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Abstract. Size distribution of aerosol particles is prevalently obtained through electrical
characterization techniques and study of charged particles' dynamics in the presence of
electric �eld. In this work, a wire-cylinder corona charger is presented, redesigned, and
aerodynamically optimized. An initial 2D axisymmetric geometry of the charger was
employed for the simulations using the Computational Fluid Dynamics (CFD) commercial
code FLUENT 6.3.26. Through successive attempts, a new geometry was obtained by
streamlining the walls to eliminate the undesired vortices produced in the ow �eld of the
previous ones. The process optimized the charger by minimizing losses and dilutions of
the particles. For electrical simulations of the charger, a new numerical algorithm was
designed based on the steady-state corona discharge to work with segregated solvers to
satisfy governing equations. The algorithm was validated using a one-dimensional semi-
analytic solution of corona discharge. Tracing particles for the optimized geometry, the
percentage of losses was calculated 6%, whereas the loss in the old geometry was more
than 30%. The average charge and charge distributions induced on particles were also
calculated with evaluation of the residence times in the charger.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Aerosol technology covers many research areas, includ-
ing embracing environmental studies, contamination
control and atmospheric research, energy and combus-
tion studies, and �ltering and powder coating Hinds [1].
The very �rst and critical step in nano-particle tech-
nologies is improving measurement capabilities. Par-
ticle size distribution is usually determined through
the electrical mobility classi�cations, especially for
particles smaller than 300 nanometers in diameter.

In order to classify aerosols according to elec-

*. Corresponding author. Tel.: +98 21 66165558
E-mail addresses: shayganiafshin@gmail.com (A.
Shaygani); mssaidi@sharif.edu (M.S. Saidi);
msani@sharif.edu (M. Sani)

trical mobility, su�cient amount of charge must be
induced on each individual particle. Passing through
electric �eld, their dynamics and motion reveal the size
distribution. When charging mechanism occurs due
to random collisions of ions and particles (Brownian
motions) in the absence of very strong electric �eld, the
process is called di�usion charging. This mechanism is
dominant in smaller particles less than 200 nanometers
in diameter. In the presence of strong electric �eld,
charging by unipolar ions is called �eld charging (dom-
inant in particles bigger than 200 nanometers) [2]. The
only method that could be used to generate ions at
high enough concentration is corona discharge. Many
of the presented nano-particle chargers in the literature
employ corona discharge [3]. Corona chargers are
widely used in commercial aerosol classi�cation instru-
ments such as Di�erential Mobility Spectrometer and
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Electrical Aerosol Spectrometer [4]. The experimental
studies on the performance of needle corona based
chargers include Lin Li and Da-Ren Chen, [5], Qi et
al. [6], and Park et al. [7]. On the wire corona chargers,
Kruis and Fissan [8], and Alisoy et al. [9] provide
numerical investigations. In the following, simulations
and optimizations of the wire-cylinder corona charger
are presented. Some reasons for choosing this type of
charger in our study include:

1. This work was supposed to pave the way for the
later experimental studies. Choosing a charger
that could be easily manufactured was one of our
priorities;

2. This charger, according to some studies (e.g., [10]),
is a very e�cient corona charger;

3. The less sophisticated geometry than that of the
needle chargers made it possible to provide a one-
dimensional analytic solution and validate numeri-
cal calculations.

2. Materials and methods

2.1. Description of aerosol nano-particle
charger

One of the aerosol chargers, known as Hewitt-type
charger, that aided corona discharge was proposed by
Biskos et al. [11]. As shown in Figure 1, it consists
of two concentric cylinders with a central corona-
wire. Due to a high electric �eld between positive
(or negative) corona-wire and grounded outer metal
cylinder, ions are produced in the vicinity of the wire
and migrate to the grounded electrode and ow into the
charging zone through the central perforated cylinder.
The zone between the two cylinders (charging zone)
is the passage of aerosol ow. The inner perforated
cylinder allows aerosol stream to ow in a laminar
regime while preventing particles from interfering with
ion generation area around the wire and being lost
through owing out with the sheath air. In the case
that the inner perforated cylinder is conducting, it

Figure 1. Schematic layout of the wire-cylinder charger;
Biskos et al. [11].

serves as a grounded third electrode. If so, the outer
electrode (outer cylinder) can be grounded as well, or
powered by an AC voltage. The active charging region
has a total length of 60 mm. The diameters of wire and
cylinders were 16 �, 50 mm, and 74 mm, respectively,
and the aerosol ow rate was 5 lpm.

2.2. Mathematical model
2.2.1. Governing electrical equations
Corona occurs when a high enough potential di�erence
is applied between at least two electrodes with di�erent
radii of curvatures, including dielectric insulator in-
between. The electrode with sharp edges or smaller
radius of curvature is called corona electrode. The
blunt electrode with much larger radius of curvature
is usually grounded. Conservation of electric charge
(current continuity) or charge transport equation com-
bined with basic postulates of electrostatics describes
the mathematical model of corona discharge by the
following equations [12]:

r2V = � �
"0
; (1)

r:J = �@�
@t

+ S: (2)

In the above equations, V (V) is the electric potential,
� = Q=8 (C/m3) is the space charge density produced
by corona electrode, Q (C) is the amount of charge in
a volume 8 (m3), "0 is the dielectric permittivity of
free space equal to 8:854 � 10�12 (F/m), J (A/m2) is
the current density, and S (C/m3.s) is the source term
for electric charge (electron and ion generation). When
ions are generated in the vicinity of corona electrode,
they can be transported through the medium by four
mechanisms: convection, drift, mass di�usion, and
charge di�usion. Therefore, the total ion ux is:

J = �U + �ZiE �Di(r�) + �E: (3)

The four terms which appear in the derivation are the
mathematical descriptions for these four mechanisms:

- First term: �U is the convection (advection)
current density and U (m/s) is the velocity of the
charge carriers;

- Second term: �ZiE = �Ui is ion drift current,
where Ui (m/s) is ion drift velocity and Zi (m2/V.s)
is ion mobility. E (V/m) is the electric �eld
intensity;

- Third term: Di(r�) is the mass and charge di�u-
sion current, where Di (m2/s) is the ion di�usivity;

- Fourth term: �E is the conduction current or
charge di�usion (negligible), and � (A/V.m) is
conductivity.
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The term of di�usion is usually negligible. Also,
convection term can be ignored because the bulk
velocity U of the medium is much smaller (about two
orders of magnitude) than ZiE in corona chargers.
Consequently, J with very good approximations be-
comes:

J = �ZiE: (4)

It is believed that a single-species model of the corona
discharge is capable of capturing the underlying physics
of steady-state corona for the study of charging pro-
cess in the aerosol chargers. According to Kaptzov's
assumption, when corona onsets with increasing the
applied potential di�erence to the electrodes, the elec-
tric �eld at the surface of the ionization layer near the
corona electrode will remain constant [13]. Ionization
layer is very narrow near the corona electrode compared
to the drift region and it is usually neglected in the
simpli�ed models and simulations. Thus, it can be
considered that the electric �eld on the surface of
the corona electrode will remain constant. The value
of this constant (E0 (kV/m)) for wire and cylinder
con�gurations is given by Peek's formula [14]:

E0 = 3300 +
79:53
r0

; (5)

where r0 (m) is radius of the wire.
Eventually, Eq. (2) recasts to �r:E + Er:� = 0

and considering E = r:V , the following set of coupled
equations is obtained which describes ion production
in the charger of this study (which is decoupled from
uid ow equations).

8<:r2V = � �
"0

r:J = rV:r�� �2

"0 = 0
(6)

The second equation in Eq. (6) is called current
continuity equation.

2.2.2. Semi-analytic solution of 1D corona discharge
Far from the ends, the charger can be approximated
with one-dimensional radial assumption. Therefore,
the set of two equations in Eq. (6) is combined and re-
formed into the following non-linear third-order ODE:

V 000V 0 + V 002 + 3
V 0V 00
r

= 0: (7)

The above relation describes electric potential vari-
ations along with the radial distance from corona
wire in one-dimensional (axisymmetric) steady-state
corona discharge. To �nd the voltage V(r) with respect
to radial distance r from the corona wire and three
constants of integration, c1, c2, and c3, few changes of
variables were applied, which are listed in Table 1.

Consequently, electric potential, V(r), electric
�eld, E(r), and space charge density, �(r), are given
by the following relations:

V(r) =c1
�p

1�c2r2�ln(
p

1�c2r2+1)+ln(r)
�

+c3; (8)

E(r) = �rV = �c1
p

1� c2r2

r
; (9)

�(r) = "0c1c2(1� c2r2)� 1
2 : (10)

Table 1. Solution procedure for Eq. (7).

Targeted O.D.E, V 000V 0 + V 002 + 3V
0V 00
r = 0

Step Change of variables Di�erential equation Type

1 dV(r)
dr = F(r) FF 0 + F 02 + 3FF

0
r = 0 Homogenous 2nd Order

2 F(r) = exp(U(r)) 2rU 02 + rU 00 + 3U 0 = 0 Homogenous 2nd Order

3 dU(r)
dr = W(r) 2rW 2 + 3W + rW 0 = 0 Bernoulli

4 Z(r) = W�1
(r) Z0 � 3Zr � 2 = 0 Homogenous 1st Order

Step Operation Function

5 Solve for Z Z = r(c1r2 � 1)

6 Solve for W W = (�r � c1r3)�1

7 Solve for U U = ln(r) + 1
2 ln(c1r2 + 1) + c2

8 Solve for F F = c2
�p

c1r2+1
r

�
Solution V(r) = c1

�p
1� c2r2 � ln

�p
1� c2r2 + 1

�
+ ln(r)

�
+ c3
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Considering ri as the radius of the corona electrode,
ro as the radius of the cylinder, Vi as the corona
voltage, Vo as the second electrode (cylinder) voltage,
and Ei as the electric �eld intensity on the corona wire,
potential di�erence �V and Ei were combined to form
the following relation:

�V
Ei

=

�ri
�p

1�c2r2
i �
p

1�c2r2
o+ln

�p
1�c2r2

o+1p
1�c2r2

i+1

�
+ln

�
ri
ro

��
p

1�c2r2
i (11)

To extract c2 (implicitly) from the above relation, a
MATLAB code was developed. Once c2 is obtained, c1
will be found by Eq. (9) and c3 will be found by Eq. (8).
Therefore, electric potential, V(r), electric �eld, E(r),
and space charge density, �(r), will be calculated.

2.2.3. Governing air ow �eld equations
Navier-Stokes equation, which is the conservation of
linear momentum, and Continuity equation, which is
the conservation of mass, can describe behavior of the
uid ow. The Continuity equation is:

r:(�fU) = �@�f
@t

: (12)

Here, �f (kg/m3) is the uid density and U (m/s) is
the velocity of the uid or the medium. For steady
incompressible ow, the continuity equation becomes:

r:U = 0: (13)

Navier-Stokes equation is:

r:(�fUU) = �rP + �fg + �r2U + FB : (14)

In the above equation, P (Pa) is the local uid pressure,
g (m/s2) the gravitational acceleration, � (kg/m.s)
the dynamic viscosity of uid, and FB (N/m3) the
body force exerted per unit volume of the uid. In
the chargers, this force is due to the presence of the
space charge density � (C/m3) and the electric �eld
intensity E (V/m). The steady and incompressible
Navier-Stokes equation without turbulence model is
used in this study. For calculations of particle residence
time in the charger, we neglected the electro static
force term FB in Navier-Stokes equations because
the electrohydrodynamic number [15] is two orders of
magnitude smaller than the Reynolds number.

The time required for a particle (dP < 300 nm in
standard conditions) in the air stream to reach 95% of
its terminal velocity or velocity of air (relaxation time)
is on the order of 10�7s. This means that with a very
good approximation, the velocity pro�le of the particles
is the velocity pro�le of the uid ow and the path
lines are the trajectories. This fact is the consequence
of small diameters and masses of very �ne particles.

2.3. Numerical simulations of steady-state
corona discharge

2.3.1. Scalar transport equation
Despite the fact that Eq. (6) is a simple model for
corona simulations, it cannot be handled by some
available commercial codes such as FLUENT 6.3.26.
Standard computational uid dynamics codes usu-
ally handle equations which are of scalar transport
form [16]:

@v k
@t

+
@
@xi

�
vui k � �k

@ k
@xi

�
= S k ;

k = 1; 2; 3; :::;K; (15)

where v is uid density (� has previously been used for
current density),  k an arbitrary User-De�ned Scalar
(UDS) for the scalar number k, ui the convective
velocity, �k the di�usion coe�cient, and S k the source
term for each of the K equations. It is not possible to
cast the electric current continuity equation (the second
equation in Eq. (6)) to the form above.

2.3.2. Recasting equations
As described in Section 2.2., the set in Eq. (6) governs
steady-state corona discharge. The proposed algorithm
converts current continuity equation into a Laplace
equation. Space charge density is updated using an
iteration loop. Since current density J is an irrotational
vector �eld [12], it can be found from the gradient of
a scalar function as J = �r , where  is di�erent
than the electric potential, V . One can use Eq. (6) and
irrotationality condition to write:

r:J = 0 J=�r ) r2 = 0: (16)

In this work, Eqs. (1) and (2) are solved. They need
proper boundary conditions, which are the subject of
next section.

2.3.3. General boundary conditions
For solving Eq. (1), proper boundary conditions should
be applied. For the electric potential, simple Dirichlet
boundary conditions are applied on the corona elec-
trode (wire) and the grounded electrode (cylinder). A
zero Neumann boundary condition is applied for the
insulating parts of the charger and also for the inlet
and outlet of the aerosol ow.

Current continuity equation is not directly solved
because it is not in standard scalar transport form.
Instead, we solve the derived equation, i.e. Eq. (16).
Therefore, corresponding boundary conditions must be
derived, too. A constant value for space charge density
on the corona wire obtained from the semi-analytic
solution can be applied. For electric potential, the
Neumann boundary condition (zero ux) is applied for
the insulating parts, inlet and outlet ows. However,
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this equation is solved indirectly by solving the Laplace
equation. To solve Eq. (16), boundary conditions for �
and V must be combined to give boundary conditions
for  . We use the following relations:

J = ��ZirV J=�r ) r = �ZirV: (17)

On any surface, one could write:

@ 
@n

= �Zi
@V
@n

; (18)

where n represents the direction normal to the surface
of the boundary. According to Eq. (16), � can be
obtained by:

� =
jr j
ZijEj =

jr j
ZijrV j : (19)

This equation is used to obtain a new distribution for
� in every iteration.

2.3.4. Example of the application of boundary
conditions (two electrodes con�guration)

Since the wire has a very small diameter, the analytic
solution of a wire in in�nite medium is held close to it.
Therefore, on the wire, we use semi-analytic solution
for � and Eq. (5) for E to �nd C1 (boundary condition
for  according to Table 2). Boundary conditions are
listed in Table 2.

Parameter C1 �xes normal derivative of  . On
the cylinder, the boundary condition for  is to be
computed as a part of solution. We use current
estimate of � to �nd E (indeed V ) and compute
C2 = �EZ on the boundary (normal derivative of  ).
Solution of the Laplace equation for  will give a new
distribution for �, which modi�es V and hence E. It
is hoped that repeating the calculations would give
a converged solution for both V and  . Numerical
experiments show that it is essential for the solution to
converge to modify C2 before its use in such a way that
it ensures total charge continuity is satis�ed.

2.3.5. Numerical algorithm
The proposed algorithm is illustrated in Figure 2.
According to this �gure, in the �rst step, initial values

Figure 2. Flowchart of the simulation procedure.

of E and V are calculated considering value of � to
be zero. Then, initial guess for � is used to compute
C2. Having C2, the boundary conditions for  are
complete and Laplace equation for  is solved to give
new distribution of �. Now, Poisson's equation for V
can be solved with non-zero value of � to obtain new
values of V and E. If convergence criterion on the
change of � is not satis�ed, a new C2 is computed
based on the new � and the procedure is repeated
until convergence happens. In computing C2, there is
no guarantee that the total current is conserved. We
found that correcting C2 is essential for the stability of
the method. To enforce total current conservation, we
modify computed C2 so that the ion current from the
wire, I1, is fully absorbed by the cylinder. We found
by numerical experiments that modifying provisional
value of C2 with a factor of (I1=I2)0:1 works well (I2 is
the ionic current owing to the cylinder). Using this
boundary condition, new  is found, which gives new
�, and Poisson equation for V is solved to give new
E. The whole procedure is repeated until convergence
happens.

Table 2. Applied boundary conditions. Note that there is no equation for �. Only physical boundary conditions are
presented for � to derive BC for  .

Surface Electric
potential

Space charge
density

 

Wire (discharge electrode) V = Vw � = �c @ 
@n

= �ZiE = C1

Cylinder V = Vc = 0 @�
@n = 0 @ 

@n = �ZiE = C2

Insulating walls @V
@n = 0 @�

@n = 0 @ 
@n = 0

Inlet @V
@n = 0 @�

@n = 0 @ 
@n = 0

Outlet @V
@n = 0 @�

@n = 0 @ 
@n = 0
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2.3.6. Computation of space charge density in the
hcarger

If the perforated inner cylinder is conductor and is
grounded as a third electrode, to solve Laplace equation
for  , initial guess for � is used to compute initial values
of C2 and C3 (the boundary condition on perforated
cylinder (third electrode) for  ). In the �nal step of
the algorithm, for stability of the method, the most
recently computed values of C2 and C3 are modi�ed
so that the current from the wire I1 is fully absorbed
by two cylinders (I1 = I2 + I3) to enforce total
current conservation. Numerical experiments showed
that modifying provisional values of C2 and C3 with
factors of (I1=(I2 + I3))A and (I1=(I2 + I3))B works
well, where A and B are small experimentally found
parameters.

2.4. Estimation of induced charges
Assuming that each molecule, on average, gains or loses
one elementary charge (one electron), ion concentration
Nion (#/m3) can be calculated as:

Nion =
�
e
: (20)

An approximation to the average number of charges in-
duced on particles in the exposure of di�usion charging
mechanism is given by White [17].

Charge distribution of monodisperse particles
having diameter dp (m) during time t in the exposure
of di�usion charging can be calculated by the following
system of coupled �rst-order Ordinary Di�erential
Equations (ODEs) Biskos [18]:8>>>>>>><>>>>>>>:

dN0
dt = �0N0Nion

dN1
dt = �0N0Nion � �1N1Nion

...
dNn
dt = �n�1Nn�1Nion � �nNnNion

(21)

where Ni (#/m3) (i runs from 0 to n) is the number
concentration or fraction of particles having i elemen-
tary charges; n is the maximum number of induced
charges on particles; and �i (m3/s) is the combination
coe�cients. Therefore, Ni as functions of time will
be found from n + 1 relations and initial conditions
in Eq. (22). Before entering the charger, particles
are not charged. Therefore, initial conditions are
N0 = 1 and Ni = 0 (for i = 1; 2; :::; n), which
means percentages of uncharged particles and i charged
particles at the beginning of the process are 100% and
0%, respectively.

For each particle diameter dp, the set in Eq. (21)
should be solved. We used standard ODE solver
procedures to �nd charge distribution for each size class
in a polydisperse aerosol.

2.5. Aerodynamic simulations and
optimizations

The only information at hand about this charger was
the schematic layout shown in Figure 1 and the size
of the most important consisted parts. Therefore,
according to this geometry, GAMBIT 2.2.30 was used
to generate a �ne mesh and introduced to FLUENT for
aerodynamic simulation.

Vortices in the ow �eld are not desirable, causing
aerosols to be lost or diluted. Particle residence times
as a consequence of these vortices are non-uniform
and therefore unacceptable. Hence, we rejected the
original geometry because of the generated vortices and
decided to modify it. The objective was to eliminate
the vortices in the �rst geometry by streamlining the
walls. We adapted a trial and error procedure to �nd a
�nal geometry which removed the vortices by proposing
and analyzing a new geometry step by step.

The ultimate grid for the �nal geometry is shown
in Figure 3. It contains a �ne triangular non-uniform
mesh with nearly 100000 computational cells.

In Figure 4, path lines of released massless parti-
cles from the two inlets are illustrated and colored by
particle ID. The particle loss decreases very much (ap-
proximately 6 particles crossed the perforated cylinder
for every 100 released particles). Aerosol dilution is
demonstrated here by air path lines passing through
aerosol pathway.

As shown in Figure 5, path lines are colored by
particle residence time. Ignoring the e�ect of boundary
layers produced along the aerosol pathway, which are
inevitable, all particles remain in the charger and are
exposed to the bombardment of corona generated ions
almost equally.

3. Results and discussions

The optimized geometry was the result of successive
modi�cations of the geometry by streamlining the walls
to eliminate vortices and reduce particle dilution and
loss. This was managed by creating almost 30 new
geometries, altering the geometry, and solving the ow
�eld until no signi�cant change was observed in the
ow �eld.

The minimum residence time for 1000 particles
passing the charging zone was 1.3 seconds and the
maximum residence time was 31 seconds. The average
residence time was 6.1 seconds and for a large number
of particles, except for very few that travelled near the
walls, was 2.2 seconds. This was computed without
considering a small fraction of particles that appears
near walls in very slow boundary layers. Although,
because of the boundary layer e�ect, it is not possible to
reach a design in which residence times of all particles
are exactly equal, the accepted �nal design provided
less deviant residence times from the mean.
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Figure 3. Generated grid for the �nal geometry and important dimensions in mm.

Figure 4. Aerosol loss (a) and dilution (b). Path lines
are colored by particle ID for the �nal geometry.

Figure 5. Particle traces colored by particle residence
time t (s) for the �nal geometry.

To check validity of the proposed algorithm, a 2D
axisymmetric problem of concentric wire and cylinder
is solved and values of � in the radial direction r in
the middle of the wire and cylinder are compared with
results of the semi-analytic solution in Figure 6.

Figure 6. Comparison of the variations of � along radial
direction (normalized), resulted from the numerical
simulation and semi-analytic solution.

The electrical simulations using the method de-
scribed in Section 2 were carried out to �nd � gen-
erated by high voltage corona wire. Results for
radial variations of Nion in the two regions of the
charger at the central cross section are demonstrated
for di�erent corona voltages (5 kV, 6 kV, and 7 kV)
in Figure 7. Electric potential on the cylinders was
set to zero for this simulations. This �gure also
compares the results with the results reported by
Biskos et al. [18] in the voltage of 5 kV. Considering
slight di�erences in the geometry of the chargers, both
concentrations follow the same trend (they are not
expected to match perfectly). The mismatch could
be the result of the di�erence between sizes of the
outer cylinders (due to the aerodynamic correction)
and the semi-experimental method of obtaining space
charge density by Biskos et al. [18] in contrast to this
work.
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Figure 7. Radial variations of Nion in the two regions of
the charger.

Figure 8. Electric potential contours.

Figure 9. Space charge density contours.

The contours of V and � are shown in Figures 8
and 9.

Having ion concentration available, we classi�ed
polydisperse aerosols with appreciable concentrations
between 100 and 300 nm into 11 size classes. Using
2.2 seconds of residence time, charge distribution was
computed by solving Eq. (21). The result is given in
Figure 10.

For the selected group of particles, the mean
Nion � t product was computed 2:3 � 1013 (#.s/m3)
and used for these calculations.

Figure 11 shows mean radial variations of Nion �
t as functions of normalized radial distance (L =
1) between two cylinders for three di�erent corona
voltages. For each radial distance corresponding to
a particular streamline, the mean value of Nion � t

Figure 10. Distributions of charge on selected
polydisperse particles.

Figure 11. Radial variations of Nion � t in the charging
region for three di�erent corona voltages. The boxes show
average induced charge on (A: 100 nm, B: 200 nm, and
C: 300 nm) particles.

was calculated by its integration along each streamline.
Calculations of average charges for three diameters
(A (100 nm), B (200 nm), and C (300 nm)) were
performed by their integration along each streamline
in locations 0:2L, 0:6L, and 0:8L. For the voltage of
5 kV, according to the �gure, induced charges of 4.1,
9.4, and 15.2 were obtained, respectively, for 100-, 200-
, and 300-nanometer particles traveling in the vicinity
of the boundary of the central cylinder (0:2L). For
the particles traveling near the outer cylinder (0:8L),
induced charges of 3.7, 8.7, and 14.1 were obtained and
for the particles traveling in the middle (� 0:6L), the
minimum charges of 3.5, 8.2, and 13.4 were calculated
with respect to diameters A, B, and C. Other values of
induced charge in the mentioned three locations were
also obtained for corona voltages of 6 kV and 7 kV,
which were shown in the �gure.

4. Conclusion

Aerosol characterizations using electrical techniques
are more accurate with the aid of a well-designed
charger in which particle residence times and the
generated ion concentrations are more uniform and
stable. Electrical simulations and aerodynamic cor-
rections of the geometry of a wire-cylinder nano-
particle charger have been reported in this work. A
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new design was obtained by minimizing aerosol loss
and dilution in the charger and eliminating vortices.
This provided a more uniform exposure of particles
to the ionic cloud bombardments. For the electrical
simulations of the charger, a one-dimensional semi-
analytic solution of corona discharge was presented
for estimating the ionic cloud productions. The more
accurate estimation of ion concentrations was also
carried out by proposing an algorithm for simulating
corona discharge numerically on segregated solvers.
The algorithm was coded in Fluent via UDF inter-
face and tested against a simple corona con�guration
which lent itself to the semi-analytic solution. It
was concluded that the proposed algorithm worked
�ne; thus, it can be used to model complex geome-
tries where no analytic solution is expected. The
obtained ion concentrations from numerical simula-
tions of corona in the optimized charger were ap-
plied to �nd average charge and also charge distri-
butions induced on polydisperse particles leaving the
charger. The output of this solution, the charge
distribution, could be used for particle tracing in EMS
instruments and, therefore, �nding size distribution
from mobility distribution, or designing such instru-
ments.

Nomenclature

Ei Electric �eld intensity on the wire
(V/m)

 Auxiliary parameter (A/m4)

8 Unit volume (m3)
C1 Normal derivative of  (on the wire)

(A/m6)
C2 Normal derivative of  (on the

perforated cylinder) (A/m6)
C3 Normal derivative of  (on the outer

cylinder) (A/m6)

Di Ion di�usivity (m2/s)
dp Diameter of particles (m)
e Single elementary charge equal to

1:6� 10�19 C
E Electric �eld intensity (V/m)

g Gravitational acceleration (m/s2)
I1 Ionic current from the wire (A, C/s)
I2 Ionic current owing to the perforated

cylinder (C/s)
I3 Ionic current owing to the outer

cylinder (C/s)

J Current density (A/m2)
� Dynamic viscosity (kg/m.s)

n Maximum number of induced charges
on particles (#)

Ni Number concentration (fraction) of
particles achieved in i units of charge
(#/m3)

Nion Ion centration (#/m3)
P Fluid pressure (Pa)
Q Amount of charge (C)
r Radial distance from the corona wire

(m)
ri Radius of the wire (corona

electrode) (m)
ro Radius of the cylinder (ground

electrode) (m)

S Electric charge source term (C/m3.s)
t Time (s)
U Velocity of the charge carriers (m/s)
Ui Ion drift velocity (m/s)
V Electric potential (V)
Vc Cylinder voltage (V)
Vi Corona voltage (V)
Vo Voltage of the second electrode

(cylinder) (V)
Vw Corona voltage (V)

Zi Ion mobility (m2/V.s)

�i Combination coe�cients (m3/s)
"0 Dielectric permittivity of free space

equal to 8:854� 10�12 (F/m)

� Space charge density (C/m3)
�c Space charge density on the corona

wire (C/m3)

�f Fluid density (Kg/m3)
� Conductivity (A/V.m)
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