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Abstract. In the recent years, di�erent mathematical models have been suggested for
maneuvering of displacement vessels that are capable of estimation of vessel maneuvers with
acceptable precision. These mathematical models are based on determined hydrodynamic
coe�cients and their accuracy depends on the known coe�cients used to solve the
mathematical model. System identi�cation methods are developed to calculate these
coe�cients utilizing input and output data obtained from di�erent sources. In this
research, a 4.36-m model of KRISO Container Ship (KCS) displacement vessel has been
manufactured by �berglass, and the maneuver turning tests have been carried by self-
propulsion method. A 3DM-GX1 sensor, together with a protractor and Global Positioning
System (GPS), has been used to measure the yaw and rudder angle, position, linear
accelerations, and angular velocities of the vessel in di�erent times. The hydrodynamic
coe�cients in the mathematical model are determined by the Extended Kalman �lter
method. Then, the mathematical model is solved and di�erent maneuvers are simulated
by coe�cients calculated from the experiments. Simulations are validated by model
tests. The mathematical model and hydrodynamic coe�cients presented in this paper
can be applied for optimization of ship maneuvering performance and course control
purposes.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Predicting maneuvering performance of the ship has
been a major subject of study in hydrodynamics of
ships. Ship maneuvers are extremely nonlinear and
unsteady phenomena due to dynamic coupling and
hydrodynamic viscous e�ects. Due to the limitations
of the analytical methods in predicting maneuver of
the ship, experimental formulae based on the model
tests have been the main method in use. The men-
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tioned method is based on mathematical models and
maneuvering coe�cients, which are determined by
experiments or by analytical methods.

Predicting ship maneuvering in calm water is an
important topic; however, it is very expensive to run
numerous maneuvering simulations using Computa-
tional Fluid Dynamics (CFD). Despite their short com-
putation time, system-based simulations need many
captive model tests to estimate the hull and rud-
der maneuvering coe�cients used in the system-based
mathematical model.

System-Based (SB) and CFD methods are major
simulation methods to predict ship maneuverability.
Computation time of the SB simulation is much lower
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than that of CFD, since such methods need only
to solve the equations of motion using a prescribed
mathematical model and maneuvering coe�cients. SB
simulation requires approximately few minutes for one
free-running trial, while CFD needs a few weeks or
a month depending on the turbulence and propulsion
modeling and size of grids. However, there are many
issues in derivation of most accurate mathematical
models and maneuvering coe�cients. In most cases,
captive model planar motion mechanism or rotating
arm/circular motion tests are used, which require many
static and dynamic conditions.

Ship motion at sea is a complex system with char-
acteristics of highly nonlinear nature, long time delay,
and time-varying dynamics. There are three kinds of
mathematical models of ship maneuvering motion, i.e.
Abkowitz model, Maneuvering Mathematical Modeling
Group (MMG) model, and response model [1].

Recently, a new maneuvering model was devel-
oped from �rst principles of low aspect-ratio aerody-
namic theory and Lagrangian mechanics [2]. Mean-
while, the MMG expanded a mathematical model
which explicitly included the individual open water
characteristics of the hull/propeller/rudder and their
interactions [3]. The MMG model has shown good
results for maneuvering in calm water and qualitative
results for extensions of wave conditions [4].

Ship maneuvering models are the keys to the
research on ship maneuverability, design of ship motion
control system, and development of ship handling
simulators [5]. For various frames of ship maneuvering
models, determining the parameters of the models is
always a tedious task. The usual approach to determine
the ship model parameters is the ship model test.
Ship model test is a reliable and accurate method
for this purpose. The test is, however, expensive
and time-consuming, and usually dependent on some
speci�c model frame, which limits the application of
the valuable data [6].

System identi�cation techniques are developed in
control engineering to build mathematical models for
dynamical systems often using maneuvering coe�cients
based on experimental data. The Least Square (LS) is
one of the simplest, but the Extended Kalman Filtering
(EKF) is one of the most widely used methods in
engineering [7]. For ship hydrodynamics applications,
the advantage of system identi�cation is that all the
maneuvering coe�cients can be estimated by one or a
few free-running trials as opposed to numerous captive
model tests.

The Kalman �lter is an e�cient recursive �lter
that estimates the state of a dynamic system from a
series of noisy measurements. It is able to provide
solutions to what probably are the most fundamental
problems in control theory [8]. EKF is the nonlinear
version of the Kalman �lter and is often considered

the de facto standard in the theory of nonlinear state
estimation. EKF is widely used in areas of state
estimation, object tracking, and navigation [9].

As the system identi�cation method is an ap-
proach to �nd a model of unknown system, estimation
of maneuvering coe�cients can be said as an appli-
cation of system identi�cation. Several schemes were
suggested for the estimation of maneuvering coe�-
cients [10]. Abkowitz employed EKF using full-scale
trial data and the Abkowitz mathematical model [11].
Rhee and Kim employed EKF for SB free-running
trial data and the MMG mathematical model to �nd
the best trial type for system identi�cation. The
maneuvering coe�cients reconstructed from the large-
angle zigzag test showed the smallest error with the
original coe�cients [12]. Sung et al. presented simu-
lations with an Abkowitz model and an MMG model
using a system identi�cation technique for identifying
the derivatives [13]. They concluded that reasonable
results were obtained from a considerably reduced num-
ber of dynamic test runs compared with a traditional
approach.

Zhang and Zou employed support vector machine,
one of the arti�cial intelligence methods, for SB free-
running trial data (zigzag test) using the Abkowitz
mathematical model [14]. This research showed that
coe�cients had close agreement with the original ma-
neuvering coe�cients.

In the present paper, a model of KCS was man-
ufactured in the Marine Engineering Laboratory at
Sharif University of Technology and the free-running
tests were performed on it in an open calm lake.
Turning test was performed in free-running mode
and meanwhile, the model accelerations were mea-
sured for the surge, sway, and yaw motions. Then
the maneuvering of the ship was simulated by using
the mathematical equations of 3 degrees of freedom
of Abkowitz and the obtained results of the self-
propulsion tests. The advanced Kalman �lter method
was used to estimate the hydrodynamic coe�cients of
this ship and all of the maneuvering coe�cients of the
ship were derived. Having derived the hydrodynamic
coe�cients, the turning maneuver was simulated and
compared with the experimental results. This paper
shows that the maneuvering coe�cients obtained with
free-running trial data have high accuracy. They can
be used in the mathematical model to simulate the
ship maneuvering that has close agreement with the
experimental result.

2. Displacement hull maneuvering equations

It is convenient to assume a constant wetted surface in
analysis of seakeeping and maneuvering for displace-
ment hulls.

In Figure 1, u is the surge velocity, v is sway
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Figure 1. Fixed and moving reference frames of ship
motion [15].

velocity, w is heave velocity, p is roll angular velocity,
q is pitch angular velocity, r is yaw angular velocity, X
is the force exerted on the hull in the surge direction,
Y is exerted force in sway direction, Z is exerted force
in heave direction, K is the roll moment exerted on
the hull, M is the pitch moment, N is yawing moment,
I is mass moment of inertia, and ! is vessel angular
velocity vector [16].

X = m( _u+ !qb � vrb);
Y = m( _v + urb � wpb);
Z = m( _w + vpb � uqb);

K =
d
dt

�
Ixx!x � Ixy!y � Ixz!z

�
� rb

�
Iyy!y � Iyz!z � Ixy!x

�
+ qb

�
Izz!z � Ixz!x � Iyz!y

�
; (1)

M =
d
dt

�
Iyy!y � Iyz!z � Ixy � !x

�
� pb

�
Izz!z � Ixz!x � Iyz!y

�
+ rb

�
Ixx!x � Ixy!y � Ixz!z

�
;

N =
d
dt

�
Izz!z � Ixz!x � Iyz � !y

�
� qb

�
Ixx!x � Ixy!y � Ixz!z

�
+ pb

�
Iyy!y � Iyz!z � Ixy!x

�
:

In calm water, if surge motion is considered of �rst

order, sway and yaw motions would be of the second
order, because the forward speed is so larger than yaw
and sway motion velocities. Moreover, the heave, roll,
and pitch motions are of the third order. Thus, the
vessel motions in calm water can be reduced to three
degrees of freedom of surge, sway, and yaw:8>>><>>>:

m( _u� vr � xGr2) = XG

m( _vG + xG _r + ur) = YG

Iz _r +mxG( _v + ur) = NG

(2)

It can be assumed that the center of coordinates is
considered on vessel center of gravity. Thus, the
equations of motion are reduced to Eq. (3):8>>><>>>:

m( _uG � vGr) = XG

m( _vG + uGr) = YG

Iz _r = NG

(3)

Eq. (2) is the equation of motion with the center of
gravity of ship; G and the notations of uG, vG, and r
are velocity components at the center of gravity of ship;
XG, YG, and NG represent the hydrodynamic forces
and moment acting on G.

Hydrodynamic forces of surge, sway, and moment
of yaw are considered as:8>>>>><>>>>>:

XG = Xuu+Xvvv2 +Xrrr2 +X���2

+Xv�v� +Xr�r� +Xunun+Xnnn2

YG = Yvv + Yrr + Y��

NG = Nvv +Nrr +N��

By substituting the above equations in Eq. (3), we
have:8>>>>><>>>>>:

m( _u� vr) = Xuu+Xvvv2 +Xrrr2 +X���2

+Xv�v� +Xr�r� +Xunun+Xnnn2

m( _v + ur) = Yvv + Yrr + Y��

Iz _r = Nvv +Nrr +N��

� is the rudder angle and n is the propeller RPM of the
model.

By rewriting the above equation, we have:8>>>>>><>>>>>>:
_u = Xu

m u+ Xvv
m v2 + Xrr

m r2 + X��
m �2 +mvr

+Xv�
m v� + Xr�

m r� + Xun
m un+ Xnn

m n2

_v = Yv
m v + Yr

m r + Y�
m � �mur

_r = Nv
Iz v + Nr

Iz r + N�
Iz �

in which keeping Xu
m = a1, Xvv

m = a2; :::; Yvm = b1; :::;
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Nv
Iz = c1; ::: and rewriting the remaining part give:

_u =a1u(t) + a2v(t)2 + a3r(t)2 + a4�(t)2

+ a5v(t)r(t) + a6v(t)�(t) + a7r(t)�(t)

+ a8u(t)n(t) + a9n(t)2;

_v = b1v(t) + b2r(t) + b3�(t) + b4u(t)r(t);

_r = c1v(t) + c2r(t) + c3�(t); (4)

where ai(i = 1; 2; :::; 9), bi(i = 1; 2; 3; 4), and ci(i =
1; 2; 3) are model parameters that should be determined
through system identi�cation.

3. Free-running maneuvering model test of
displacement hull

A 4.36-m model of KCS is manufactured and equipped
with a rudder and propeller and the meticulous mea-
surement devices are installed on it. Then, the various
standard maneuvering tests are performed. The main
dimensions of full-scale KCS are shown in Table 1. Ta-
ble 2 represents the corresponding model parameters.

The propeller RPM of model is not measured
during the test. RPM of the propeller is changed until
the speed of the model reaches the service speed; also,
rudder angle of model is 35 degrees in this test.

The experimental site is Azadi Lake and the
environmental information in average at that time is:
temperature = 23�C, wind speed = 1.21 m/s and
current speed = 0.22 m/s.

The KCS hull form is presented in Figure 2 and
the manufactured model together with its rudder and
propeller is shown in Figure 3. Figure 4 and Figure 5
show the maneuvering model test in calm water of open
lake.

4. Measurement equipment

4.1. 3DM-GX1 sensor
3DM-GX1 sensor rotates in 360 degrees and gives
the direction in matrix, quaternion, and Eulerian

Table 1. Main dimensions of KCS (full scale).

LBP(m) 230.0
LWL(m) 232.5

B(m) 32.2
D(m) 19.0
T(m) 10.8

Displacement 52030
CB 0.651
CM 0.985

LCB % fwd. -1.48

Table 2. Main dimensions of KCS (model scale).

Scale 52.667
Main particulars

Lpp (m) 4.3671
Lwl (m) 4.4141
Bwl (m) 0.6114
D (m) 0.3608
T (m) 0.2051

Displacement (m3) 0.3562
S w/o rudder (m2) 3.4357

CB 0.651
CM 0.984

LCB (%), fwd+ -1.48
Rudder

Type semi-balanced horn rudder
S of rudder (m2) 0.0415
Lat. area (m2) 0.0196

Turn rate (deg/s) 16.8
Propeller

Type CP
No. of blades 5

D (m) 0.150
P/D (0.7R) 1.300

Ae/A0 0.700
Rotation Right hand
Hub ratio 0.227

Test condition
T (m) 0.205

Disp. (m3) 0.356
S (m2) incl. rudder 3.477

LCG (m) 2.119
GM (m) 0.011
ixx/B 0.40

izz/Lpp 0.25
Service speed

U (m/s) 1.701
Fn (based on Lpp) 0.26

Figure 2. KCS hull form solidwork simulation.
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Figure 3. The manufactured model together with its
rudder and propeller.

Figure 4. Turning maneuvering model test of KCS hull.

forms. The digital output shows the temperature and
perpendicular accelerations with frequency of 350 Hz.
The output �lter parameters and its conditions can be
changed by user.

One of the advantages of the used sensor is
the processing and �ltering of the data by itself.
Also, it can be calibrated in constant magnetic �elds.

Figure 5. A photo of the data recording model.

Furthermore, this sensor is small, light, and low-
consumption. It can be utilized for underwater and
unmanned vehicles, robotics, moving cameras, moving
radio antennas, hydraulic lift systems, etc. The speci-
�cations of this sensor are shown in Table 3. A photo
of the data recording Module (consisting of 3DM-GX1
sensor, GPS, and Laptop) is shown in Figure 5.

This sensor utilizes the triaxial gyros to track
dynamic orientation and the triaxial DC accelerometers
along with the triaxial magnetometers to track static
orientation. The embedded microprocessor contains
a unique programmable �lter algorithm, which blends
these static and dynamic responses in real time. This
kind of data processing leads to a reference response
with omitted deviations due to vibrations and fast
motions.

4.2. Global positioning system
The GPS is supported by 24 satellites on Earth's orbit.
The GPS satellites orbit the Earth twice every day and
send signals containing information.

Table 3. Speci�cations of 3DM-GX1 sensor.

Orientation range (pitch, roll, yaw) 360� all axes (orientation matrix, quaternion)
�90�, �180�, �180� (Euler angles)

Sensor range
Gyros: �300�/sec FS
Accelerometers: �5 g FS
Magnetometers: �1:2 Gauss FS

A/D resolution of 16 bits 16 bits
Accelerometer nonlinearity
Accelerometer bias stability

0.2%
0.010 g

Gyro nonlinearity
Gyro bias stability

0.2%
0.7�/sec

Orientation resolution < 0:1� minimum
Repeatability 0.20�

Accuracy
�0:5� typical for static test conditions
�2:0� typical for dynamic (cyclic) test conditions
and for arbitrary orientation angles
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Table 4. Main speci�cations of the used GPS.

Speci�cations Description

Accuracy Position 5 m CEP
Velocity 0.1 m/sec

Startup
Time (average)

< 1 sec hot start
< 30 sec cold start

Sensitivity -155 dBm acquisition
-160 dBm tracking

Protocol
NMEA-0183 V3.01

GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, GPZDA
4800/9600/19200/38400 baud, 8, N, 1

Input voltage 3.8V � 8.0V DC input

A GPS receiver should receive signals of 3 satel-
lites in order to determine the two (latitude and
longitude) positions of an object. The signal of four or
more satellites can determine three positions (latitude,
longitude, and height). Also, GPA can be used for
speed measurement, orientation, searching, etc. The
main speci�cations of the used module are mentioned
in Table 4.

5. System identi�cation method

Hydrodynamic derivatives are usually obtained from
the measured hydrodynamic forces. In the system
identi�cation method, they can be obtained from the
measured ship motion and applied rudder angle. Since
the ship motion is identi�ed accurately by this method,
it is well used for the design of control and navigation
systems. System identi�cation method can be de�ned
as a systematic approach to �nd a model of unknown
system from the given input-output data. For the
successful system identi�cation, three items should be
properly selected or designed: mathematical model of
a system, input-output data, and parameter estimation
scheme.

Modeling and simulation is the key approach of
analysis in all branches of science and technology.
Modeling is the quanti�cation of a relation between
input and output of the system through a mathematical
description. Simulation is the real-time representation
of the mathematical model through digital computa-
tions to simulate the reality. Thus, modeling is the
derivation of a mathematical model such that when
an input signal is applied to it, the outputs would be
the same as the real system. System identi�cation is
a method of derivation of mathematical model based
on experiment [17]. The block diagram of the system
identi�cation method is shown in Figure 6. System
identi�cation method is executed through �ve major

Figure 6. Block diagram of the system identi�cation
method.

steps:

1. De�nition of system, inputs, and resultant outputs;
2. De�nition of structure (model) for the system;
3. Experimentation and gathering of input and output

data;
4. Estimation of parameters needed;
5. Evaluation of the model.

5.1. Advanced Kalman �lter
Usually, noise sample is observed in the process of data
sampling. Thus, the most appropriate procedures are
based on probabilistic and statistical data and Kalman
�lter is one of the recognized methods used. The
extended Kalman �lter method optimizes the objective
parameters and state variables statically. Therefore,
the extended Kalman �lter method does not need
input acceleration data that is usually associated with
noise in experimental data; this would be a great
advantage in application. Here, the extended Kalman
�lter method is used to obtain ship maneuvering hy-
drodynamic coe�cients based on the results obtained
from free-running model tests and analytical Eq. (3).
The details of extended Kalman �lter are provided in
Appendix A.
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6. Calculation of hydrodynamic coe�cients

The values of surge, sway, and yaw velocities measured
from free-running maneuvering model tests are applied
to extended Kalman �lter as input and this method
calculates the hydrodynamic coe�cients in such a
way that minimum error is obtained when compared
to input velocity values. The values of velocities
calculated by extended Kalman �lter are shown in
Figure 7.

Figures 8 and 9 show some of the hydrodynamic
coe�cients used in Eq. (3) that are calculated by
extended Kalman �lter method and the values of all
calculated hydrodynamic coe�cients are presented in
Table 5. The comparison between experimental U of
the experiments and the Kalman �lter is shown in
Figure 10.

Figure 7. Simulation of ship linear and angular
velocities. Rudder angle of model was 35�.

Figure 8. a1, a2 and a3 coe�cients calculated by system
identi�cation method.

7. Simulation of turning circle

The ships should have enough turning ability in order
to avoid collision and should show enough stability;
also, turning circle diameter should not exceed cer-
tain values. Using software simulation in maneuver
analysis of vessels is an appropriate method to evalu-
ate their maneuverability in the lowest possible time
with applicable results. The maneuverability of a
vessel can be investigated via numerical simulations if

Figure 9. a4, a5, and a6 coe�cients calculated by system
identi�cation method.

Figure 10. Comparison between speed of the
experiments and EKF.

Table 5. Hydrodynamic coe�cients calculated by system
identi�cation method.
Parameter Value Parameter Value

a2 2:85� 10�4 a1 6:75� 10�2

a4 6:76� 10�2 a3 1:2� 10�3

a6 �2:94� 10�4 a5 �7:605� 10�4

a8 �2:865� 10�2 a7 8:984� 10�3

b1 �3:67� 10�3 a9 4:791� 10�3

b3 4:616� 10�3 b2 7:2717
c1 �4:5� 10�4 b4 �2:38834
c3 �2:8� 10�4 c2 �9:987� 10�2
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Figure 11. Comparison of the turning circle measured in
free-running model test and simulation by system
identi�cation method.

some experimental data such as hydrodynamic coe�-
cients, propulsion system, and rudder characteristics
are available. In this section, the turning maneuver
of the KCS is simulated by solving the maneuver-
ing equations numerically. The test is repeated for
both rudder to port and rudder to starboard direc-
tions.

Considering that the essential hydrodynamic coef-
�cients for Eq. (3) were determined by self-propulsion
test together with system identi�cation method and
noting that the data for propeller hydrodynamics of the
vessel is available, this equation is solved numerically
by substituting the mentioned parameters in the equa-
tion. By solving this equation, the velocity component
is determined. Also, the positions of the vessel and
yawing angle are determined by integrating the velocity
in time. The comparison of turning circles measured
in free-running model test and simulation by system
identi�cation method is shown in Figure 11.

As the hydrodynamic coe�cients are determined
by the results obtained from model experiments
through system identi�cation method, these coe�-
cients can be applied to complete the mathematical
model and simulate the various ship maneuvers. The
turning circle is simulated in the following by a mathe-
matical model developed from free-running model test
results. It is essential to solve the equations of motion
for rudder de
ected to port and starboard side.

In the starboard turning case, the rudder angle
was set on +35�. Also, the equations were solved.
The results of this simulation are shown in Figure 12.
As it can be seen, there is a good agreement between
numerical and experimental results. However, it should
be checked if the drift angle of the ship during turning
simulation is in agreement with turning trajectory. The
accurate position of the model is determined using
yawing angles and rotated by rotating matrix. The

Figure 12. Simulation of starboard turning circle with
rudder angle set on +35�.

Figure 13. Simulation of port turning circle with rudder
angle set on -35�.

position coincides with turning circle in di�erent times.
The heading change of the vessel is shown in Figure 12,
too, and it can be seen that it matches with the turning
trajectory quite well. Therefore, the maneuverability
of a vessel can be assessed using this approach with a
great accuracy.

The developed mathematical model is symmetric
for turning to port or starboard side. Thus, it should
be checked if the mathematical model leads to the same
behavior for turning to port side. All the maintained
procedure is carried out for the case of port turning
maneuver with 35� rudder angle (see Figure 13).

The ship model in this study has been considered
under calm and deep water conditions. In the actual
navigational situation, there are many kinds of environ-
mental forces such as wind, wave, and current. Impor-
tant sources of error in this study are simpli�cation in
the employed mathematical model, such as eliminating
the higher orders of coe�cients, and ignoring forces due
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to the environmental condition. Uncertainties are due
to environmental condition in the experiments, scale
e�ects, and limitations of instruments used to capture
data of model behavior.

In maneuvering tests with free-running models,
the propeller is used to give the desired model speed,
i.e. to produce the thrust to keep the desired speed.
Scale e�ects may generally be neglected, at least
for conventional displacement vessels with a propeller
working in the wake of the hull and the rudder po-
sitioned in the propeller slipstream. Fortunately, two
phenomena { the larger model wake fraction and the
larger model resistance { tend to even out in the rudder
force. As a result of these scale e�ects, rudder e�ec-
tiveness of a model may generally be over-estimated
compared with that of a real ship. Accordingly, free
models tend to be more stable with respect to the
course-keeping ability.

Through these simulations, it is obvious that
the mathematical model is compatible with what one
expects from a real ship. It shows that the system
identi�cation method can be applied to determine the
hydrodynamic coe�cients not only precisely but also
in a manner that is adoptable to real ship maneuvers.
Besides all, the advantage of the method as a low-
cost procedure with a short time makes it much
powerful in the simulation of ship maneuvering based
on experimental data. The method facilitates the
procedure of hydrodynamic coe�cients determination
when compared to other similar methods as it rep-
resents all the coe�cients simultaneously through a
fast procedure. Finally, it should be noted that when
compared to complicated theoretical approaches or
captive model tests, the system identi�cation method
based on free-running model test seems to be so
promising.

8. Conclusion

Three degrees of freedom of mathematical model are
represented based on ship hydrodynamic analysis. The
system identi�cation theory is applied for estimation of
model hydrodynamic coe�cients through an algorithm
based on Extended Kalman Filter. In order to obtain
experimental data as input of extended Kalman �lter
method, free-running model tests of a 4.36-m model
of KCS are performed in open lake and di�erent
maneuvering tests are executed. Ship velocities in
directions of surge, sway, and yaw are measured and
this data is utilized as input of extended Kalman �lter
algorithms. Finally, hydrodynamic coe�cients are
determined. Then, di�erent maneuvers are simulated
through mathematical model and the motion trajec-
tories are obtained by integration of corresponding
velocities. The turning maneuvering is simulated
and compared to experimental data from free-running

model test for validation of the procedure. It seems
that the developed model can estimate ship maneuver-
ing performance with enough accuracy when compared
to model test results. According to the results, the
developed mathematical model can re
ect the real ship
maneuvering characteristics with acceptable accuracy.
The results show that the procedure and algorithm
developed for hydrodynamic coe�cients estimation are
applicable and in advance can be used in ship maneu-
vering simulation and trajectory control. It should be
emphasized that the developed method in this paper is
independent of the form of mathematical model and it
is possible to determine di�erent coe�cients in various
equations.
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Appendix A

Extended Kalman �ltering.
The EKF is in a continuous cycle of predict-update.
The following lists the equations for the EKF:

1. Predict next state:

Xt;t�1 = f(Xt�1;t�1; 0); (A.1)

where f(Xt�1;t�1; 0) is the approximated state ~xt.
2. Predict next state covariance:

St;t�1 =
�
@f
@x

�
St;t�1

�
@f
@x

�T
+
�
@f
@a

�
Q
�
@f
@a

�T
;

(A.2)

where @f
@x and @f

@a are the Jacobians of the state
transition equations. The notation (:::)T indicates
matrix transpose.

3. Obtain measurement(s) Yt.
4. Calculate the Kalman gain (weights):

Kt=St;t�1

�
@g
@x

�T �
(
@g
@x

)St;t�1(
@g
@x

)T

+(
@g
@n

)R(
@g
@n

)T
��1

; (A.3)

where @g
@x and @g

@n are the Jacobians of the measure-
ment equations.

5. Update state:

Xt;t = Xt;t�1 +Kt [Yt � g(~xt; 0)] ; (A.4)

where g(~xt; 0) is the ideal (noiseless) measurement
of the approximated state above.

6. Update state covariance:

St;t =
�
I �Kt(

@g
@x

)
�
St;t�1: (A.5)

7. Loop (now t becomes t+ 1):

In order to understand this concept, we will look
at an example. Consider tracking an object in 2D using
a constant velocity model. Thus, the state variables are
X and Y position and velocity:

Xt =

2666664
xt
_xt
yt
_yt

3777775 : (A.6)

The state transition equations for this model are:

f(xt; at) =

2666664
xt+1 = xt + T _xt + 0

_xt+1 = _xt + u1

yt+1 = yt + T _yt + 0

_yt+1 = _yt + u2

3777775 ; (A.7)

where u1 and u2 are random samples drawn from
N(0; �2

a), representing an unknown acceleration.
For observations, consider using a sensor that

operates on polar coordinates, providing an r and �
measurement:

Yt =

"
rt
�t

#
: (A.8)

The observation equations for this model are:

g(xt; nt) =

"
rt =

p
x2
t + y2

t + n1

�t = tan�1 yt
xt + n2

#
; (A.9)

where n1 is a random sample drawn from N(0; �2
dist)

and n2 is a random sample drawn from N(0; �2
dir),

representing noises on the measured distance and
direction, respectively.

In order to use this model in the EKF, we must
calculate the four Jacobians. The derivative of the state
transition equations with respect to the state variables
is:
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@f
@x

=
@f

@(x; _x; y; _y)
=

2666664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

3777775 : (A.10)

The derivative of the state transition equations with
respect to the dynamic noises is:

@f
@a

=
@f

@(0; u1; 0; u2)
=

2666664
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

3777775 : (A.11)

The Jacobians of both the state transition equations
are fairly simple, because that portion of this model is
linear. Therefore, all the derivatives are constant.

The derivative of the observation equations with
respect to the state variables is:

@f
@x

=
@f

@(x; _x; y; _y)

=

"
@
@

p
x2 + y2 + n1 0 @

@

p
x2 + y2 + n1 0

@
@ tan�1 y

x + n2 0 @
@ tan�1 y

x + n2 0

#
=

"
y(x2 + y2)�1=2 0 y(x2 + y2)�1=2 0

y
x2+y2 0 y

x2+y2 0

#
:
(A.12)

The equation makes use of the functions for the
derivative of arctan, the power rule, and the chain rule.
The time subscripts are omitted for clarity. However,
in practice, the values in the matrix @g

@x must be
calculated in every iteration. They are calculated using
values from the current �ltered estimate of the state
variables. The derivative of the observation equations
with respect to the measurement noises is:

@g
@n

=
@g

@(n1; n2)
=
�
1 0
0 1

�
: (A.13)

To �nish this example, we must look at the covariances.
The covariance of the dynamic noises is:

Q =

2666664
0 0 0 0

0 �2
a 0 small 6=

0 0 0 0

0 small 6= 0 �2
a

3777775 ; (A.14)

where a small number allows for some covariance in
practice. The covariance of the measurement noises is:

R =

"
�2
dis small 6=

small 6= �2
dir

#
: (A.15)

The covariance of the state, S, is a 4 � 4 matrix
with the variances of x; _x; y; _y along the diagonal and
the (hopefully very small) covariances in the other
elements.

Finally, in order to verify that the problem has
been con�gured properly, one should go through all the
EKF equations above and make sure that the matrix
sizes match.

Doing this will reveal that the Kalman gain
matrix K is 4� 2, and everything �ts:

4�1z}|{
X =

4�1z}|{
f ; (A.16)

4�4z}|{
S =

4�4z }| {�
@f
@x

� 4�4z}|{
S

4�4z }| {�
@f
@x

�T
+

4�4z }| {�
@f
@a

� 4�4z}|{
Q

4�4z }| {�
@f
@a

�T
;

(A.17)

4�2z}|{
K =

4�4z}|{
S

4�2z }| {�
@g
@x

�T� 2�4z }| {�
@g
@x

� 4�4z}|{
S

4�2z }| {�
@g
@x

�T

+

2�2z }| {�
@g
@n

� 2�z}|{
R

2�2z }| {�
@g
@n

�T��1

; (A.18)

4�1z}|{
X =

4�1z}|{
X +

4�2z}|{
K

0@ 2�1z}|{
Y �

2�1z}|{
g

1A ; (A.19)

4�4z}|{
S =

2664 4�4z}|{
I �

4�2z}|{
K

2�4z }| {
(
@g
@x

)

3775 4�4z }| {
St;t�1 : (A.20)
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