
Scientia Iranica E (2016) 23(5), 2277{2286

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

A two-echelon inventory model with perishable items
and lost sales

A. Mahmoodi�, A. Haji and R. Haji

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.

Received 4 May 2014; received in revised form 7 May 2015; accepted 6 September 2015

KEYWORDS
Inventory;
Perishable items;
Base stock policy;
Lost sales;
Two-echelon.

Abstract. This article deals with a single perishable item, continuous-review, two-echelon
serial inventory system consisting of a warehouse and a retailer. Customer demands at the
retailer are assumed to be Poisson. All items have a �xed shelf life and start aging on their
arrival at the retailer. The demand that cannot be met immediately at the retailer is lost.
All transportation times are �xed. If there is any stock in the warehouse, the lead time for
the retailer would be the transportation time from the warehouse. Otherwise, the retailer
orders are met with a delay. In this article, using an approximate technique, we �rst present
a heuristic for �nding cost-e�ective base stock policy and then develop a simulation-based
neighborhood search procedure to modify the quality of the solution. Also, a numerical
experiment is carried out to evaluate e�ectiveness and accuracy of the procedures. The
results reveal that the approximate model performs rather well.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Most conventional inventory models are presented to
deal with nonperishable items. However, perishable
inventories are the major concern in many industrial
sectors. Foodstu�s, pharmaceuticals, blood and its
derivatives, batteries, and photographic �lms are a few
examples of perishable inventories. By disregarding the
�nite lifetime of perishable items, the resulting model
may give inaccurate results. Therefore, lifetime of the
item has to be taken into consideration to develop a
cost-e�ective inventory model.

In this article, a single perishable item,
continuous-review, two-echelon serial inventory system
consisting of a warehouse and a retailer is considered.
The retailer faces Poisson demand and replenishes its
stock from the warehouse. The warehouse, in turn,
replenishes its stock through an external supplier. The
transportation time from the warehouse to the retailer
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is �xed. If there is any stock in the warehouse, the lead
time for the retailer would be the transportation time.
Otherwise, the retailer orders are met with a delay. The
lead time on a warehouse order is �xed. After joining
the stock at retailer, an item has a constant shelf life,
beyond which it is no longer usable. The demand that
cannot be met immediately at the retailer is lost. The
�xed ordering cost is negligible and both installations
operate base stock policy to control their inventories.

To the best of our knowledge, the papers which
study perishable items in multi-echelon inventory sys-
tems are very few. The optimal replenishment policies
for a single perishable item, two-echelon inventory
system were analyzed by Abdel-Malek and Ziegler [1].
They assumed deterministic demand for their inventory
system. The problem of periodic review ordering and
issuing policies in a two-echelon inventory system under
demand uncertainty was considered by Fujiwara et
al. [2]. However, they assumed unique lifetime for each
echelon.

Furthermore, the e�ect of product perishability
on total cost of the system in a two-echelon inven-
tory system was investigated by Kanchanasuntorn and
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Techanitisawad [3]. They developed an approximate
inventory model under periodic review policies assum-
ing normal demand for retailers.

Moreover, Olsson [4] addressed a continuous-
review, two-echelon serial inventory system with per-
ishable items and developed an approximate technique
for evaluation of base stock policies. Considering Pois-
son demand for the downstream location, he assumed
that the unsatis�ed demand was backordered. Finally,
Mahmoodi and Haji [5] developed (1; T ) policy for a
two-echelon inventory system with perishable-on-the-
shelf items.

From a modeling point of view, our model is re-
lated to single-echelon models with continuous review.
Signi�cant studies have been carried out for inven-
tory control of single installations of perishable items.
Schmidt and Nahmias [6] addressed a system with
perishable items operating under (S�1; S) policy with
lost sales, Poisson demand, outdating costs, purchase
costs, and per unit per period holding costs. Perry
and Posner [7] generalized Schmidt and Nahmias [6]
to allow for general types of customer impatience
behavior. Olsson and Tydesjo [8] extended Schmidt
and Nahmias [6] by allowing backorders. Mahmoodi et
al. [9] considered an inventory system under Schmidt
and Nahmias [6] assumptions but employed (1; T )
policy instead of (S�1; S) policy. The interested reader
can refer to [10] and [11], which are two comprehensive
reviews focusing on inventory control of perishable
items.

This paper presents an approach to deal with
replenishment problem in a single perishable item, two-
echelon inventory system under continuous review and
lost sales. The considered inventory system in this
paper is di�erent from inventory systems studied in
the literature. For example, our system is di�erent
from Abdel-Malek and Ziegler [1] in that we consider
stochastic demand. Fujiwara et al. [2] and Kanchana-
suntorn and Techanitisawad [3], unlike our continuous
review, considered periodic review policies. Finally,
although like Olsson [4] we consider continuous review,
we assume lost sales.

For the items with in�nite lifetime, our model
is reduced to the one considered by Andersson and
Melchiors [12]. However, the inclusion of perishability
requires an entirely new analysis due to the fact that
not only the perished items a�ect the demand of the
warehouse but also the retailer should make tradeo�
between the number of lost sales and the number of
perished items.

Considering lost sales and perishable items, the
demand process at the warehouse is not a Poisson
process. We ignore this and approximate the demand
process at the warehouse with a Poisson process. Then,
the approximated long-run average total cost function
of the inventory system is derived. Furthermore, two

procedures are presented to obtain the optimal or near-
optimal solution. Our approach gives an approximate
model which is quite simple and e�cient from a
computational point of view. Simulation results show
that the performance is very good. Although a serial
system is considered, the presented model could easily
be extended to a distribution system with identical
retailers.

An interesting application of our proposed model
is to a situation where an operating equipment is sub-
ject to both failures and routine maintenance, which
was introduced as an application of (S � 1; S) policy
by Schmidt and Nahmias [6]. In particular, consider
a facility with S1 similar operating machines. Each
machine has an engine which is subject to failure at
random times. Any engine which has been in service
for a �xed time m without failure is also removed
for maintenance. Each time an engine is removed
for maintenance or repair, an order for replacement is
made from a warehouse. The warehouse operates under
(S0 � 1; S0) policy. The transportation time from the
warehouse to the facility is �xed and known. If there
is any stock in the warehouse, the lead time for the
facility would be the transportation time. Otherwise,
the facility orders are met with a delay. The lead time
on a warehouse order is �xed. The number of operating
machines in the facility is as the inventory on hand in
the retailer in the considered model. Our model can
be used to determine not only the inventory position
at the warehouse but also the �xed interval of routine
maintenance (see [6] for more details).

The proceeding parts of this paper are organized
as follows: in Section 2, the considered model is
described. In Section 3, the cost function of the system
is approximated. Then, in Section 4, two procedures
are introduced to �nd the best policy for the model.
Furthermore, a numerical analysis is carried out to
evaluate accuracy and e�ectiveness of procedures in
Section 5. Finally, the conclusion and future research
are presented in Section 6.

2. Model description

We consider a single-item, two-echelon (two locations)
serial inventory system consisting of a warehouse and a
retailer. Customer demands occur only at the retailer
according to a Poisson process. The �xed ordering
costs are negligible. Thus, we apply the base stock
policy (one for one policy) with continuous review in
both locations. That is, the retailer makes its orders
to the warehouse under (S1 � 1; S1) policy, and the
warehouse makes its orders to an external supplier with
in�nite supply under (S0 � 1; S0) policy, where S1 and
S0 are the inventory positions in the retailer and in
the warehouse, respectively. We consider perishable-
on-the-shelf items; that is, items have a �xed shelf life
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and start aging on their arrival at the retailer. All
transportation times are �xed. All satis�ed demands
are met based on FIFO (First In First Out) policy.
Although the demand not met at the retailer is lost, the
unsatis�ed demand at the warehouse is backordered.
A �xed penalty cost per lost sale and a �xed penalty
cost per perished item are incurred at the retailer.
Items held in stock both at the warehouse and at the
retailers incur holding costs per unit per time unit.
Also, the warehouse pays a �xed purchase cost per
item. Therefore, shortage, perishing, and holding costs
are incurred at the retailer, and purchasing and holding
costs are incurred at the warehouse. The objective is
to �nd optimal values of S1 and S0 to minimize total
cost of the system. The following notations are used in
the subsequent parts of the paper.

Model Parameters:
�1 The customer demand rate;
� Cost of a lost sale at the retailer;
h0 Holding cost per unit per time unit at

the warehouse;
h1 Holding cost per unit per time unit at

the retailer;
p Cost of a perished item at the retailer;
c Purchase cost per unit at the

warehouse;
� The rate of perishing at the retailer;
�0 Transportation time from the external

supplier to the warehouse;
�1 Transportation time from the

warehouse to the retailer;
m The shelf life of the items at the

retailer;
I0 Average on-hand inventory at the

warehouse;
I1 Average on-hand inventory at the

retailer;
B0 The average number of backorders at

the warehouse.

Decision variables:
S0 Inventory position at the warehouse;
S1 Inventory position at the retailer.

Cost measures:
H0 Average total holding cost per time

unit at the warehouse;
H1 Average total holding cost per time

unit at the retailer;
� Average total shortage cost per time

unit at the retailer;

OC Average total perishing cost per time
unit at the retailer;

PC Average total purchasing cost per time
unit at the warehouse;

C0 Total cost rate at the warehouse;
C1 Total cost rate at the retailer;
TC Total cost rate of the system.

3. Cost evaluation

3.1. Preliminaries - single installation model
Schmidt and Nahmias [6] consider a single perishable
item, single-location inventory system operating under
(S � 1; S) policy with lost sales, Poisson demand,
outdating costs, purchase costs, and per unit per period
holding costs. The results of their model are used to
obtain the cost function of the retailer in our model.
Therefore, some key results of their model are presented
in the following.

Let Xk, 1 � k � S, represent the elapsed time
since the order of the kth oldest item in the system was
placed. That is, X1 is the time since the oldest item
was ordered, X2 is the time since the second oldest item
was ordered, etc. Then, the joint density function of
X1; :::; XS is stated as:

fX1;X2;:::;XS (x1; x2; :::; xS)

=

(
Ke��� for x1 < �
Ke��x1 for x1 � �

for x1 � x2 � ::: � xS and S > 0;

where, � and � stand for the demand rate and the lead
time, respectively. Also, K is a normalizing constant,
which is obtained as:

K =
�
e��� �S
S!

+
Z �+m

�

xS�1e��x
(S � 1)!

dx
��1

: (1)

Also, using the marginal function of the oldest item,
the rate of perishing is obtained (Eq. (7) in [6]):

� = fX1(� +m) =
Ke��(�+m)(� +m)S�1

(S � 1)!
: (2)

Furthermore, the proportion of time that the system is
out of stock, P0, is:

P0 =
Z �

0

Z x1

0
:::
Z xS�1

0
Ke���dxS :::dx1 =

Ke��� �S
S!

:
(3)

3.2. Approximate retailer cost
Since the warehouse may be out of stock when the
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retailer orders an item, the lead time at the retailer
is stochastic. That is, the replenishment lead time of
the retailer is �1 + �, where � is the delay due to
stock-outs at the warehouse. We use the idea of the
well-known METRIC model [13] and approximate the
lead time by its mean. Thus, the lead time at the
retailer is � 01 = �1 + �, where � is the mean of �.

For a given � 01, the retailer's model is quite
similar to the single installation model of Schmidt and
Nahmias [6]. Therefore, by substitution of � and � with
� 01 and �1 in Eq. (2), the perishing rate at the retailer
is:

� =
K 0e��1(� 01+m)(� 01 +m)S1�1

(S1 � 1)!
; (4)

where from Eq. (1):

K 0 =

 
e��1� 01� 01S1

S1!
+
Z � 01+m

� 01

xS1�1e��1x

(S1 � 1)!
dx

!�1

:
(5)

Thus, the perishing cost rate at the retailer is obtained
as follows:

OC = p� =
pK 0e��1(� 01+m)(� 01 +m)S1�1

(S1 � 1)!
: (6)

Furthermore, the proportion of time that the retailer
is out of stock, P0, is obtained by substitution of � and
� with � 01 and �1 in Eq. (3). Thus, P0 is:

P0 =
K 0e��1� 01� 01S1

S1!
: (7)

Since P0 is the proportion of time that the system is
out of stock, the proportion of demand that is lost is
�1P0. Therefore, the shortage cost rate at the retailer
is:

� = ��1P0 = ��1
K 0e��1� 01� 01S1

S1!
: (8)

Let L be the average number of outstanding orders
towards the warehouse. Then, by Little's formula, L =
�W , where � is the order rate and W is the time, an
item is on order. In our case, W = � 01 and � = (1 �
P0)�1 + �, which gives L = � 01((1 � P0)�1 + �). The
expected on hand inventory at the retailer is S1 � L.
Thus:

I1 = S1 � L = S1 � � 01 ((1� P0)�1 + �) : (9)

Hence, the holding cost rate at the retailer is:

H1 = h1I1 = h1S1 � h1� 01�1(1� P0)� h1� 01�: (10)

Therefore, the total cost rate at the retailer can be

obtained from Eqs. (6), (8), and (10) as follows:

C1 = OC + � +H1 = (p� h1� 01)

K 0e��1(� 01+m)(� 01 +m)S1�1

(S1 � 1)!

+(� + h1� 01)�1
K 0e��1� 01� 01S1

S1!
+ h1S1 � h1� 01�1:

(11)

3.3. Approximate warehouse cost
Due to the existence of lost sales and perished items,
the retailer demand to the warehouse is not Poisson.
Like [12], we ignore this and approximate the demand
at the warehouse with a Poisson process with mean
�0 = �1(1� P0) + �.

Now, the number of outstanding orders towards
the external supplier is as the occupancy level in an
M=D=1 queue. According to Palm's theorem [14], for
this type of queues, the steady-state occupancy level
is Poisson distributed with mean ��L, where � is the
arrival rate and �L is the mean service time. In our
case, � = �0, and �L = �0. Hence, the average on hand
inventory and the average number of backorders at the
warehouse are obtained as follows:

I0 =
S0X
j=0

(S0 � j) (�0�0)j

j!
e��0�0 ; (12)

B0 =
1X

j=S0+1

(j � S0)
(�0�0)j

j!
e��0�0 : (13)

Thus, the holding cost rate at the warehouse is:

H0 = h0I0 = h0

S0X
j=0

(S0 � j) (�0�0)j

j!
e��0�0 : (14)

Also, the average purchasing cost rate at the warehouse
is:

PC = c�0: (15)

Therefore, from Eqs. (14) and (15), the warehouse total
cost rate is obtained as follows:

C0 =PC+H0 =c�0+h0

S0X
j=0

(S0 � j) (�0�0)j

j!
e��0�0 :

(16)

Furthermore, using Little's formula, the mean of delay
at the retailer due to stock-outs at the warehouse, �,
can be obtained as follows:

� =
B0

�0
: (17)
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Therefore, the replenishment lead time of the retailer
is approximated as:

� 01 = �1 +
B0

�0
: (18)

Finally, from Eqs. (11) and (16), total cost rate of the
system can be obtained as follows:

TC =C0 + C1 = c�0 + h0

S0X
j=0

(S0 � j) (�0�0)j

j!
e��0�0

+ (p� h1� 01)
K 0e��1(� 01+m)(� 01 +m)S1�1

(S1 � 1)!

+ (� + h1� 01)�1
K 0e��1� 01� 01S1

S1!

+ h1S1 � h1� 01�1: (19)

4. Solution procedure

In Appendix A, we consider a base example and show
that Eq. (19) is not convex over S0 and S1. Therefore,
in this section, we present a projection-based solution
procedure, named Procedure 1, which constitutes a
main loop and an inner loop. The main loop searches
over the possible values of S0 to �nd the best one. For
each S0, an inner loop attempts to determine the best
values of S1. Evidently, S0 and S1 cannot be negative
for a cost minimizing solution. Also, two lemmas are
presented by which we can establish two termination
criteria to bound S0 and S1 from above.

Lemma 1. Given a �xed � 01, the perishing rate at the
retailer, �, is an increasing function of S1. Also �!1
when S1 !1.

Proof. See Appendix B.

Lemma 2. For a �xed �0, total cost rate of the
warehouse, C0, is a convex function of S0.

Proof. This lemma follows from, for example, [15] and
[16].

The advantage of Procedure 1 is that with a
temporary �xed S0, we can use Lemma 1 to establish
a termination criterion for the inner loop. In more
details, the search over S1 in inner loop can be
terminated when the perishing cost rate exceeds the
best cost found for the retailer, that is when S1 satis�es:

min
x�S1

C1(x) � OC(S1) = p�:

Furthermore, we can use Lemma 2 to construct a
termination criterion for the main loop. Clearly, C0 is

a lower bound for TC. Therefore, since C0 is convex in
S0, when S0 satis�es min

x�S0
TC(x) � C0(S0), the search

over S0 can be terminated.

Procedure 1

- Step 0: Set S0 := 0, TCmin := ��1, Sopt0 := 0, and
Sopt1 := 0.

- Step 1: Set s := 0, S1 := 1, � 01 := �1, TCS0min :=
��1, and TCS1min := ��1. Calculate � from Eq. (4)
and P0 from Eq. (7).

- Step 2: While TCS1min > p�, do f
Calculate �0 = �1(1�P0) +�, � 01 from Eq. (18) and
C1(S1; � 01) from Eq. (11).
Calculate C0(S0; �0) from Eq. (16) and set
TC(S0) := C0(S0; �0) + C1(S1; � 01).
If TC(S0) < TCS0min, then set TCS0min := TC(S0),
� := �0, and s := S1.
If C1(S1) < TCS1min, then set TCS1min := C1(S1).
Set S1 := S1 + 1.
Calculate � from Eq. (4), and P0 from Eq. (7).
g

- Step 3: Calculate C0(S0; �) from Eq. (16),
If TCS0min < TCmin then TCmin := TCS0min and
let Sopt0 := S0 and Sopt1 := s.
If TCmin < C0(S0; �) then set S� := (Sopt0 ; Sopt1 ),
return S� and TCmin, and stop the procedure.
Otherwise, set S0 := S0 + 1 and go to Step 1.

When S0 = S1 = 0, all customer demands are
lost, which gives total cost of the system equal to ��1.
Therefore, in Step 0 and Step 1, we can set all total
cost rates to ��1 as a starting point. Step 2 includes
the inner loop and search over S1. In Step 3, the
termination criterion of the main loop is checked and
the procedure is continued or stopped, accordingly.

Due to the existence of � 01 and �0 in cost functions,
and their dependence on both S0 and S1, with the
presented termination criteria, Procedure 1 may not
obtain the optimal solution which minimizes approx-
imated TC. However, numerical experiments show
that in all considered problems this is not the case.
In addition, the METRIC-based approximation for
the retailer's lead time and Poisson approximation of
the warehouse demand are used to obtain Eq. (19).
Consequently, the optimal solution based on Eq. (19)
is not necessarily the optimal solution of the inventory
system. Therefore, apart from Procedure 1, we also
propose Procedure 2, which is a neighborhood search
based on simulation. In Procedure 2, for a given
point S = (S0; S1), 8 neighborhoods including S =
(S0 � 1; S1), S = (S0 + 1; S1), S = (S0; S1 � 1), S =
(S0; S1 +1), S = (S0�1; S1�1), S = (S0�1+S1 +1),
S = (S0 + 1; S1 � 1), and S = (S0 + 1; S1 + 1) are
considered. Then, for each of them, 3 simulations with
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10000 time units are executed. The average cost rate
obtained from these 3 simulations is assigned to the
corresponding neighborhood. If at least one improving
solution has been determined, the neighborhood search
is restarted with respect to the best of them. If no
superior solution is found, the procedure stops and
returns the best found solution. Procedure 2 starts
with the obtained solution of Procedure 1.

We conjecture that there is a local optimum,
which is also the global optimum. This conjecture is
supported by all our numerical tests, yet we cannot for-
mally prove it. Therefore, we consider two termination
criteria for Procedure 2; �rst, if no superior solution is
found and, second, if the number of evaluated points
exceeds a given upper bound Jmax. The latter never
occurs in our numerical analysis as we set Jmax = 50.
Thus, all �nal solutions are local optimum according
to the simulation.

Procedure 2

- Step 0: Set j := 1 and Jmax := 50. Execute
Procedure 1. Let S1 be the best policy found by
Procedure 1.

- Step 1: Execute 3 simulations with 10000 time units
for Sj and set TCj to the average total cost rate
obtained by these simulations.

- Step 2: Execute 3 simulations with 10000 time
units for all neighborhoods of Sj , which have not
been simulated before. Set Sj+1 to the policy
with the minimum average total cost rate among all
neighborhoods. Also, set TCj+1 to this total cost
rate.

- Step 3: If TCj+1 < TCj and j � Jmax, set j := j+1
and go to Step 2. Otherwise, return to Sj as the
best policy and TCj as its total cost rate. Stop the
Procedure.

5. Numerical analysis

In this section, a small numerical study is performed
to examine e�ectiveness and accuracy of the proposed
procedures. In total, we consider 32 di�erent test
problems. We �nd the best values of S0 and S1 for
each test problem according to Procedures 1 and 2.
Then, e�ectiveness and accuracy of the procedures are
evaluated by simulation. We use a simulation method
based on discrete-event simulation. Each simulation
consists of 10 runs, each with a run length of 10000 time
units. The average cost of the 10 runs is reported as
the cost of its corresponding policy. Also, the standard
deviation (std) obtained from the 10 runs is presented.
The policy with the lowest average simulated cost is
introduced as the optimal policy, which is obtained by
enumeration over combinations of S0 and S1. All codes
are conducted in MATLAB software.

In Table 1, all combinations of �1 2 f0:5; 2g,
m 2 f0:5; 2g, p 2 f5; 20g, � 2 f20; 80g, c = 5, h0 = 2,
h1 = 1, and �0 = �1 = 0:3 are considered. Also, in
Table 2, the results for all combinations of �0 2 f0:3; 1g,
�1 2 f0:3; 1g, p 2 f5; 20g, � 2 f20; 80g, c = 5, h0 = 2,
h1 = 1, and �1 = m = 1 are presented. The number
of problems for which a procedure provides the optimal
policy gives an indication of how e�ective the procedure
is when obtaining the optimal policy for the inventory
system. For the 32 considered problems, Procedure 1
provides the optimal policy of 21 problems whereas

Table 1. Numerical results for c = 5, h0 = 2, h1 = 1, and �0 = �1 = 0:3.

Problem no. �1 m p � Procedure 1 Procedure 2 Simulation
S�0 S�1 TC� S�0 S�1 TC� S�0 S�1 TC� Std

1 0.5 0.5 5 20 0 0 10.00 0 0 10.00 0 0 10.00 0
2 0.5 0.5 5 80 1 1 30.86 1 2 27.29 1 2 27.41 0.151
3 0.5 0.5 20 20 0 0 10.00 0 0 10.00 0 0 10.00 0
4 0.5 0.5 20 80 0 0 40.00 0 0 40.00 0 0 40.00 0
5 0.5 2 5 20 0 1 7.57 0 1 7.55 0 1 7.61 0.052
6 0.5 2 5 80 0 2 12.12 1 2 12.05 1 2 12.05 0.122
7 0.5 2 20 20 0 0 10.00 0 0 10.00 0 0 10.00 0
8 0.5 2 20 80 1 1 18.44 1 1 17.79 1 1 18.13 0.21
9 2 0.5 5 20 0 2 32.42 1 2 30.15 1 2 30.06 0.102
10 2 0.5 5 80 2 3 53.44 1 3 45.31 1 3 45.25 0.495
11 2 0.5 20 20 0 0 40.00 0 0 40.00 0 0 40.00 0
12 2 0.5 20 80 2 2 83.50 1 2 73.80 1 2 73.01 0.434
13 2 2 5 20 0 3 16.59 1 3 16.59 0 3 16.59 0.155
14 2 2 5 80 1 4 19.88 1 4 19.69 1 4 19.79 0.131
15 2 2 20 20 1 2 19.06 1 2 18.61 1 2 18.42 0.126
16 2 2 20 80 1 3 25.01 1 3 24.57 1 3 24.33 0.256
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Procedure 2 provides the optimal policy of 30 problems.
Therefore, Procedure 2 is more e�ective in terms of
obtaining the optimal policy. In fact, this result is
what one intuitively would expect, since the obtained
policy of Procedure 1 is the start point of Procedure 2.
In Problems 13 and 17, for which Procedure 2 failed
to obtain the optimal policy, the cost of the obtained
policy lies in 95% con�dence interval of the optimal
cost, according to the presented standard deviation.
Hence, one can say that Procedure 2 provides the
optimal policy for all the considered problems.

Another indication of e�ectiveness is how much
time a procedure needs to obtain the best policy.
For each considered problem, in average, Procedure 1
required 0.07 seconds and Procedure 2 required 9.94
seconds. Thus, in terms of the time needed, Proce-
dure 1 is more e�ective than Procedure 2.

An important aspect of accuracy of the pro-
cedures in approximating the cost rate is that the
di�erence in cost rates of a policy for the procedure and
for simulation is low. Therefore, the following formula
is used to calculate the percentage for the di�erence of
costs, %D.

%D =
��TCP � TCsim

��
TCsim

� 100;

in which, TCP is the cost rate obtained using a
procedure, whereas TCsim is the cost rate obtained
from simulation. For each procedure, we only consider
the problems for which the policies obtained from the
procedure and from simulation are the same. Then, the
average of values of %D for these problems, denoted by
AD, is reported as an indicator of the accuracy of the

corresponding procedure. A high value of AD for a
procedure means that the procedure is not quali�ed to
approximate the cost rate.

Procedure 1 overestimates the cost rate in 20
out of 21 problems for which it provides optimal
policy. Also, the value of AD for Procedure 1 over 21
problems is 3.85%, which means that approximation of
Procedure 1 for the cost rate of a policy is in average
3.85% higher than the real cost rate. The value of
AD for Procedure 2 over 30 problems is 0.42%, which
means that the estimation of Procedure 2 for the cost
rate of a policy is in average 0.42% di�erent from the
real cost rate. Therefore, Procedure 2 is more accurate
than Procedure 1 as intuitively was expected.

According to numerical experiments, the approx-
imate model performs rather well. Furthermore, to
choose between Procedure 1 and Procedure 2, one
should consider the importance of time and accuracy.
Form the computational point of view, Procedure 1
outperforms Procedure 2. However, Procedure 2 not
only obtains optimal policy for more problems, but also
approximates the cost rate more accurately.

6. Conclusions and future research

A single perishable item, continuous-review, two-
echelon serial inventory system was considered in this
paper. Using the well-known METRIC technique, we
approximated the stochastic lead time of the retailer
with its mean. Also, the demand of the warehouse
was approximated as a Poisson process. Then, two
procedures were presented for evaluation and optimiza-
tion of base stock policies. The �rst procedure was a

Table 2. Numerical results for c = 5, h0 = 2, h1 = 1, and �1 = m = 1.

Problem no. �0 �1 p � Procedure 1 Procedure 2 Simulation
S�0 S�1 TC� S�0 S�1 TC� S�0 S�1 TC� Std

17 0.3 0.3 5 20 0 1 15.80 0 1 15.74 1 1 15.78 0.123
18 0.3 0.3 5 80 1 2 25.44 1 2 22.33 1 2 22.20 0.193
19 0.3 0.3 20 20 0 0 20.00 0 0 20.00 0 0 20.00 0
20 0.3 0.3 20 80 1 2 38.81 1 2 35.70 1 2 35.60 0.23
21 0.3 1 5 20 0 2 16.65 0 2 16.75 0 2 16.57 0.178
22 0.3 1 5 80 0 5 29.07 1 4 25.59 1 4 25.54 0.288
23 0.3 1 20 20 0 0 20.00 0 0 20.00 0 0 20.00 0
24 0.3 1 20 80 1 3 45.14 1 3 41.57 1 3 41.38 0.3
25 1 0.3 5 20 0 2 16.65 1 1 15.72 1 1 15.59 0.135
26 1 0.3 5 80 2 3 26.84 2 3 23.06 2 3 23.11 0.164
27 1 0.3 20 20 0 0 20.00 0 0 20.00 0 0 20.00 0
28 1 0.3 20 80 3 2 40.64 2 2 36.70 2 2 36.95 0.32
29 1 1 5 20 0 2 17.14 1 2 15.48 1 2 15.60 0.111
30 1 1 5 80 2 5 29.99 2 4 23.40 2 4 23.42 0.202
31 1 1 20 20 0 0 20.00 0 0 20.00 0 0 20.00 0
32 1 1 20 80 2 3 46.16 2 3 38.75 2 3 38.56 0.362
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heuristic based on the approximated model and, from
a computational point of view, it was very e�cient and
simple. The second procedure was a simulation-based
neighborhood search which started from the obtained
solution of the �rst procedure and modi�ed the quality
of the solution. Therefore, the second procedure was
more accurate than the �rst one. Numerical results
indicate that the proposed procedures perform rather
well.

To the best of our knowledge, no paper is yet
published which deals with both perishability and lost
sales in a continuous-review multi-echelon inventory
setting. This paper presents an approach to consider
this problem. Although a serial system is considered,
the presented model could be easily extended to a
distribution system with identical retailers.

A valuable work for future research is to develop
a model for lost sale case when items start perishing
at the warehouse. Such a model is more complex
than ours, since the retailer deals with items with
stochastic shelf life. Considering the ordering cost is
also important and would be a challenge for future
research.
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Appendix A

Convexity of Eq. (19)
To investigate the convexity of the approximated total
cost function in Eq. (19), we consider a basic case with
the following parameters:

c = 5; h0 = 2; h1 = 1;

�0 = �1 = 0:3; �1 = 2;

m = 2; p = 5; and � = 20:

For this example, a 3-dimensional graph of TC(S0;S1)
(Eq. (19)) as a function of the two variables S0 and S1
is provided using Matlab Software. As can be seen in
Figure A.1, TC(S0;S1) is not convex.

Figure A.1. The graph of TC(S0;S1) for the basic
example.
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Appendix B

Proof of Lemma 1
First, we show that �(S1) is increasing in S1, which
is same as showing that �(S1+1)

�(S1) > 1. From Eqs. (4)
and (5), the equation shown in Box I is obtained.
Furthermore, for the second part, the equation shown
in Box II is obtained, where:
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e��1� 01� 01
�
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� 01+m

�
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