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Abstract. The Di�erential Quadrature Method (DQM) is one of the most powerful
approximation methods for analyzing the free vibration of rectangular plates. It is easy
to use and straightforward to implement. However, in spite of its many advantages,
the conventional DQM has some limitations in determining the natural frequencies of
rectangular plates involving free corners. This is because it is very di�cult to implement
the free corner boundary condition in conventional DQM. As a result, the method may
exhibit some convergence problems and this may lead to erroneous and oscillatory results for
natural frequencies of rectangular plates involving free corners. To overcome this di�culty,
this paper presents a simple DQM formulation in which all the natural boundary conditions,
including the free corner boundary condition, are implemented in an easy manner. Its
accuracy and e�ciency are demonstrated through the vibration analysis of rectangular
plates with di�erent combinations of free edges and free corners. Numerical results prove
that the proposed method can produce much better accuracy than the conventional DQM
while exhibiting a monotonic convergence behavior with respect to the number of sampling
points. Furthermore, unlike the conventional DQM, solutions of the proposed method are
not very sensitive to the sampling point distribution.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Rectangular plates are important structural compo-
nents that are extensively used in various �elds of
engineering such as civil, mechanical, aerospace, ma-
rine, and structural engineering. Therefore, proper
understanding of the vibration characteristics of such
structural elements is crucial for the structural design-
ers.

In general, there are two kinds of methods that
can be used to solve the free vibration problem of rect-
angular plates, namely, the analytical and numerical
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methods. The analytical methods often provide better
information about vibration characteristics of rectan-
gular plates. But, their applications are limited to
plate problems with simple boundary conditions such
as Levy-type boundary conditions [1,2]. This limitation
is caused by the complexities introduced by the satis-
faction of the free edges and free corner boundary con-
ditions. To overcome the limitations of the analytical
methods, various approximate or numerical methods
such as the Ritz method [3-6], the extended Kan-
torovich approach [7], the �nite element method [8,9],
the BEM-based meshless method [10], the moving
least squares di�erential quadrature method [11], semi-
analytic di�erential quadrature method [12], the �-
nite di�erence method [13], the spectral element
method [14], and the discrete singular convolution
method [15,16] have been developed by researchers
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to study the behavior of rectangular or other shaped
plates with general boundary conditions.

Among the approximate methods used for solv-
ing the present problem, the Di�erential Quadrature
Method (DQM) is one of the most convenient methods
to obtain natural frequencies of rectangular plates [17-
20]. It is simple to use and also straightforward
to implement. However, in spite of its many useful
features, the conventional DQM has its own drawbacks
in implementation in the di�erential equations with
multiple boundary conditions at the boundary points,
especially for fourth-order governing di�erential equa-
tions of classical beam and plate problems. For in-
stance, in solving the vibration problem of rectangular
plates with general boundary conditions, Malik and
Bert [21] indicated that the solutions of conventional
DQM for rectangular plates having adjacent free edges
(or free corners) might not exhibit convergence trend
and erroneous results might be obtained. To solve
this di�culty, Shu and Du [22] proposed an approach
referred to as the direct Coupling of Boundary Con-
ditions with discrete Governing Equations (CBCGE)
for implementing the general boundary conditions for
the free vibration analysis of rectangular plates. The
CBCGE approach was shown to work well for the rect-
angular plates without free corners, but it encountered
some issues when applied to the rectangular plates
involving free corners. In this case, the numerical
solutions of the CBCGE approach were highly sensitive
to the sampling point distribution. For instance, the
solutions of the CBCGE approach with conventional
non-uniform sampling points were quite erroneous. To
overcome this di�culty, Shu and Du [22] proposed the
use of stretched sampling points where the sampling
points were stretched toward the plate boundaries.
Although rather accurate solutions were obtained using
the proposed stretched sampling points, the obtained
solutions did not show a monotonic convergence with
increasing number of sampling points and, in some
cases, the natural frequencies were found to behave
oscillatory.

It can be seen that a simple and general for-
mulation based on the conventional DQM that can
easily handle the plate problem with general boundary
conditions is still missing. Therefore, this paper intends
to present a simple and accurate DQM formulation in
which all the natural boundary conditions, including
the free corner boundary conditions, are satis�ed in
an easy and accurate manner. To demonstrate its
accuracy and stability, the proposed methodology is
applied to solve the vibration problem of rectangular
plates with various combinations of free edges and
free corners. Comparison of obtained results with
those in recent literature shows that the proposed
methodology is capable of producing highly accurate
solutions while exhibiting a monotonic convergence

behavior with respect to the number of DQM sampling
points. Furthermore, the proposed approach can
produce much better accuracy than the conventional
DQM formulations for rectangular plates involving free
corners.

2. Di�erential quadrature method

The DQM is a numerical solution technique for initial
and/or boundary value problems [23]. It was �rst
developed by Richard Bellman and his associates in the
early 1970's [24,25]. Since its introduction, the DQM
has been successfully applied to a variety of engineering
problems [26-45]. Most of these applications are
related to static and dynamic analyses of structural
components like beams, plates, and shells. Newer
applications include the use of DQM for solving moving
load problems [46,47] and 
uid-structure interaction
problems [48,49]. The results of many research works
show that the DQM is computationally e�cient and
is applicable to a large class of initial and/or bound-
ary value problems. However, as we discussed in
introduction, the implementation of multiple boundary
conditions is not an easy task when applying the DQM
to higher-order partial di�erential equations. To over-
come this limitation, this paper is devoted to present
a simple and accurate DQM formulation in which the
multiple boundary conditions are implemented in an
easy and simple manner.

The DQM is based on the idea that the derivative
of a function with respect to a coordinate direction at
any discrete point can be expressed by a weighted linear
sum of the function values at all the discrete points
chosen in that direction. For instance, the rth-order X-
derivative of the function W (X;Y ) at a sample point
(Xi; Y ) can be expressed as [23]:

@rW (Xi; Y )
@Xr =

nX
j=1

A(r)
ik W (Xk; Y );

i = 1; 2; � � � ; n; (1)

where n is the number of sample points in the
X-direction, and A(r)

ik is the rth-order X-derivative
weighting coe�cient associated with the X = Xi point.

It follows from Eq. (1) of which the quadrature
rules may be written collectively in matrix form as:

@r

@Xr fW(Y )g =
h
A(r)

i fW(Y )g; (2)

where:

fW(Y )g
=
�
W (X1; Y ) W (X2; Y ) � � � W (Xn; Y )]T

�
; (3)
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h
A(r)

i
=

266666666664

A(r)
11 A(r)

12 � � � A(r)
1n

A(r)
21 A(r)

22 � � � A(r)
2n

...
...

...
...

A(r)
n1 A(r)

n2 � � � A(r)
nn

377777777775
: (4)

The weighting coe�cients of the �rst-order derivative
can be obtained from the following algebraic formula-
tions [50]:

A(1)
ik =

8>>><>>>:
�(Xi)

(Xi�Xk)�(Xk) i 6= k; i; k = 1; 2; � � � ; n

� nP
j=1;j 6=i

A(1)
ij i = k; i = 1; 2; � � � ; n (5)

where �(X) is de�ned as:

�(Xi) =
nY

j=1;j 6=i
(Xi �Xj): (6)

The weighting coe�cients of the higher-order deriva-
tives can be calculated from the following recurrence
relationship [26]:

A(r)
ik =

8>>>>>>>>><>>>>>>>>>:

r
�
A(r�1)
ii A(1)

ik � A(r�1)
ik

Xi�Xk
�

i 6= k; i; k = 1; 2; � � � ; n

� nP
j=1;j 6=i

A(r)
ij

i = k; i = 1; 2; � � � ; n

(7)

Let Y1; Y2; � � � ; Ym be a set of sampling points in the
Y -direction. Using the quadrature rule, the sth-order
Y -derivative of the vector fW (Y )g at a sample point
Y = Yi can be expressed as [51]:

ds

dY s
fW(Yi)g =

mX
j=1

B(s)
ik fW(Yk)g;

i = 1; 2; � � � ;m; (8)

where B(s)
ik is the sth-order Y -derivative weighting

coe�cient associated with the Y = Yi point, and:

fW(Yi)g
=
�
W (X1; Yi) W (X2; Yi) � � � W (Xn; Yi)]

�T ;
i = 1; 2; � � � ;m: (9)

B(1)
ik and B(s)

ik are given by:

B(1)
ik =

8>>>>>>>><>>>>>>>>:

�(Yi)
(Yi�Yk)�(Yk)

i 6= k; i; k = 1; 2; � � � ;m

� mP
j=1;j 6=i

B(1)
ij

i = k; i = 1; 2; � � � ;m

(10)

B(s)
ik =

8>>>>>>>>><>>>>>>>>>:

s
�
B(s�1)
ii B(1)

ik � B(s�1)
ik

Yi�Yk
�

i 6= k; i; k = 1; 2; � � � ;m

� mP
j=1;j 6=i

B(s)
ij

i = k; i = 1; 2; � � � ;m

(11)

where:

�(Yi) =
mY

j=1;j 6=i
(Yi � Yj): (12)

It is noted that the quadrature rule (Eq. (8)) can be
written for all the i values in the following matrix form:

dr

dY r
n

~W
o

=
h

~B(s)
i f ~Wg; (13)

where:n
~W
o

=
�fW (Y1)gT fW (Y2)gT � � � fW (Ym)gT ]T

�
;

(14)

h
~B(s)

i
=

266666666664

B(s)
11 [Ix] B(s)

12 [Ix] � � � B(s)
1m[Ix]

B(s)
21 [Ix] B(s)

22 [Ix] � � � B(s)
2m[Ix]

...
...

...
...

B(s)
m1[Ix] B(s)

m2[Ix] � � � B(s)
mm[Ix]

377777777775
;

(15)

where [Ix] is an identity matrix of order n� n.

3. Governing equation and boundary
conditions

The governing di�erential equation for free vibration of
an isotropic thin rectangular plate with length a and
width b can be expressed as:

W;XXXX + 2�2W;XXY Y + �4W;Y Y Y Y = 
2W; (16)

where a subscript comma indicates partial di�erenti-
ation; W (X;Y ) is the dimensionless mode function
of the lateral de
ection; X = x=a and Y = y=b are
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dimensionless coordinates; � = a=b is the aspect ratio;
and 
 = !a2

p
�h=D is the dimensionless frequency

parameter, wherein !, �, h, and D are, respectively,
the circular frequency, mass density, thickness, and
bending sti�ness of the plate. The boundary conditions
of the rectangular plate are:

(I) Simply-supported edge (S):

W = W;XX = 0

at X = 0 and/or X = 1; (17)

W = W;Y Y = 0

at Y = 0 and/or Y = 1: (18)

(II) Clamped edge (C):

W = W;X = 0

at X = 0 and/or X = 1; (19)

W = W;Y = 0

at Y = 0 and/or Y = 1: (20)

(III) Free edge (F):

W;XXX + (2� �)�2W;XY Y = W;XX

+ ��2W;Y Y = 0;

at X = 0 and/or X = 1; (21)

W;Y Y Y +
2� �
�2 W;Y XX = W;Y Y

+
�
�2W;XX = 0;

at Y = 0 and/or Y = 1; (22)

wherein � is the Poisson's ratio. For a free corner
formed by the intersection of two free edges, the
following additional condition must also be satis�ed at
the corner [1]:

W;XY = 0: (23)

4. Proposed di�erential quadrature
methodology

The proposed methodology �rst reduces the original
plate problem (governed by Eq. (16)) to two simple
beam problems. Each beam problem is then solved
using the DQM while the corresponding boundary
conditions can be implemented separately. This sig-
ni�cantly simpli�es the solution procedure and its
implementation as compared with the conventional
procedure where the plate problem is directly solved
using the DQM. The details of the proposed method-
ology are given in the following sub-sections.

4.1. Procedure for the solution of the �rst
beam problem

4.1.1. DQM approximation of X-derivatives
Satisfying Eq. (16) at any sample point X = Xi, one
has:

W;XXXX(Xi; Y ) + 2�2W;XXY Y (Xi; Y )

+ �4W;Y Y Y Y (Xi; Y ) = 
2W (Xi; Y );

i = 1; 2; � � � ; n: (24)

Substituting the quadrature rule, given in Eq. (1), with
Eq. (24) gives:

nX
j=1

A(4)
ij W (Xj ; Y ) + 2�2

nX
j=1

A(2)
ij W;Y Y (Xj ; Y )

+ �4W;Y Y Y Y (Xi; Y ) = 
2W (Xi; Y );

i = 1; 2; � � � ; n: (25)

Eq. (25) can also be expressed in matrix notation as:

[A(4)]fW(Y )g+ 2�2[A(2)]fW;Y Y (Y )g
+ �4[Ix]fW;Y Y Y Y (Y )g = 
2[Ix]fW(Y )g;(26)

where [A(4)] and [A(2)] are the fourth-order and
second-order DQM weighting coe�cient matrices, re-
spectively; [Ix] is an identity matrix of order n � n;
and the vector fW(Y )g has already been de�ned in
Eq. (3).

Eq. (26) represents a system of coupled ordinary
di�erential equations of the fourth-order, which can be
further discretized using the DQM. However, it is pos-
sible to impose the X-direction boundary conditions of
the plate before applying the DQM to this system. The
details are given in the next subsection.

4.1.2. DQM analogs of the boundary conditions in the
X-direction

The boundary conditions of the rectangular plate in the
X-direction are given in Eqs. (17), (19), and (21). The
corresponding quadrature analogs are detailed below:

(I) Simply supported end condition at X = Xp (p =
1 or n): From Eqs. (1) and (17), the quadrature
analogs of the boundary conditions are obtained
as follows:

W (Xp; Y ) = 0;

nX
j=1

A(2)
pj W (Xj ; Y ) = 0: (27)
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(II) Clamped end condition at X = Xp (p = 1 or n):
From Eqs. (1) and (19), the quadrature analogs
of the boundary conditions are simply written as:

W (Xp; Y ) = 0;

nX
j=1

A(1)
pj W (Xj ; Y ) = 0: (28)

(III) Free end condition at X = Xp (p = 1 or n):
From Eqs. (1) and (21), the quadrature analogs
of the boundary conditions are written as:

nX
j=1

A(3)
pj W (Xj ; Y )

+ (2� �)�2
nX
j=1

A(1)
pj W;Y Y (Xj ; Y ) = 0;

(29)

nX
j=1

A(2)
pj W (Xj ; Y ) + ��2W;Y Y (Xp; Y ) = 0:

(30)

4.1.3. Implementation of boundary conditions in the
X-direction

At this step, the boundary conditions of the plate in
the X-direction can be applied to Eq. (26). This can
be done simply by direct substitution of the boundary
analog equations corresponding to simply-supported,
clamped, and free edges (given in Eqs. (27)-(30)) with
Eq. (26). By doing so, we obtain the following system
of ordinary di�erential equations:266664

[A(4)]bl

[A(4)]d

[A(4)]br

377775fW(Y )g+ 2�2

266664
[A(2)]bl

[A(2)]d

[A(2)]br

377775 fW;Y Y (Y )g

+ �4

266664
[Ix]bl

[Ix]d

[Ix]br

377775 fW;Y Y Y Y (Y )g

= 
2

266664
[Ix]bl

[Ix]d

[Ix]br

377775 fW(Y )g;
(31)

where the subscripts bl, d, and br denote left boundary
points, domain points, and right boundary points,
respectively. [A(4)]bl, [A(4)]br, [A(2)]bl, and [A(2)]br are
matrices depending on the boundary conditions of the

plate in the X-direction (see Appendices A and B for
details); [Ix]bl and [Ix]br are zero matrices; and:

[A(4)]d =

266666666664

A(4)
31 A(4)

32 � � � A(4)
3n

A(4)
41 A(4)

42 � � � A(4)
4n

...
...

...
...

A(4)
(n�2)1 A(4)

(n�2)2 � � � A(4)
(n�2)n

377777777775
;

[A(2)]d =

266666666664

A(2)
31 A(2)

32 � � � A(2)
3n

A(2)
41 A(2)

42 � � � A(2)
4n

...
...

...
...

A(2)
(n�2)1 A(2)

(n�2)2 � � � A(2)
(n�2)n

377777777775
; (32)

[Ix]d =

266666664
Ix31 Ix32 � � � Ix3n

Ix41 Ix42 � � � Ix4n
...

...
...

...

Ix(n�2)1 Ix(n�2)2 � � � Ix(n�2)n

377777775 : (33)

After eliminating the degrees of freedom related to
Dirichlet-type boundary conditions (if any exist),
Eq. (31) takes the form:h

Â(4)
in

Ŵ(Y )
o

+ 2�2
h
Â(2)

in
Ŵ;Y Y (Y )

o
+�4

h
Îx
in

Ŵ;Y Y Y Y (Y )
o

=
2
h
Îx
in

Ŵ(Y )
o
:
(34)

Eq. (34) involves the quadrature analog equations of
the plate boundary conditions in the X-direction. If
we denote the order of this matrix equation by nf , it
can be easily veri�ed that nf = n � ns � nc, wherein
ns is the number of simply supported edges in the X-
direction and nc is the number of clamped edges in the
X-direction. Therefore, in general, nf � n, where n is
the size of matrix equation (26):

4.2. Procedure for the solution of the second
beam problem

4.2.1. DQM approximation of Y -derivatives
Satisfying Eq. (34) at any sample point Y = Yi, one
has:h

Â(4)
in

Ŵ(Yi)
o

+ 2�2
h
Â(2)

in
Ŵ;Y Y (Yi)

o
+�4

h
Îx
in

Ŵ;Y Y Y Y (Yi)
o

=
2
h
Îx
in

Ŵ(Yi)
o
;

i = 1; 2; � � � ;m: (35)
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Substituting the quadrature rule, given in Eq. (8), with
Eq. (35) gives:h

Â(4)
in

Ŵ(Yi)
o

+ 2�2
h
Â(2)

i mX
j=1

B(2)
ij

n
Ŵ(Yj)

o
+�4

h
Îx
i mX
j=1

B(4)
ij

n
Ŵ(Yj)

o
=
2

h
Îx
in

Ŵ(Yi)
o
;

i = 1; 2; � � � ;m: (36)

Eq. (36) can be written for all the i-values in the
compact form:h

~K
in

~W
o

= 
2
h

~M
in

~W
o
; (37)

where [ ~K] is the sti�ness matrix, [ ~M] is the mass
matrix, and f ~Wg is the unknown coe�cient vector.
The nf � nf sub-matrices [ ~Kij ] and [ ~Mij ] are 2 given
by:h

~Kij

i
= Iyij

h
Â5

4i
+ 2�2B(2)

ij

h
Â(2)

i
+ �4B(4)

ij

h
Îx
i
;

i; j = 1; 2; � � � ;m; (38)h
~Mij

i
= Iyij

h
Îx
i
; (39)

where Iyij is the element of m�m identity matrix, and:n
~W
o

=
�n

Ŵ(Y1)
oT n

Ŵ(Y2)
oT � � � nŴ(Ym)

oT�T
:

(40)

It is noted that the size of mass and sti�ness matrices
in Eq. (37) is mnf � mnf , where nf = n � ns � nc.
The eigenvalue problem (Eq. 37) can be solved for the
eigenvalues 
, if the boundary conditions of the plate
problem in Y -direction are also applied. The procedure
will be detailed in the next section.

4.2.2. DQM analogs of the boundary conditions in the
Y -direction

The boundary conditions of the rectangular plate in
Y -direction are given in Eqs. (18), (20), and (22). The
corresponding quadrature analogs are detailed below:

(I) Simply supported end condition at Y = Yq (q = 1
or m): From Eqs. (8) and (18), the quadrature
analogs of the boundary conditions are obtained
as follows:n

Ŵ(Yq)
o

= f0gnf�1;n
Ŵ;Y Y (Yq)

o
=

mX
j=1

B(2)
qj

n
Ŵ(Yj)

o
=f0gnf�1:

(41)

(II) Clamped end condition at Y = Yq (q = 1 or m):
From Eqs. (8) and (20), the quadrature analogs
of the boundary conditions are simply written as:n

Ŵ(Yq)
o

= f0gnf�1;

n
Ŵ;Y (Yq)

o
=

mX
j=1

B(1)
qj

n
Ŵ(Yj)

o
=f0gnf�1:

(42)

(III) Free end condition at Y = Yq (q = 1 or m):
Substituting the quadrature rule (given in Eq.
(2)) with Eq. (22) gives:

fW;Y Y Y (Yq)g+
2� �
�2 [A(2)]fW;Y (Yq)g

= f0gn�1; (43)

fW;Y Y (Yq)g+
�
�2 [A(2)]fW(Yq)g = f0gn�1:

(44)

By eliminating the degrees of freedom related to
Dirichlet-type boundary conditions (if any exist),
Eqs. (43) and (44) may be rewritten as:n

Ŵ;Y Y Y (Yq)
o

+
2� �
�2

h
~A(2)

in
Ŵ;Y (Yq)

o
= f0gnf�1; (45)n

Ŵ;Y Y (Yq)
o

+
�
�2

h
~A(2)

in
Ŵ(Yq)

o
= f0gnf�1: (46)

Now, using the quadrature rule given in Eq. (8),
Eqs. (45) and (46) may be written as:

mX
j=1

B(3)
qj

n
Ŵ(Yj)

o
+

2� �
�2

h
~A(2)

i mX
j=1

B(1)
qj

n
Ŵ(Yj)

o
= f0gnf�1; (47)

mX
j=1

B(2)
qj

n
Ŵ(Yj)

o
+

�
�2

h
~A(2)

in
Ŵ(Yq)

o
= f0gnf�1: (48)

(IV) Free corner boundary condition at (Xp, Yq): As
pointed out earlier, the conditionW;XY = 0 must
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also be applied at free corners. First, we note
that:

@W (Xp; Y )
@X

=
nX
j=1

A(1)
pj W (Xj ; Y )

=
h
A(1)
p1 A(2)

p2 � � � A(1)
pn

i8>>><>>>:
W (X1; Y )
W (X2; Y )

...
W (Xn; Y )

9>>>=>>>;
= [Ap]1�n fW(Y )gn�1; (49)

also:

@2W (Xp; Yq)
@X@Y

=
@
@Y

�
@W (Xp; Y )

@X

�
Y=Yq

= [Ap]fW;Y (Yq)g: (50)

Now, using the quadrature rule given in Eq. (8), the
quadrature analog of the corner boundary condition is
obtained as:

@2W (Xp; Yq)
@X@Y

= [Ap]
mX
j=1

B(1)
qj fW(Yj)g = 0: (51)

If the degrees of freedom related to Dirichlet-type
boundary conditions (in the X-direction) are also
eliminated, Eq. (51) can be expressed as:

@2W (Xp; Yq)
@X@Y

=
h
Âp

i mX
j=1

B(1)
qj

n
Ŵ(Yj)

o
= 0: (52)

4.2.3. Implementation of boundary conditions in the
Y -direction

The procedure for implementing the boundary condi-
tions of the plate problem in Y -direction is similar to
that presented in Section 4.1.3. But, the procedure
for plates with free corners di�ers slightly from that
of plates without free corners, as we will show in the
following subsections.

4.2.3.1. Procedure for plates without free corners
Substituting the boundary analog equations corre-
sponding to simply-supported, clamped, and free edges
(given in Section 4.2.2) with Eq. (37) leads to the
following eigenvalue equation:266666664

h
~Kbl

i
h

~Kd

i
h

~Kbr

i
377777775
n

~W
o

= 
2

266666664
h

~Mbl

i
h

~Md

i
h

~Mbr

i
377777775
n

~W
o
; (53)

where the subscripts bl, d, and br denote left boundary
points, domain points, and right boundary points,
respectively. [ ~Kbl] and [ ~Kbr] are matrices depending
on boundary conditions of the plate in Y -direction (see
Appendices C and D for details); [ ~Mbl] and [ ~Mbr] are
zero matrices, and:

h
~Kd

i
=

26666666666664

h
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i
...
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...

...h
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i h
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i � � � h ~K(m�2)m

i

37777777777775
;

h
~Md

i
=

26666666666664

h
~M31

i h
~M32

i � � � h
~M3m

i
h

~M41

i h
~M42

i � � � h
~M4m

i
...

...
...

...h
~M(m�2)1

i h
~M(m�2)2

i � � � h ~M(m�2)m

i

37777777777775
:

(54)

For some cases, Eq. (53) can be directly solved for
the eigenvalues. However, in general, the eigenvalue
problem (Eq. (53)) is highly ill-conditioned and cannot
be easily solved for the eigenvalues. A way for
overcoming this issue is to eliminate the degrees of
freedom corresponding to the Dirichlet-type boundary
conditions. By doing so, the ill-conditioned eigenvalue
problem (Eq. (53)) is converted to a well-conditioned
eigenvalue problem. It is noted that the size of resulting
eigenvalue equations is mfnf � mfnf , where mf =
m�ms �mc and nf = n� ns � nc; wherein ns is the
number of simply supported edges in the X-direction,
nc is the number of clamped edges in the X-direction,
ms is the number of simply supported edges in the Y -
direction, and mc is the number of clamped edges in
the Y -direction. It is also noted that the resultant mass
matrix of the eigenvalue problem (Eq. (53)) involves
some zero rows and hence is singular. But, such
eigenvalue problem can be easily solved using the QZ
algorithm [52], of which the programs and subroutines
are available in most linear algebra software packages
such as MATLAB and LAPACK.

4.2.3.2. Procedure for plates with free corners
The solution procedure for plates involving free corners
is similar to that presented in Section 4.2.3.1. But, it
involves an additional step. In this case, as it was
pointed out earlier, the additional boundary analog
equation (52) must also be imposed on the system of
discrete equations (53).
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In the very �rst glance, it may appear that the
free corner boundary analog equation is arbitrarily
substituted in the system of discrete (Eqs. (53)). In
this regard, there are di�erent choices for replacement
of the quadrature analog equations of the governing
di�erential equation by the quadrature analog equation
of the free corner boundary condition. Noting that
the plate has a free corner at (Xp, Yq), a natural
way is to impose the free corner boundary condition
at this point (free corner point). In other words, the
quadrature analog equation of the governing di�er-
ential equation at (Xp, Yq) can be replaced by the
quadrature analog equation of the free corner boundary
condition.

5. Numerical results

To demonstrate the stability, rate of convergence,
and accuracy of the proposed DQM methodology,
natural frequencies of rectangular plates with di�erent
boundary conditions are evaluated and the results are
tabulated in Tables 1-5. To simplify the notation,
the edge conditions for plates are denoted by letters
S (simply supported), C (clamped), and F (free). For
instance, SCSF denotes that the plate has a simply
supported edge at X = 0, a clamped edge at Y = 0,
a simply supported edge at X = 1, and a free edge at
Y = 1.

For the DQM solution of the present problem, we
considered a grid of n � m sampling points obtained
by taking n and m points in 0 � X � 1 and 0 � Y �
1, respectively. Moreover, the DQM sampling points
are taken non-uniformly spaced and are given by the
following equations:

X1 = 0; X2 = �; Xn�1 = 1��; Xn = 1;

Xi =
1
2

�
1� cos

�
(i� 2)�
n� 3

��
;

i = 3; 4; � � � ; n� 2; (55)

and similar equations for the Y -direction sampling
points. Here, X2 and Xn�1 are discrete points very
close to the boundary points (adjacent �-points). The
parameter � shows the closeness of the adjacent point
and the respective boundary point. In order to achieve
accurate solutions by using this type of sampling
points, the magnitude of � should be as small as
possible (� 10�3). In this study, the magnitude of
parameter � is assumed to be � = 10�3.

Table 1 shows the convergence study of the �rst
�ve dimensionless natural frequencies of Levy-type
square plates (i.e., plates with two opposite sides
simply supported). The number of sampling points in
the X and Y directions (i.e., n and m) are taken to be

the same (i.e., we assumed that n = m). The analytical
solutions of Leissa [1] are also shown in this table
for comparison purposes. It can be clearly seen from
Table 1 that the present results converge very quickly
and agree very closely with the exact solution values
of Leissa [1], even with all the available signi�cant
digits.

The �rst �ve non-dimensional frequency param-
eters for square plates involving free corners are tab-
ulated in Tables 2 and 3. These results are obtained
by considering an equal number of sampling points in
both X and Y directions (n = m). The results are also
compared with the results obtained by the conventional
Ritz method [1], new Ritz formulation [5], Generalized
Di�erential Quadrature e Method (GDQM) [22], and
the FE-Ritz method [53]. It is noted that the results of
Eftekhari and Jafari in [5,53] are believed to be highly
accurate since both the geometric and natural bound-
ary conditions of the plate are strongly satis�ed in the
algorithms presented in these references. Comparing
the results of Table 2 with those of Table 1, it can
be seen that the rate of convergence of the proposed
DQM methodology for plates with free corners is not
as high as those for plates without free corners. It
can also be seen from Tables 2 and 3 that, in most
cases, the present solutions converge to values less than
those given in [1,5,22,53]. Noting that the results given
in [1,5,53] are upper bounds of the analytical values, it
can be concluded that the present solutions are often
closer to the exact values of the natural frequencies
than those in [1,5,53]. The results of Shu and Du [22]
are found to be somewhat oscillatory. For instance,
while some results of them [22] are very close to those
of Eftekhari and Jafari in [5,53], some others do not
show the same trend and do not agree well with the
results of these references. This oscillatory behavior
is due to the lack of satisfaction of the free corner
boundary conditions in the GQDM formulation of Shu
and Du [22].

To better see the convergence behavior and accu-
racy of the proposed DQM, the variation of the percent
error in quadrature solutions (de�ned as j
DQM �

Ritz [5]=
Ritz [5] � 100) with respect to the number
of sampling points is shown in Figure 1. It can
be seen from Figure 1 that the solutions obtained
by the present DQM, in most cases, show a mono-
tonic convergence with increasing number of sampling
points. However, the speed of convergence is very
slow in some cases, particularly in the results for
the fundamental frequencies of plates with CCFF,
CSFF, and CFFF boundary conditions. Therefore, the
proposed DQM requires a large computational cost to
obtain su�cient accuracy for these cases. In solving
the free vibration problem of plates with irregular
geometries, Bert and Malik [54] have also reported
this convergence problem and have found that this
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Table 1. Convergence and comparison of natural frequencies of Levy-type square plates.

Plate n = m 
1 
2 
3 
4 
5

SSSS

11 19.7392 49.3489 49.3489 78.9580 98.6268

13 19.7392 49.3480 49.3480 78.9568 98.6948

15 19.7392 49.3480 49.3480 78.9568 98.6961

17 19.7392 49.3480 49.3480 78.9568 98.6960

19 19.7392 49.3480 49.3480 78.9568 98.6960

Exact [1] 19.7392 49.3480 49.3480 78.9568 98.6960

SCSS

11 23.6463 51.6753 58.6481 86.1364 100.2023

13 23.6463 51.6743 58.6463 86.1345 100.2686

15 23.6463 51.6743 58.6464 86.1345 100.2698

17 23.6463 51.6743 58.6464 86.1345 100.2698

19 23.6463 51.6743 58.6464 86.1345 100.2698

Exact [1] 23.6463 51.6743 58.6464 86.1345 100.2698

SCSC

11 28.9509 54.7441 69.3317 94.5904 102.1501

13 28.9509 54.7431 69.3271 94.5854 102.2150

15 28.9509 54.7431 69.3270 94.5853 102.2162

17 28.9509 54.7431 69.3270 94.5853 102.2162

19 28.9509 54.7431 69.3270 94.5853 102.2162

Exact [1] 28.9509 54.7431 69.3270 94.5853 102.2162

SSSF

11 11.6846 27.7570 41.2023 59.0790 61.8910

13 11.6845 27.7564 41.1969 59.0662 61.8600

15 11.6845 27.7563 41.1967 59.0655 61.8606

17 11.6845 27.7563 41.1967 59.0655 61.8606

19 11.6845 27.7563 41.1967 59.0655 61.8606

Exact [1] 11.6845 27.7563 41.1967 59.0655 61.8606

SCSF

11 12.6874 33.0666 41.7068 63.0375 72.4757

13 12.6874 33.0652 41.7021 63.0161 72.3948

15 12.6874 33.0651 41.7019 63.0149 72.3977

17 12.6874 33.0651 41.7019 63.0148 72.3976

19 12.6874 33.0651 41.7019 63.0148 72.3976

Exact [1] 12.6874 33.0651 41.7019 63.0148 72.3976

SFSF

11 9.6314 16.1353 36.7264 38.9483 46.7564

13 9.6314 16.1348 36.7257 38.9450 46.7390

15 9.6314 16.1348 36.7256 38.9450 46.7382

17 9.6314 16.1348 36.7256 38.9450 46.7381

19 9.6314 16.1348 36.7256 38.9450 46.7381

Exact [1] 9.6314 16.1348 36.7256 38.9450 46.7381
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Table 2. Convergence and comparison of natural frequencies of square plates involving free corners.

Plate n = m 
1 
2 
3 
4 
5

SSFF

11 3.365 17.317 19.291 38.216 51.074
13 3.365 17.316 19.289 38.208 51.035
15 3.365 17.316 19.289 38.208 51.035
17 3.366 17.316 19.290 38.208 51.035
19 3.366 17.316 19.290 38.208 51.035
21 3.366 17.316 19.290 38.208 51.035

New Ritz [5] 3.3670 17.316 19.293 38.211 51.035
FE-Ritz [53] 3.3670 17.3164 19.2929 38.2112 51.0354
Conventional Ritz [1] 3.3687 17.407 19.367 38.291 51.324
GDQMa [22] 3.363 17.317 19.293 38.218 51.032

CSFF

11 5.522 19.201 24.464 42.954 52.748
13 5.463 19.168 24.524 42.964 52.714
15 5.428 19.146 24.564 42.984 52.716
17 5.405 19.130 24.592 43.003 52.716
19 5.390 19.118 24.612 43.019 52.715
21 5.379 19.109 24.626 43.032 52.714
23 5.371 19.102 24.637 43.043 52.714
25 5.365 19.096 24.645 43.051 52.713
27 5.361 19.092 24.651 43.058 52.712
29 5.358 19.088 24.655 43.063 52.711
31 5.355 19.085 24.659 43.067 52.711
33 5.354 19.083 24.662 43.071 52.710

New Ritz [5] 5.351 19.075 24.671 43.088 52.707
FE-Ritz [53] 5.3511 19.0752 24.6705 43.0876 52.7075
Conventional Ritz [1] 5.364 19.171 24.768 43.191 53.000
GDQMa [22] 5.402 19.219 25.005 43.372 52.702

CCFF

11 7.102 23.891 26.486 47.574 62.845
13 7.048 23.883 26.514 47.547 62.727
15 7.017 23.885 26.531 47.551 62.719
17 6.997 23.888 26.544 47.562 62.714
19 6.982 23.892 26.552 47.573 62.711
21 6.971 23.894 26.559 47.584 62.709
23 6.962 23.896 26.563 47.592 62.708
25 6.955 23.897 26.567 47.600 62.707
27 6.950 23.898 26.570 47.606 62.707
29 6.946 23.899 26.572 47.611 62.706
31 6.942 23.900 26.574 47.615 62.706
33 6.939 23.900 26.575 47.619 62.706

New Ritz [5] 6.919 23.904 26.585 47.651 62.706
FE-Ritz [53] 6.9195 23.9040 26.5851 47.6519 62.7063
Conventional Ritz [1] 6.942 24.034 26.681 47.785 63.039
GDQMa [22] 6.982 24.193 26.683 47.909 62.489

a: Solutions with stretched sampling points.
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Table 3. Convergence and comparison of natural frequencies of square plates involving free corners.

Plate n = m 
1 
2 
3 
4 
5

SFFF

11 6.638 14.902 25.378 25.997 48.466
13 6.639 14.901 25.371 25.995 48.445
15 6.640 14.901 25.370 25.996 48.447
17 6.641 14.901 25.371 25.996 48.448
19 6.641 14.901 25.371 25.997 48.448
21 6.642 14.901 25.372 25.998 48.449
23 6.642 14.901 25.372 25.998 48.449

New Ritz [5] 6.6437 14.9015 25.3757 26.0005 48.4495
FE-Ritz [53] 6.6437 14.9015 25.3757 26.0005 48.4495
Conventional Ritz [1] 6.6480 15.023 25.492 26.126 48.711
GDQMa [22] 6.636 14.901 25.388 26.003 48.469

CFFF

11 3.606 8.780 21.121 27.334 30.666
13 3.545 8.710 21.174 27.307 30.715
15 3.513 8.660 21.207 27.287 30.764
17 3.495 8.624 21.228 27.271 30.805
19 3.484 8.597 21.243 27.258 30.838
21 3.477 8.576 21.254 27.247 30.863
23 3.472 8.560 21.261 27.238 30.882
25 3.470 8.548 21.267 27.231 30.897
27 3.468 8.539 21.271 27.225 30.909
29 3.467 8.531 21.274 27.221 30.918
31 3.466 8.525 21.276 27.217 30.926
33 3.466 8.521 21.278 27.214 30.932

New Ritz [5] 3.4712 8.5074 21.2864 27.1990 30.9590
FE-Ritz [53] 3.4711 8.5067 21.2850 27.1989 30.9563
Conventional Ritz [1] 3.9417 8.5246 21.429 27.331 31.111
GDQMa [22] 3.485 8.604 21.586 27.230 31.358

FFFF

11 13.458 19.595 24.269 34.802 34.817
13 13.457 19.596 24.267 34.788 34.797
15 13.458 19.596 24.267 34.788 34.794
17 13.460 19.596 24.267 34.789 34.794
19 13.461 19.596 24.268 34.791 34.794
21 13.462 19.596 24.268 34.792 34.795
23 13.463 19.596 24.268 34.793 34.795
25 13.463 19.596 24.268 34.794 34.796
27 13.464 19.596 24.269 34.795 34.796
29 13.464 19.596 24.269 34.796 34.797
31 13.465 19.596 24.269 34.796 34.797
33 13.465 19.596 24.269 34.797 34.797

New Ritz [5] 13.4682 19.5961 24.2702 34.8009 34.8009
FE-Ritz [53] 13.4682 19.5961 24.2702 34.8009 34.8009
Conventional Ritz [1] 13.489 19.789 24.432 35.024 35.024
GDQMa [22] 13.454 19.597 24.271 34.815 34.817

a: Solutions with stretched sampling points.



2136 S.A. Eftekhari and A.A. Jafari /Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 2125{2143

Table 4. Convergence and comparison of natural frequencies of square plates with free corners (when non-uniform
sampling points without adjacent �-points are used in the algorithm).

Plate Method n = m 
1 
2 
3 
4 
5

SSFF
Present

15 3.403 17.316 19.388 38.319 51.039
21 3.392 17.316 19.359 38.286 51.035
27 3.385 17.316 19.341 38.266 51.035
33 3.381 17.316 19.329 38.253 51.035
37 3.379 17.316 19.324 38.247 51.035
41 3.377 17.316 19.320 38.242 51.035

New Ritz [5] 3.3670 17.316 19.293 38.211 51.035
GDQM [22] 15 2.549 17.316 17.662 36.576 51.039

CCFF
Present

15 7.443 23.961 26.482 47.485 62.722
21 7.280 23.900 26.525 47.431 62.707
27 7.188 23.893 26.547 47.440 62.708
33 7.125 23.894 26.564 47.463 62.709
37 7.092 23.895 26.572 47.480 62.708
41 7.065 23.896 26.580 47.496 62.708

New Ritz [5] 6.919 23.904 26.585 47.651 62.706
GDQM [22] 15 7.873 23.615 23.873 44.587 62.730

CSFF
Present

15 5.960 19.675 24.029 42.745 52.810
21 5.767 19.525 24.190 42.714 52.802
27 5.638 19.417 24.327 42.763 52.795
33 5.550 19.338 24.425 42.819 52.787
37 5.507 19.298 24.475 42.853 52.781
41 5.472 19.265 24.514 42.884 52.776

New Ritz [5] 5.351 19.075 24.671 43.088 52.707
GDQM [22] 15 5.780 20.703 20.926 40.296 52.255

SFFF
Present

15 6.705 14.909 25.505 26.129 48.474
21 6.691 14.908 25.476 26.077 48.463
27 6.679 14.906 25.452 26.053 48.458
33 6.671 14.905 25.435 26.040 48.456
37 6.667 14.904 25.427 26.034 48.455
41 6.664 14.904 25.421 26.029 48.454

New Ritz [5] 6.6437 14.9015 25.3757 26.0005 48.4495
GDQM [22] 15 5.161 14.725 23.082 24.156 46.296

CFFF
Present

15 3.893 9.687 20.934 27.780 30.032
21 3.695 9.413 20.995 27.710 30.139
27 3.583 9.192 21.067 27.635 30.311
33 3.517 9.027 21.122 27.568 30.457
37 3.487 8.942 21.151 27.529 30.536
41 3.466 8.871 21.174 27.494 30.603

New Ritz [5] 3.4712 8.5074 21.2864 27.1990 30.9590
GDQM [22] 15 3.898 9.459 20.206 26.150 26.500

FFFF
Present

15 13.668 19.596 24.379 35.016 35.196
21 13.616 19.596 24.342 34.978 35.037
27 13.578 19.596 24.321 34.939 34.962
33 13.553 19.596 24.308 34.909 34.920
37 13.541 19.596 24.302 34.895 34.902
41 13.532 19.596 24.298 34.883 34.887

New Ritz [5] 13.4682 19.5961 24.2702 34.8009 34.8009
GDQM [22] 15 10.303 19.596 22.146 30.026 30.803
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Table 5. Percent error in solutions of two DQ approaches (present and GDQM) for natural frequencies of square plates
with free corners (when non-uniform sampling points without adjacent �-points are used in the algorithms).

Plate Method n = m 
1 
2 
3 
4 
5

SSFF Present 15 1.0685 0.0025 0.4942 0.2835 0.0085
GDQM [22] 15 24.2946 0 8.4538 4.2789 0.0078

CCFF Present 15 7.5800 0.2397 0.3877 0.3480 0.0255
GDQM [22] 15 13.7881 1.2090 10.2012 6.4301 0.0383

CSFF Present 15 11.3895 3.1438 2.6028 0.7957 0.1956
GDQM [22] 15 8.0172 8.5347 15.1798 6.4798 0.8576

SFFF Present 15 0.9272 0.0519 0.5094 0.4930 0.0503
GDQM [22] 15 22.3174 1.1844 9.0390 7.0941 4.4448

CFFF Present 15 12.1652 13.8716 1.6528 2.1369 2.9933
GDQM [22] 15 12.2955 11.1856 5.0755 3.8568 14.4029

FFFF Present 15 1.4881 0.0005 0.4495 0.6194 1.1355
GDQM [22] 15 23.5013 0.0005 8.7523 13.7206 11.4879

Figure 1. Convergence and accuracy of the �rst four natural frequencies of square plates involving free corners.
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Figure 2. Convergence behavior and accuracy of natural frequencies of square plates with CCFF, CSFF, and CFFF
boundary conditions.

di�culty is caused when an equal number of sampling
points is considered in both coordinate directions of
the plate. They have also shown that the convergence
rate of the DQM is greatly enhanced by selecting an
unequal number of sampling points in each coordinate
direction of the plate. Our numerical experiments
also con�rmed this numerical observation for rectan-
gular plates involving free corners and showed that,
depending on the boundary conditions of the plate,
the accuracy of numerical results could be improved
when n value was considered to be smaller or larger
than m value. Figure 2 presents the numerical results
for plates with CCFF, CSFF, and CFFF boundary
conditions. It can be seen that better accuracy and
convergence rate can be achieved when n value is
chosen to be larger thanm value. The numerical results
for plates with SSFF, SFFF and FFFF boundary
conditions are shown in Figure 3. It can be seen
that in these cases, better accuracy and convergence
rate are achieved by selecting n value smaller than m
value.

As pointed out earlier in introduction, Shu and
Du [22] reported that the solutions of the GDQM are
very sensitive to the sampling point distributions when
the plate under investigation involves some free corners.
For instance, their procedure led to erroneous results
when using the following type of sampling points:

Xi =
1
2

�
1� cos

�
(i� 1)�
n� 1

��
; i = 1; 2; � � � ; n;

(56)

Yi =
1
2

�
1� cos

�
(i� 1)�
m� 1

��
; i = 1; 2; � � � ;m:

(57)

To investigate the e�ect of sampling point distribution,
we also solved the present problem using the above type
of sampling points. Table 4 shows the convergence
of solutions for the �rst �ve natural frequencies of
square plates involving free corners when the coor-
dinates of the sampling points are computed from
Eqs. (56) and (57). The GDQM solution results
of Shu and Du [22] are also shown for comparison
purposes. Similar to Shu and Du [22], we considered
an equal number of sampling points in both coordinate
directions of the plate (n = m). It can be seen
that the results of present method show a monotonic
convergence with respect to the number of sampling
points while the numerical results of Shu and Du [22]
do not exhibit any convergence trend for these cases.
This implies that the solutions of the proposed method
for plates involving free corners are not highly sensitive
to the sampling point distribution. Table 5 presents a
fair comparison of the present DQM and the GDQM
when a mesh size of 15 � 15 is used. Note that
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Figure 3. Convergence behavior and accuracy of natural frequencies of square plates with SSFF, SFFF, and FFFF
boundary conditions.

the percent error in quadrature solutions (de�ned as
j
DQM�
Ritz [5]j=
Ritz [5] �100) is shown in this table.
Needless to say that better accuracy is achieved by the
proposed DQM.

6. Conclusions

A simple and accurate di�erential quadrature formu-
lation is developed to study the free vibration of
rectangular plates. The proposed formulation reduces
the original plate problem to two simple beam problems
whose solution procedure is signi�cantly simpler than
the case where the conventional DQM is fully applied
to the plate problem. A simple scheme is also proposed
to implement the free edge and free corner boundary
conditions of the plate problem. It is revealed that the
proposed method can produce much better accuracy
than the GDQM for plates involving free corners. Un-
like the GDQM, the solutions of the proposed method
for plates with free corners are not very sensitive to the
sampling point distribution.
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Appendix A

Elements of matrices [A(4)]bl and [A(2)]bl
The elements of matrices [A(4)]bl and [A(2)]bl depend
on the boundary conditions of the plate in the X-
direction and can be obtained from quadrature analog
equations given in Section 4.1.2 as follows:

(I) Simply supported end condition at X = X1:

[A(4)]bl=

24 1 0 0 � � � 0

A(2)
11 A(2)

12 A(2)
13 � � � A(2)

1n

35 ;
(A.1)

[A(2)]bl =

240 0 � � � 0

0 0 � � � 0

35 : (A.2)

(II) Clamped end condition at X = X1:

[A(4)]bl=

24 1 0 0 � � � 0

A(1)
11 A(1)

12 A(1)
13 � � � A(1)

1n

35 ;
(A.3)

[A(2)]bl =
�
0 0 � � � 0
0 0 � � � 0

�
: (A.4)

(III) Free end condition at X = X1:

[A(4)]bl =

264A(2)
11 A(2)

12 � � � A(2)
1n

A(3)
11 A(3)

12 � � � A(3)
1n

375 ; (A.5)

[A(2)]bl=
1
2

24 � 0

(2��)A(1)
11 (2��)A(1)

12

0 � � � 0

(2��)A(1)
13 � � � (2��)A(1)

1n

35 :
(A.6)
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Appendix B

Elements of matrices [A(4)]br and [A(2)]br
The elements of matrices [A(4)]br and [A(2)]br can also
be determined from quadrature analog equations given
in Section 4.1.2 as follows:

(I) Simply supported end condition at X = Xn:

[A(4)]br =

24A(2)
n1 A(2)

n2 � � � A(2)
n(n�1) A

(2)
nn

0 0 � � � 0 1

35 ;
(B.1)

[A(2)]br =
�
0 0 � � � 0
0 0 � � � 0

�
: (B.2)

(II) Clamped end condition at X = Xn:

[A(4)]br =

24A(1)
n1 A(1)

n2 � � � A(1)
n(n�1) A

(1)
nn

0 0 � � � 0 1

35 ;
(B.3)

[A(2)]br =
�
0 0 � � � 0
0 0 � � � 0

�
: (B.4)

(III) Free end condition at X = Xn:

[A(4)]br =

2664A
(3)
n1 A(3)

n2 � � � A(3)
nn

A(2)
n1 A(2)

n2 � � � A(2)
nn

3775 ; (B.5)

[A(2)]br=
1
2

24(2��)A(1)
n1 (2��)A(1)

n2 � � �
0 0 � � �

(2��)A(1)
n(n�1) (2��)A(1)

nn

0 �

35 :
(B.6)

Appendix C

Elements of matrix [ ~Kbl]
The elements of matrix [ ~Kbl] depend on the boundary
conditions of the plate in Y -direction and can be
obtained from quadrature analog equations given in
Section 4.2.2 as follows:

(I) Simply supported end condition at Y = Y1:

h
~Kbl

i
=

2664
h
Î
i

[0]

B(2)
11

h
Î
i

B(2)
12

h
Î
i

[0] � � � [0]

B(2)
13

h
Î
i � � � B(2)

1m

h
Î
i375 : (C.1)

(II) Clamped end condition at Y = Y1:

h
~Kbl

i
=

24 h
Î
i

[0]

B(1)
11

h
Î
i

B(1)
12

h
Î
i

[0] � � � [0]

B(1)
13

h
Î
i � � � B(1)

1m

h
Î
i375 : (C.2)

(III) Free end condition at Y = Y1:

h
~Kbl

i
=

2664B(2)
11

h
Î
i

B(2)
12

h
Î
i � � � B(2)

1m

h
Î
i

B(3)
11

h
Î
i

B(3)
12

h
Î
i � � � B(3)

1m

h
Î
i
3775

+
1
�2

2664 �
h

~A(2)
i

[0]

(2��)B(1)
11

h
~A(2)

i
(2��)B(1)

12

h
~A(2)

i
[0] � � � [0]

(2��)B(1)
13

h
~A(2)

i � � � (2��)B(1)
1m

h
~A(2)

i375 ;
(C.3)

where [ ~A(2)] has already been de�ned in Eqs. (43)-(46),
[Î] and [0] are identity and zero matrices of order nf �
nf (nf = n).

Appendix D

Elements of matrix [ ~Kbr]
The elements of matrix [ ~Kbr] can also be determined
from quadrature analog equations given in Section 3.1
as follows:

(I) Simply supported end condition at Y = Ym:

h
~Kbr

i
=

264B(2)
m1

h
Î
i

B(2)
m2

h
Î
i � � �

[0] [0] � � �
B(2)
m(m�1)

h
Î
i

B(2)
mm

h
Î
i

[0]
h
Î
i

3775 : (D.1)

(II) Clamped end condition at Y = Ym:

h
~Kbr

i
=

264B(1)
m1

h
Î
i

B(1)
m2

h
Î
i � � �

[0] [0] � � �
B(1)
m(m�1)

h
Î
i

B(1)
mm

h
Î
i

[0]
h
Î
i

3775 : (D.2)
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(III) Free end condition at Y = Ymh
~Kbr

i
=

2664B(3)
m1

h
Î
i

B(3)
m2

h
Î
i � � � B(3)

mm

h
Î
i

B(2)
m1

h
Î
i

B(2)
m2

h
Î
i � � � B(2)

mm

h
Î
i
3775

+
1
�2

264(2��)B(1)
m1

h
~A(2)

i
(2��)B(1)

m2

h
~A(2)

i
[0] [0]

� � � (2��)B(1)
m(m�1)

h
~A(2)

i
(2��)B(1)

mm

h
~A(2)

i
� � � [0] �

h
~A(2)

i
3775 ;
(D.3)

where the matrices [ ~A(2)], [Î], and [0] have
already been de�ned in Appendix C.
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