t) =

Pn
j=0 eajhj(xd)hj(t) for

Problem (1) by using the Jacobi polynomials method
is estimated to be:

D
� eEn(xd; t);e0� � c1n�z+1

1� z + c2n�z+1:

Proof. We have:

D
�eu(xd; t); eun(xd; t)

�
=D

 1X
j=0

eajp�;�j (xd)p�;�j (t);
nX
j=0

ea(n)
j p�;�j (xd)p�;�j (t)

!

= D

 
nX
j=0

eajp�;�j (xd)p�;�j (t)

+
nX
j=0

ea(n)
j p�;�j (xd)p�;�j (t);

1X
j=n+1

eajp�;�j (xd)p�;�j (t)

!

�D
 

nX
j=0

eajp�;�j (xd)p�;�j (t);
nX
j=0

ea(n)
j p�;�j (xd)p�;�j (t)

!

+D

 1X
j=n+1

eajp�;�j (xd)p�;�j (t);e0!
�

nX
j=0

j p�;�j (xd)p�;�j (t) j D(eaj ;ea(n)
j )
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+
1X

j=n+1

j p�;�j (xd)p�;�j (t) j D(eaj ;e0)

�
nX
j=0

D
�eaj ;ea(n)

j

�
+

1X
j=n+1

D
�eaj ;e0�

� c1n
�z+1

1� z + c2n�z+1:

Remark 2. The maximum absolute truncation er-
ror of the solution eun(xd; t) = w(xd)w(t)

Pn
i=0 eaip�;�j

(xd)p�;�j (t) to Problem (1) by using the collocation
method is similar to that in the Jacobi polynomials
method.

Based on the obtained results from the proposed
fuzzy collocation methods and with respect to Eq. (3),
the optimal retail price that maximizes the discount
pro�t of retailer over period [zi�1; zi] can be calculated
by taking the (i)- and (ii)-di�erentiables with respect
to xd and setting the results equal to zero as follows:

Case (1): If e�(xd; t)R is (i)-di�erentiable, then:

@
@xd

e�(xd; t)R =
zkX

j=zk�1

e�Rtj
�ea	ebxd� e�tj

	ebe�tjxde�Rtj 	 ewde�Rzk�1

nX
i=0

eaip�;�i (xd)

p�;�i (zk�1)
1
2

(i+ �+ � + 1)p(�+1;�+1)
i�1 (xd)

	
zkX

j=zk�1

ehde�Rtj nX
i=0

eai 12(i+ �+ � + 1)

p(�+1;�+1)
i�1 (xd)p�;�i (t)

	 eARde�Rzk�1

nX
i=0

eai 12(i+ �+ � + 1)

p(�+1;�+1)
i�1 (xd)p�;�i (zk�1) = e0: (53)

Case (2): If e�(xd; t)R is (ii)-di�erentiable, then:

@
@xd

e�(xd; t)R =
zkX

j=zk�1

e�Rtj
�ea	ebxd� e�tj

+ebe�tjxde�Rtj � ewde�Rzk�1

nX
i=0

eaip�;�i (xd)

p�;�i (zk�1)
1
2

(i+ �+ � + 1)p(�+1;�+1)
i�1 (xd)

�
zkX

j=zk�1

ehde�Rtj nX
i=0

eai 12(i+ �+ � + 1)

p(�+1;�+1)
i�1 (xd)p�;�i (t)

� eARde�Rzk�1

nX
i=0

eai 12(i+ �+ � + 1)

p(�+1;�+1)
i�1 (xd)p�;�i (zk�1) = e0; (54)

e�(xd; t)M = ewde�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 ecde�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 eAMde
�Rzk�1

nX
i=0

eaip�;�i (xd)p�;�i (zk�1)

	 eSMde
�Rzk�1 : (55)

Replacing the variable xd by the optimal value of this
variable, x�d, in Eqs. (2) to (4) yields the replenished
order quantity ( eQ�(xd)), the maximum discount pro�t
of retailer e��(xd; t)R, and the maximum discount pro�t
of manufacturer e��(xd; t)M over an arbitrary period
[zi�1; zi]. Moreover, the optimal replenishment sched-
ule in a multi-period planning horizon and associated
retail price, the discount pro�ts of the retailer and
manufacturer, and replenishment quantity can be cal-
culated by utilizing dynamic programming as follows:e��(xd; t)R;zk = max

�e��(xd; t)R;zk�1 + e��(xd; t)R;
0 � zk�1 � zk � T;eQ�(xd) = eu(x�d; zk�1);

e��(xd; t)R = e�(x�d; t)R;e��(xd; t)M = e�(x�d; t)M ;e��(xd; t)R;zk = max
�e��(xd; t)R;zk�1 + e��(xd; t)R;

0 � zk�1 � zk � T	: (56)

6. Validation and evaluation of results

In this section, in order to validate the proposed model
and solution approaches, several numerical examples
are implemented and the related obtained results are
reported. Also, all mathematical models are coded
in Mathematica 7. The settings in this work are
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as follows: number of periods = 15; number of
products: d = 3; cost parameters for each prod-
uct: eSM1 = (80; 100; 120), eSM2 = (75; 105; 119),eSM3 = (105; 115; 135); eSR1 = (30; 50; 75), eSR2 =
(24; 57; 70), eSR3 = (43; 65; 83); eAM1 = (0:3; 0:5; 0:6),eAM2 = (0:2; 0:6; 0:8), eAM3 = (0:4; 0:5; 0:8); eAR1 =
(0:1; 0:19; 0:23), eAR2 = (0:08; 0; 23; 0:31), eAR3 =
(0:2; 0:27; 0:38); ec1 = (0:8; 1; 1:6), ec2 = (0:65; 1:2; 1:5),ec3 = (0:72; 0:12; 1:8); ew1 = (3; 5; 8), ew2 = (2; 6; 8),ew3 = (4; 7; 9); and eh1 = (0:04; 0:06; 0:08), eh2 =
(0:03; 0:07; 0:09), eh3 = (0:02; 0:06; 0:1); Rate of de-
terioration for each product: e�1 = (0:02; 0:03; 0:05),e�2 = (0:03; 0:05; 0:07), e�3 = (0:02; 0:04; 0:06); demand
parameters: ea1 = (430; 500; 520), ea2 = (400; 460; 500),

ea3 = (450; 510; 560); eb1 = (17; 20; 25), eb2 = (20; 25; 30),eb3 = (16; 22; 31); and e�1 = (�0:05;�0:08;�0:13),e�2 = (�0:06;�0:1;�0:15), e�3 = (�0:04;�0:09;�0:11).
The summary of test results on the basis of r =

0:5, n = 6, � = 10�4, � = � 1
2 and � = � 1

2 for Jacobi
polynomials fuzzy collocation method is provided in
Tables 1-9. Also, the summary of test results on the
basis of r = 0:5, n = 8, and � = 10�4 for airfoil
polynomials fuzzy collocation method is provided in
Tables 10-18. Moreover, the summary of test results
on the basis of r = 0:5, n = 9, and � = 10�4 for
fuzzy collocation method is provided in Tables 19-24.
Moreover, the pseudo-code of the proposed solution
approaches is given below.

Table 1. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 1, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.689, 13.847) (554.137, 572.308) (3495.33, 3622.56) (2088.12, 2245.63) (5583.45, 5868.19)

2 [4,7] (13.776, 13.8158) (276.308, 294.205) (1475.21, 1691.47) (838.85,852.93) (2314.06,2544.4)

3 [7,11] (13.858, 14.072) (270.433, 272.509) (1119.66, 1323.32) (663.518, 680.157) (1783.18, 2003.48)

4 [11,15] (13.049, 15.624) (178.419, 182.739) (638.275, 652.817) (337.418, 356.309) (975.693, 1009.13)P
(54.372, 57.3598) (1279.297, 1321.761) (6728.475, 7290.167) (3927.906, 4144.026) (10656.383, 11425.2)

Table 2. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 1, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.626, 14.085) (417.34, 436.18) (2744.32, 2966.12) (1486.21, 1613.25) (4230.53, 4579.37)

2 [3,8] (13.889, 14.188) (475.234, 490.54) (2314.11, 2578.45) (1417.88, 1623.49) (3731.99, 4201.94)

3 [8,12] (13.908, 14.266) (239.077, 241.604) (997.67, 1107,26) (551.422, 579.616) (1549.092, 1686.876)

4 [12,15] (13.957, 14.341) (120.487, 122.322) (447.619, 460.827) (1977.355, 2114.715) (2424.974, 2575.542)P
(61.38, 56.88) (1252.138, 1290.646) (6503.719, 7112.657) (5432.867, 5931.071) (11936.586, 13043.728)

Table 3. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 1, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.309, 15.288) (514.066, 534.076) (3342.17, 3567.15) (1865.73, 2037.44) (5207.9, 5604.59)

2 [4,8] (13.508, 15.126) (337.835, 3507.24) (1733.88, 1955.08) (989.97, 1124.65) (2723.85, 3079.73)

3 [8,15] (13.529, 15.088) (361.117, 371.225) (1276.47, 1439.46) (897.69, 915.33) (2174.16, 2354.79)P
(40.346, 45.502) (1213.018, 4412.541) (6352.52, 6961.69) (3753.39, 4077.42) (10105.91, 11039.11)

Table 4. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 2, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.643, 13.825) (554.165, 572.329) (3495.67, 3622.46) (2088.28, 2245.58) (5583.95, 5868.04)

2 [4,7] (13.748, 13.8133) (276.388, 294.295) (1475.43, 1691.69) (838.77, 852.58) (2314.2, 2544.27)

3 [7,11] (13.843, 14.112) (270.487, 272.565) (1119.32, 1323.77) (663.563, 680.205) (1782.883, 2003.975)

4 [11,15] (13.086, 15.624) (178.453, 182.782) (638.282, 652.845) (337.429, 356.337) (975.711, 1009.182)P
(54.32, 57.3743) (1279.493, 1321.971) (6728.702, 7290.765) (3928.042, 4134.702) (10656.744, 11425.467)
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Table 5. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 2, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.648, 14.026) (417.88, 436.26) (2744.72, 2966.87) (1486.41, 1613.08) (4231.13, 4579.45)
2 [3,8] (13.817, 14.165) (475.264, 490.29) (2314.36, 2578.14) (1417.54, 1623.35) (3731.9, 4201.49)
3 [8,12] (13.922, 14.237) (239.038, 241.612) (997.58, 1107.43) (551.471, 579.697) (1549.051, 1687.127)
4 [12,15] (13.909, 14.378) (120.495, 122.317) (447.623, 460.818) (1977.364, 2114.722) (2424.987, 2575.54)P

(55.296, 56.806) (1252.677, 1290.478) (6504.283, 7113.258) (5432.785, 5930.849) (11937.068, 13044.107)

Table 6. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 2, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.346, 15.236) (514.027, 534.066) (3378.17, 3567.79) (1865.47, 2037.55) (5243.64, 5605.34)
2 [4,8] (13.517, 15.144) (337.829, 3507.62) (1733.26, 1955.89) (989.15, 1124.88) (2722.41, 3080.77)
3 [8,15] (13.557, 15.032) (361.136, 371.228) (1276.16, 1439.38) (897.07, 915.73) (2173.23, 2355.11)P

(40.42, 45.412) (1212.992, 4412.914) (6387.59, 6963.06) (3751.69, 4078.16) (10139.28, 11041.22)

Table 7. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 3, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.605, 13.825) (554.602, 572.413) (3495.59, 3622.38) (2088.38, 2245.652) (5536.45, 5868.41)
2 [4,7] (13.718, 13.8077) (276.559, 294.717) (1475.67, 1691.25) (838.77, 852.19) (2314.27, 2544.69)
3 [7,11] (13.838, 14.208) (270.249, 272.308) (1119.43, 1323.87) (663.436, 680.217) (1783.49, 2003.08)
4 [11,15] (13.112, 15.688) (178.822, 182.098) (638.473, 652.549) (337.388, 356.261) (975.452, 1009.35)P

(54.273, 57.5287) (1280.232, 1321.536) (6729.163, 7290.049) (3927.974, 4134.374) (10609.662, 11425.53)

Table 8. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 3, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.617, 14.038) (417.38, 436.75) (2776.32, 2966.48) (1486.67, 1613.17) (4262.99, 4579.65)
2 [3,8] (13.842, 14.157) (475.283, 490.49) (2314.52, 2578.27) (1417.36, 1623.16) (3731.88, 4201.43)
3 [8,12] (13.919, 14.227) (239.022, 241.678) (997.81, 1107.43) (551.482, 579.694) (1549.292, 1687.124)
4 [12,15] (13.936, 14.366) (120.453, 122.339) (447.605, 460.898) (1977.311, 2114.723) (2424.916, 2475.621)P

(55.314, 56.788) (1252.138, 1291.257) (6536.255, 7113.078) (5432.823, 5930.747) (11969.078, 13043.825)

Table 9. Numerical results by using the Jacobi polynomials fuzzy collocation method; Case 3, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.373, 15.235) (514.046, 534.037) (3325.17, 3567.48) (1865.77, 2037.83) (5190.94, 5605.31)
2 [4,8] (13.529, 15.162) (337.853, 3507.88) (1767.26, 1955.18) (989.27, 1124.58) (2756.53, 3079.76)
3 [8,15] (13.575, 15.034) (361.189, 371.252) (1285.16, 1439.59) (897.18, 915.66) (2182.34, 2355.25)P

(40.477, 45.431) (1213.088, 4413.169) (6377.59, 6962.25) (3752.22, 4078.07) (10129.81, 11040.32)

Table 10. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 1, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.673, 13.817) (554.126, 572.316) (3495.65, 3622.09) (2088.19, 2245.53) (5583.84, 5867.62)
2 [4,7] (13.722, 13.8146) (276.355, 294.238) (1475.42, 1691.66) (838.75, 852.28) (2314.17, 2543.94)
3 [7,11] (13.839, 14.067) (270.478, 272.534) (1119.71, 1323.82) (663.577, 680.187) (1783.287, 2004.007)
4 [11,15] (13.082, 15.663) (178.481, 182.724) (638.268, 652.822) (337.463, 356.326) (975.731, 1009.148)P

(54.316, 57.3616) (1279.44, 1321.812) (6729.048, 7290.392) (3927.98, 4134.323) (10657.028, 11424.715)
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Table 11. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 1, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.642, 14.067) (417.12, 436.35) (2744.84, 2966.29) (1486.13, 1613.18) (4230.97, 4579.47)
2 [3,8] (13.823, 14.114) (475.244, 490.71) (2314.33, 2578.65) (1417.57, 1623.27) (3731.9, 4201.92)
3 [8,12] (13.972, 14.228) (239.024, 241.617) (997.98, 1107.41) (551.407, 579.662) (1549.387, 1687.072)
4 [12,15] (13.939, 14.326) (120.412, 122.309) (447.638, 460.821) (1977.355, 2114.793) (2424.993, 2575.614)P

(55.367, 56.735) (1251.8, 1290.986) (6504.788, 7113.171) (5432.462, 5930.905) (11937.25, 13044.076)

Table 12. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 1, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.365, 15.229) (514.053, 534.022) (3342.56, 3567.41) (1865.68, 2037.79) (5208.24, 5605.2)
2 [4,8] (13.544, 15.165) (337.848, 3507.63) (1733.72, 1955.16) (989.45, 1124.23) (2723.17, 3079.39)
3 [8,15] (13.533, 15.026) (361.122, 371.237) (1276.28, 1439.83) (897.12, 915.85) (2164.4, 2355.68)P

(40.442, 45.42) (1213.023, 4412.889) (6352.56, 6962.4) (3752.25, 4077.87) (10095.81, 11040.27)

Table 13. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 2, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.652, 13.837) (554.147, 572.311) (3495.12, 3622.66) (2088.72, 2245.19) (5583.84, 5867.85)
2 [4,7] (13.724, 13.819) (276.325, 294.215) (1475.31, 1691.15) (838.54, 852.69) (2313.85, 2541.84)
3 [7,11] (13.836, 14.145) (270.426, 272.555) (1119.63, 1323.17) (663.513, 680.288) (1783.143, 2003.458)
4 [11,15] (13.027, 15.633) (178.418, 182.749) (638.244, 652.872) (337.451, 356.307) (975.695, 100.179)P

(54.239, 57.434) (1279.316, 1321.83) (6728.304, 7289.852) (3928.224, 4134.475) (10656.528, 11424.325)

Table 14. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 2, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.635, 14.042) (417.12, 436.38) (2744.22, 2966.21) (1486.18, 1613.44) (4230.4, 4579.65)
2 [3,8] (13.823, 14.117) (475.276, 490.81) (2314.58, 2578.11) (1417.29, 1623.13) (3731.87, 4201.24)
3 [8,12] (13.954, 14.216) (239.055, 241.667) (997.49, 1107.48) (551.488, 579.637) (1548.978, 1687.117)
4 [12,15] (13.932, 14.347) (120.435, 122.306) (447.627, 460.803) (1977.312, 2114.765) (2424.939, 2575.568)P

(55.344, 56.722) (1251.877, 1291.163) (6503.917, 7112.603) (5432.27, 5930.972) (11936.187, 13043.575)

Table 15. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 2, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.324, 15.245) (514.033, 534.014) (3378.68, 3567.33) (1865.87, 2037.38) (5244.55, 5604.71)
2 [4,8] (13.511, 15.136) (337.835, 3507.55) (1733.13, 1955.81) (989.52, 1124.64) (2722.65, 3080.45)
3 [8,15] (13.542, 15.015) (361.121, 371.267) (1276.24, 1439.53) (897.13, 915.29) (2173.37, 2354.82)P

(40.377, 45.396) (1212.989, 4412.831) (6388.05, 6962.67) (3752.52, 4077.31) (10140.57, 11039.98)

Table 16. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 3, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.619, 13.843) (554.633, 572.428) (3495.15, 3622.82) (2088.28, 2245.695) (5583.43, 5868.515)
2 [4,7] (13.725, 13.826) (276.562, 294.721) (1475.61, 1691.84) (838.56, 852.11) (2314.17, 2543.95)
3 [7,11] (13.814, 14.239) (270.266, 272.389) (1119.95, 1323.84) (663.482, 680.244) (1783.432, 2004.084)
4 [11,15] (13.156, 15.699) (178.843, 182.072) (638.422, 652.517) (337.338, 356.212) (975.76, 1008.729)P

(54.314, 57.607) (1280.304, 1321.61) (6729.132, 7291.017) (3927.66, 4134.261) (10656.792, 11425.278)
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Table 17. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 3, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.609, 14.025) (417.69, 436.14) (2776.37, 2966.52) (1486.15, 1613.65) (4262.52, 4580.17)
2 [3,8] (13.813, 14.171) (475.225, 490.13) (2314.33, 2578.43) (1417.43, 1623.62) (3731.76, 4202.05)
3 [8,12] (13.942, 14.217) (239.075, 241.644) (997.77, 1107.92) (551.475, 579.616) (1549.245, 1687.536)
4 [12,15] (13.955, 14.313) (120.416, 122.308) (447.612, 460.885) (1929.311, 2114.747) (2376.923, 2575.632)P

(55.319, 56.726) (1252.406, 1290.222) (6536.082, 7113.752) (5384.366, 5931.633) (11947.448, 13045.385)

Table 18. Numerical results by using the airfoil polynomials fuzzy collocation method; Case 3, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.336, 15.247) (514.037, 534.054) (3325.35, 3567.85) (1865.23, 2037.78) (5190.58, 5605.63)
2 [4,8] (13.583, 15.149) (337.812, 3507.67) (1767.31, 1955.46) (989.14, 1124.27) (2756.45, 3079.73)
3 [8,15] (13.522, 15.066) (361.165, 371.213) (1285.99, 1439.87) (897.17, 915.89) (2183.16, 2355.76)P

(40.441, 45.489) (1213.014, 4412.937) (6378.65, 6963.18) (3742.54, 4077.94) (10121.19, 11041.12)

Table 19. Numerical results by using the fuzzy collocation method; Case 1, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.623, 13.843) (554.196, 572.382) (3495.07, 3622.13) (2088.43, 2245.29) (5583.5, 5867.42)
2 [4,7] (13.765, 13.822) (276.309, 294.262) (1475.73, 1691.26) (838.13, 852.81) (2313.86, 2544.07)
3 [7,11] (13.877, 14.032) (270.445, 272.538) (1119.56, 1323.88) (663.525, 680.116) (1783.085, 2003.996)
4 [11,15] (13.086, 15.653) (178.423, 182.787) (638.234, 652.866) (337.478, 356.352) (975.712, 1009.218)P

(54.351, 57.35) (1279.373, 1321.969) (6728.594, 7290.136) (3927.563, 4143.568) (10872.162)

Table 20. Numerical results by using the fuzzy collocation method; Case 1, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.698, 14.032) (417.21, 436.77) (2744.26, 2966.35) (1486.33, 1613.21) (4230.59, 4589.56)
2 [3,8] (13.818, 14.151) (475.235, 490.56) (2314.68, 2578.65) (1417.19,1623.48) (3731.87,4202.13)
3 [8,12] (13.904, 14.266) (239.093, 241.687) (997.13, 1107.44) (551.426, 579.605) (1548.556, 1687.045)
4 [12,15] (13.927, 14.387) (120.408, 122.312) (447.625, 460.879) (1977.337, 2114.755) (2424.962, 2575.634)P

(55.347, 56.836) (1251.946, 1291.329) (6503.695, 7113.319) (5432.283, 5931.05) (11935.978, 13006.369)

Table 21. Numerical results by using the fuzzy collocation method; Case 1, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.307, 15.267) (514.027, 534.043) (3342.09, 3567.17) (1865.48, 2037.22) (5207.57, 5604.39)
2 [4,8] (13.515, 15.182) (337.875, 3507.45) (1733.78, 1955.39) (989.05, 1124.73) (2722.83, 3080.12)
3 [8,15] (13.513, 15.088) (361.179, 371.257) (1276.14, 1439.49) (897.44, 915.69) (2173.58, 2355.18)P

(40.335, 45.537) (1213.081, 4412.75) (6352.01, 6962.05) (3751.97, 4077.64) (10103.98, 11039.69)

Table 22. Numerical results by using the fuzzy collocation method; Case 2, d = 1.

k� [z�k�1; z�k�1] (x�1; x�1) (Q(x�1); Q(x�1)) (�(x�1)R; �(x�1)R) (�(x�1)M ; �(x�1)M) (�(x�1)C ; �(x�1)C)

1 [0,4] (13.676, 13.832) (554.167, 572.315) (3495.76, 3622.08) (2073.72, 2245.27) (5569.48, 5867.35)
2 [4,7] (13.719, 13.854) (276.333, 294.289) (1475.23, 1691.48) (838.82, 852.56) (2314.05, 2544.04)
3 [7,11] (13.826, 14.119) (270.435, 272.581) (1119.51, 1323.33) (663.563, 680.297) (1783.073, 2003.627)
4 [11,15] (13.013, 15.677) (178.449, 182.723) (638.225, 652.817) (337.428, 356.391) (975.653, 1009.208)P

(54.234, 57.482) (1279.384, 1321.908) (6728.725, 7289.707) (3913.531, 4134.518) (10642.256, 11424.225)
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Table 23. Numerical results by using the fuzzy collocation method; Case 2, d = 2.

k� [z�k�1; z�k�1] (x�2; x�2) (Q(x�2); Q(x�2)) (�(x�2)R; �(x�2)R) (�(x�2)M ; �(x�2)M) (�(x�2)C ; �(x�2)C)

1 [0,3] (13.643, 14.065) (417.27, 436.89) (2744.49, 2966.17) (1486.18, 1613.74) (4230.67, 4579.91)

2 [3,8] (13.814, 14.133) (475.206, 490.35) (2314.67, 2578.19) (1417.37, 1623.59) (3732.04, 4201.78)

3 [8,12] (13.971, 14.224) (239.078, 241.615) (997.76, 1107.83) (551.485, 579.642) (1549.242, 1687.472)

4 [12,15] (13.977, 14.328) (120.427, 122.358) (447.623, 460.803) (1977.355, 2114.758) (2424.978, 2575.561)P
(55.405, 56.75) (1251.981, 1291.213) (6504.543, 7112.993) (5432.39, 5931.73) (11936.933, 13044.723)

Table 24. Numerical results by using the fuzzy collocation method; Case 2, d = 3.

k� [z�k�1; z�k�1] (x�3; x�3) (Q(x�3); Q(x�3)) (�(x�3)R; �(x�3)R) (�(x�3)M ; �(x�3)M) (�(x�3)C ; �(x�3)C)

1 [0,4] (13.316, 15.289) (514.077, 534.065) (3378.22, 3567.58) (1865.91, 2037.49) (5244.13, 5605.07)

2 [4,8] (13.525, 15.156) (337.828, 3507.13) (1733.43, 1955.36) (989.66, 1124.92) (2723.09, 3080.28)

3 [8,15] (13.584, 15.036) (361.192, 371.271) (1276.55, 1439.77) (897.43, 915.51) (2173.98, 2355.28)P
(40.425, 45.481) (1213.097, 4412.466) (6378.2, 6962.71) (3753, 4077.92) (10141.2, 11040.63)

Algorithm:

Step 1. Set n 0;

Step 2. Solve the systems (12), (15), (18), (28), (31),
(34), (41), (46);

Step 3. If D(eun+1(xd; t), eun(xd; t)) < �, then go to
step 4, else, n n+ 1 and go to Step 2;

Step 4. Print eun(xd; t) as the approximation of the
exact solution.

With respect to the type of derivative that was
de�ned in Eq. (7) and generated system in Eqs. (15)
and (16), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000286;

D
� eEn(x2; t);e0� � 0:000278;

D
� eEn(x3; t);e0� � 0:000269:

With respect to the type of derivative that was
de�ned in Eq. (8) and generated system in Eqs. (18)
and (19), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000249;

D
� eEn(x2; t);e0� � 0:000237;

D
� eEn(x3; t);e0� � 0:000227:

With respect to the type of derivative that was
de�ned in Eq. (9) and generated system in Eqs. (21)
and (22), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000238;

D
� eEn(x2; t);e0� � 0:000229;

D
� eEn(x3; t);e0� � 0:000221:

With respect to the type of derivative that was
de�ned in Eq. (23) and generated system in Eqs. (31)
and (32), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000263;

D
� eEn(x2; t);e0� � 0:000254;

D
� eEn(x3; t);e0� � 0:000241:

With respect to the type of derivative that was
de�ned in Eq. (24) and generated system in Eqs. (34)
and (35), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000225;

D
� eEn(x2; t);e0� � 0:000218;

D
� eEn(x3; t);e0� � 0:000209:
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With respect to the type of derivative that was
de�ned in Eq. (25) and generated system in Eqs. (37)
and (38), numerical results and amounts of errors in
x1; x2; x3 can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000219;

D
� eEn(x2; t);e0� � 0:000205;

D
� eEn(x3; t);e0� � 0:000208:

With respect to the type of derivative ofPn
i=0 eaihi(xd)hi(t) that is (i)-di�erentiable and by

solving the generated system in Eqs. (44) and (45),
numerical results and amounts of errors in x1; x2; x3
can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000259;

D
� eEn(x2; t);e0� � 0:000248;

D
� eEn(x3; t);e0� � 0:000239:

With respect to the type of derivative ofPn
i=0 eaihi(xd)hi(t) that is (ii)-di�erentiable, and by

solving the generated system in Eqs. (49) and (50),
numerical results and amounts of errors in x1; x2; x3
can be obtained as follows:

D
� eEn(x1; t);e0� � 0:000228;

D
� eEn(x2; t);e0� � 0:000223;

D
� eEn(x3; t);e0� � 0:000216:

Based on the obtained results, we can conclude
that the error and number of iterations in the Jacobi
polynomials method are less than those in the airfoil
polynomials method and fuzzy collocation method.
Moreover, for better understanding, the obtained re-
sults in these algorithms have been plotted on the
graphs in Figures 1-3.

7. Conclusion

The contributions of the current study are twofold.
First, it proposes a fuzzy multi-product dynamic pric-
ing and inventory policies over a multi-period planning
horizon with deteriorating products in continuous time.

Second, it proposes three novel fuzzy expansion
methods including Jacobi polynomials, airfoil poly-
nomials, and fuzzy collocation methods for solving
the proposed model. Accordingly, it is concluded

Figure 1. The obtained discount pro�t by Jacobi fuzzy
collocation method, d = 1.

Figure 2. The obtained discount pro�t by airfoil fuzzy
collocation method, d = 1.

Figure 3. The obtained discount pro�t by fuzzy
collocation method, d = 1.

that the error and number of iterations in the Jacobi
polynomials method are less than those in the airfoil
polynomials method and fuzzy collocation method. For
future inquiries, it is suggested to apply the proposed
solution approaches in other pricing and inventory
models with various assumptions.
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