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Abstract. In this paper, a �nite element formulation based on two-variable re�ned plate
theory is developed for free vibration analysis of isotropic and orthotropic plates. The two-
variable re�ned plate theory, which can be used for both thin and thick plates, predicts
parabolic variation of transverse shear stresses across the plate thickness, satis�es the zero
traction condition on the plate surfaces, and does not need the shear correction factor. After
constructing weak-form equations using the Hamilton principle for vibration formulation, a
new 4-node rectangular plate element with six degrees of freedom at each node is introduced
for discretization of the domain. The natural frequencies of isotropic plates with di�erent
boundary conditions and the fundamental natural frequencies of levy-type orthotropic
plates are obtained. Comparison of results with exact solutions and other common plate
theories shows that besides simplicity of the presented �nite element formulations, they
present accurate and e�cient results. Also, the e�ects of orthotropy ratio, side-to-thickness
ratio, and types of boundary conditions on the natural frequencies are studied.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Classical Plate Theory (CPT) is the simplest plate
theory that gives good results for bending analysis
of thin plates, but it does not take transverse shear
deformation e�ects into account. The e�ect of shear
deformation is important in bending analysis of thick
plates and also for thin plates vibrating at higher
modes; thus, numerous researchers have attempted
to re�ne the CPT. Reissner proposed First-order
Shear Deformation Theory (FSDT) based on stress
approach [1] and another form of FSDT was proposed
by Mindlin [2] based on displacement approach. The
FSDT predicts the constant transverse shear stress
along the plate thickness and hence the zero-stress
conditions on free surfaces cannot be satis�ed. Also,
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this theory needs the shear correction factor in for-
mulation. To resolve these de�ciencies, Higher-order
Shear Deformation Theories (HSDTs) were developed.
Second-order shear deformation theory of Whitney and
Sun [3], third-order shear deformation theory of Hanna
and Leissa [4], Reddy [5], Bhimaraddi and Stevens [6],
Kant [7], and Lo et al. [8] are some famous HSDTs.

Recently, some new higher-order shear deforma-
tion theories such as trigonometric shear deformation
theory [9], hyperbolic shear deformation theory [10],
and two-variable re�ned plate theory [11] have been
developed. The two-variable plate theory (RPT) is
a simple and e�cient theory that contains only two
unknown variables which are bending and shear compo-
nents of transverse displacement. This theory satis�es
the zero-stress conditions on free surfaces and does
not need the shear correction factor in formulation.
It was introduced by Shimpi [11] for isotropic plates
and then extended to orthotropic plates by Shimpi



1788 J. Rouzegar and R. Abdoli Sharifpoor/Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 1787{1799

and Patel [12] and Thai and Kim [13]. The analysis
of laminated composite plates was done by Kim et
al. [14] and the vibration and buckling analyses of
plates were performed by Shimpi and Patel [15] and
Kim et al. [16], respectively. Levy-type solution for
buckling analysis of orthotropic plates was studied by
Thai and Kim [17]. Considering non-local e�ects,
the buckling behavior of isotropic nano-plates was
studied by Narender [18]. Free vibration of nano-
plates was performed by Malekzadeh and Shojaee [19]
using di�erential quadrature method for solution of the
governing equations.

Previous researchers have adopted the two-
variable plate theory and presented analytical solu-
tions for some plate problems with speci�c geometry,
loading, and boundary conditions. In practice, it
is too di�cult to solve many engineering problems
by common analytical methods. Using numerical
approaches, the complicated problems could be sim-
ulated in an approximate manner. Bhat [20] obtained
natural frequencies by employing a set of characteristic
orthogonal polynomials in the Rayleigh-Ritz method.
This method yields superior results for lower modes,
particularly when plates have some of the edges free.
Misra [21] implemented the multi-quadratic radial basis
function for free vibration analysis of isotropic plate.
This method gives relatively good results, but its
implementation is not simple. Semnani et al. [22]
applied two-dimensional di�erential transfer method
for investigating free vibration behavior of variable
thickness plates with di�erent boundary conditions.
Liew et al. [23] adopted the �rst-order shear defor-
mation theory in the moving least squares di�erential
quadrature method for predicting the free vibration
behavior of moderately thick symmetrically laminated
composite plates.

One of the popular and interesting numerical
techniques is �nite element method. Finite element
analysis became quick, precise, and popular by the
advancements in computer sciences. Recently, a �nite
element formulation based on two-variable re�ned plate
theory was developed for bending analysis of thin
and thick orthotropic plates [24]. In this study, a
new Finite Element formulation based on two-variable
Re�ned Plate Theory (FE-RPT formulation) has been
developed for free vibration analysis of thin and thick
isotropic and orthotropic plates. A new 4-node rect-
angular plate element with six degrees of freedom at
each node has been introduced. Besides accuracy
of the developed formulation, it is very simple to
implement in comparison to other shear deformation
�nite element methods. This formulation can be used
for both thin and thick plates and is free from shear
locking in contrast to �rst-shear deformation �nite ele-
ment formulation. This formulation predicts parabolic
transverse shear stresses across the plate thickness

and satis�es the zero-stress conditions on free surfaces.
Accuracy and e�ciency of the presented formulation
have been proved by solving some benchmark problems
in the literature.

2. Theory of problem

2.1. Two-variable re�ned plate theory
The two-variable re�ned plate theory is constructed
based on the following assumptions:

1. The displacements (u in x-direction, v in y-
direction, and w in z-direction) are small relative to
the plate thickness. Thus, the strain-displacement
relations can be expressed as follows:8>>><>>>:

"x = @u
@x ; xy = @v

@x + @u
@y ;

"y = @v
@y ; yz = @w

@y + @v
@z ;

"z = @w
@z ; zx = @w

@x + @u
@z ;

(1)

where "x, "y, and "z are normal strains in x, y, and
z directions and xy, yz, and zx are shear strains
in z, x, and y planes, respectively.

2. The displacement �eld (u in x-direction, v in y-
direction, and w in z-direction) consists of bending
and shear components:

w(x; y; t) = wb(x; y; t) + ws(x; y; t);

u = ub + us; v = vb + vs: (2)

The bending components of in-plane displacement
play the same roles as those of u and v in classical
plate theory. Thus, we can write:

ub = �z @wb
@x

; vb = �z @wb
@y

: (3)

3. The stress normal to the middle plane, �z, is
small compared with other stress components and
may be neglected in the stress-strain relations.
Consequently, the stress-strain relations for an
orthotropic plate can be written as:8>>>>><>>>>>:

�x = E1
1��12�21

("x + �12"y)

�y = E2
1��12�21

("y + �21"x)

�z = 0 �xy = G12xy �yz = G23yz
�zx = G31zx

(4)

where �x, �y, and �z are normal stresses in x, y, and
z directions and �xy, �yz, and �zx are shear stresses.
E1 and E2 are elastic moduli; G12, G23, and G31
are shear moduli; and �12, and �21 are Poisson's
ratios.
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4. Shear components of in-plane displacement are
considered as the following functions:

us = h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@x

;

vs = h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@y

: (5)

Based on the above assumptions, the displacements can
be calculated as:

u(x; y; z) = �z @wb
@x

+ h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@x

;
(6)

v(x; y; z) = �z @wb
@y

+ h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@y

;
(7)

w(x; y; t) = wb(x; y; t) + ws(x; y; t): (8)

The strain �eld is obtained by substituting Eqs. (6)-(8)
in Eq. (1):

"x = �z @2wb
@x2 + h

�
1
4

� z
h

�� 5
3

� z
h

�3
�
@2ws
@x2 ; (9)

"y = �z @2wb
@y2 + h

�
1
4

� z
h

�� 5
3

� z
h

�3
�
@2ws
@y2 ; (10)

"z = 0; (11)

xy = �2z
@2wb
@x@y

+ 2h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@2ws
@x@y

;
(12)

yz =
�

5
4
� 5

� z
h

�2
�
@ws
@y

; (13)

xz =
�

5
4
� 5

� z
h

�2
�
@ws
@x

: (14)

Substituting strains in constitutive Eqs. (4), the ex-
pressions for stresses can be obtained as the following
equations:8>>>><>>>>:

�x
�y
�xy
�yz
�zx

9>>>>=>>>>;=

266664
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

377775
8>>>><>>>>:
"x
"y
xy
yz
zx

9>>>>=>>>>; ;
(15)

where:8>>><>>>:
Q11 = E1

1��12�21
; Q12 = �12E2

1��12�21
= �21E2

1��12�21
;

Q22 = E2
1��12�21

;

Q44 = G23; Q55 = G31; Q66 = G12

(16)

2.2. The governing equations of free vibration
The governing equations and boundary conditions of
time-dependent problems can be obtained using Hamil-
ton's principle:

0 =
t2Z
t1

�(T � U)dt: (17)

The kinetic energy and total potential energy of a
rectangular plate (of length a, width b, and thickness
h) can be written as Eqs. (18) and (19), respectively:

T =
Z z=h=2

z=�h=2

Z y=b

y=0

Z x=a

x=0

1
2
�

"�
@u
@t

�2

+
�
@v
@t

�2

+
�
@w
@t

�2
#
dxdydz; (18)

U =
Z z=h=2

z=�h=2

Z y=b

y=0

Z x=a

x=0

1
2

[�x"x + �y"y

+ �xyxy + �yzyz + �zxzx]dxdydz; (19)

where � is mass density. By substituting Eqs. (18) and
(19) into (17) and taking the independent variations of
wb and ws into account, the governing equations are
obtained as Eqs. (20) and (21):

D11
@4wb
@x4 + 2(D12 + 2D66)

@4wb
@x2@y2 +D22

@4wb
@x4

� �h3

12
@2

@t2
(r2wb) + �h

�
@2wb
@t2

+
@2ws
@t2

�
= 0;

(20)

1
84

�
D11

@4ws
@x4 +2(D12+2D66)

@4ws
@x2@y2 +D22

@4ws
@x4

�
�
�
A55

@2ws
@x2 +A44

@2ws
@y2

�
� �h3

1008
@2

@t2
(r2ws)

+ �h
�
@2wb
@t2

+
@2ws
@t2

�
= 0; (21)

where D11, D22, D12, D66, A44, and A55 are plate-
material sti�ness de�ned in Eq. (22):8>>><>>>:

D11 = Q11h3

12 ; D22 = Q22h3

12 ; D12 = Q12h3

12 ;
D66 = Q66h3

12 ;

A44 = 5Q44h
6 ; A55 = 5Q55h

6 :
(22)

As can be seen, the governing equations are given
by two fourth-order di�erential equations that are
coupled for dynamic problems and uncoupled for static
problems. Di�erent possible boundary conditions were
discussed in [12].
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2.3. Finite element formulation of free
vibration

Based on two-variable re�ned plate theory, the weak-
form equations for free vibration analysis are ob-
tained by substituting kinetic and potential energies
in function of displacements into Hamilton's principle,
integrating them across the plate thickness, and then
using the calculus of variation technique:

0 =
�h3

12

Z

e

��
@3wb
@x@t2

@�wb
@x

+
@3wb
@y@t2

@�wb
@y

��
dxdy

+
�h3

1008

Z

e

��
@3ws
@x@t2

@�ws
@x

+
@3ws
@y@t2

@�ws
@y

��
dxdy

+
Z

e

"�
D11

@2wb
@x2 +D12

@2wb
@y2

�
@2�wb
@x2

+
�
D12

@2wb
@x2 +D22

@2wb
@y2

�
@2�wb
@y2

+ 4D66
@2wb
@x@y

@2�wb
@x@y

#
dxdy

+
Z

e

"
1
84

" 
D11

@2ws
@x2 +D12

@2ws
@y2

!
@2�ws
@x2

+
�
D12

@2ws
@x2 +D22

@2ws
@y2

�
@2�ws
@y2

+ 4D66
@2ws
@x@y

@2�ws
@x@y

#
+A44

@ws
@x

@�ws
@x

+A55
@ws
@y

@�ws
@y

#
dxdy

+ �h
Z

e

�
@
@t

(�wb + �ws)
�
@wb
@t

+
@ws
@t

��
dxdy:

(23)

Eq. (23) can be rewritten in the following vector form:Z

e

("
I0(�wb)T �wb + I2(D1�wb)T (D1 �wb)

#

+
�
I0(�ws)T �ws +

I2
84

(D1�ws)T (D1 �ws)
�)

dxdy

+
Z

e

�
I0(�ws)T �wb + I0(�wb)T �ws

	
dxdy

+
Z

e

(
[(D2�wb)TD(D2wb)]

+

"
1
84

(D2�ws)TD(D2ws)

+ (D1�ws)TA(D1ws)

#)
dxdy = 0; (24)

where I0, I2, A, D, D1, and D2 are de�ned as:

I0 = �h; I2 =
�h3

12
; A =

�
A44 0
0 A55

�
;

D =

24D11 D12 0
D12 D22 0

0 0 D66

35 ; D1 =
� @
@x
@
@y

�
;

D2 =

8><>:
@2

@x2

@2

@y2

2 @2

@x@y

9>=>; : (25)

The bending and shear transverse displacement �elds
can be determined by interpolating the nodal Degrees
Of Freedom (DOFs) over the domain of elements:

wb(x; y) =
nX
j=1

�b
j'j(x; y) = NT�b;

ws(x; y) =
nX
j=1

�s
j'j(x; y) = NT�s; (26)

where �b and �s are bending and shear DOF vectors in
each element, and 'j and N are interpolation functions
and shape functions, respectively. By substituting
Eq. (26) into Eq. (24), the �nite element equations
for free vibration analysis based on two-variable re�ned
plate theory are obtained:�

M11 M12

M12 M22

�� ��b
��s

�
+
�
K11 0

0 K22

��
�b
�s

�
=
�

0
0

�
:
(27)

It is obvious that the obtained �nite element equations
are inertially coupled. The elemental mass, sti�ness,
and force matrices are de�ned in the following equa-
tions:

M11 =
Z

e

[I0NNT + I2BT1 B1]dxdy;

M22 =
Z

e

�
I0NNT +

I2
84
BT1 B1

�
dxdy;

M12 =
Z

e

[I0NNT ]dxdy;
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K11 =
Z

e

[BT2 DB2]dxdy;

K22 =
Z

e

�
1
84
BT2 DB2 +BT1 AB1

�
dxdy;

B1 = D1NT ; B2 = D2NT : (28)

If the e�ect of shear deformation is ignored and just
bending degrees of freedom are considered, the �nite
element formulation for classical plate theory will be
obtained:

M11 ��b +K11�b = 0: (29)

2.4. Linear rectangular element
A 4-node rectangular plate element with bending and
shear capabilities is utilized for discretization of prob-
lems domains. As shown in Figure 1, each node has
six degrees of freedom, including bending and shear
components of transverse displacement and also their
�rst derivatives with respect to x and y:

DOFs :
n
wb @wb

@x
@wb
@y ws @ws

@x
@ws
@y

o
: (30)

If the shear and bending nodal DOFs are de�ned by
abi and asi , respectively, and the elemental shear and
bending DOFs are de�ned by abe and ase, we will have:

abe =

8>>>>><>>>>>:
abi
abj
abk
abl

9>>>>>=>>>>>; ; abi =

8<: wb
@wb=@y�@wb=@x

9=; ;

ase =

8>>>>><>>>>>:
asi
asj
ask
asl

9>>>>>=>>>>>; ; asi =

8<: ws
@ws=@y�@ws=@x

9=; : (31)

For each pair of bending and shear nodal DOFs abi

Figure 1. Rectangular plate element.

and asi , the shape functions in terms of normalized
coordinates can be de�ned as follows [25]:

NT
i =

1
8

(1+�0)(1+�0)

8>><>>:
(2+�0+�0��2��2)

b�i(1� �2)

�a�i(1� �2)

9>>=>>; ;

� = (x� xc)=a; � = (y � yc)=b; �0 = ��i;

�0 = ��i; (32)

where 2a and 2b are the width and length of rectangular
element as shown in Figure 1.

3. Results and discussion

Two MATLAB codes, one based on Finite Element for-
mulation of two-variable Re�ned Plate Theory (shortly
FE-RPT) and the other based on Finite Element
formulation of Classical Plate Theory (shortly FE-
CPT), are prepared for free vibration analysis of
isotropic and orthotropic plates and afterwards, some
benchmark problems are solved by these codes and
the obtained results are compared with the existing
analytical solutions of the common plate theories.

3.1. Isotropic plates
In this section, the free vibration of isotropic rectangu-
lar plates has been studied. Since the material property
is independent of the coordinates, the material proper-
ties in Eq. (4) can be given as:

E1 = E2 = E; G12 = G23 = G13 = G;

�12 = �21 = �: (33)

The Poisson ratio is assumed to be 0.3 and the
normalized frequency is de�ned as Eq. (34):

�!mn = !mna
p
�=G: (34)

Figure 2 shows the convergence study of two vibration
modes for a simply supported square plate with h=a =
0:1. As seen in this �gure, by increasing the number
of elements, the results converge to the exact values.
Convergence rate of lower vibration mode is faster
than that of higher mode. In subsequent problems,
20 elements are considered at each plate edge to insure
the convergence of results as shown in Figure 3.

Tables 1 and 2 present the obtained natural
frequencies for simply supported isotropic square plate
with h=a = 0:01 and h=a = 0:1. For thin plates,
the results of FE-RPT and FE-CPT formulations are
very close and both are in good agreement with FSDT
results. But in case of thick plate (Table 2), results
of FE-RPT are closer to the exact values than those of
FE-CPT code. For thin plates, at low-vibration modes,
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Figure 2. Mesh-independency study for SSSS plate.

Figure 3. Final mesh of square plate.

Table 1. Comparison of �! for SSSS square plate with
a=h = 100.

m n FSDT [26] FE-CPT FE-RPT

1 1 0.0936 0.0962 0.0962

2 1 0.2406 0.2402 0.2401

1 2 0.2406 0.2402 0.2401

2 2 0.3847 0.3831 0.3827

3 1 0.4807 0.4803 0.4796

1 3 0.4807 0.4803 0.4796

3 2 0.6246 0.6212 0.6201

2 3 0.6246 0.6212 0.6201

the results of the present FE-RPT formulation and FE-
CPT formulation are identical; but at higher modes,
these formulations have some discrepancies, which
means that though considering shear deformation e�ect
is important for thick plates, it has signi�cant e�ect on
higher frequency modes of thin plates, too.

Figure 4 illustrates the percentage error of both
FE-CPT and FE-RPT formulations in estimation of
natural frequencies of a simply supported square plate.

Table 2. Comparison of �! for SSSS square plate with
a=h = 10.

m n Exact [27] FE-CPT FE-RPT
1 1 0.932 0.954 0.929
1 2 2.226 2.355 2.215
2 2 3.421 3.712 3.391
1 3 4.171 4.618 4.142
2 3 5.239 5.907 5.178
3 3 6.889 7.996 6.781
2 4 7.511 8.852 7.408
1 5 9.268 10.167 9.389

Figure 4. E�ect of shear strain on di�erent vibration
modes.

Figure 5. E�ect of side-to-thickness ratio on �!n for
FE-RPT and FE-CPT.

The precision of FE-RPT formulation is higher than
that of FE-CPT formulation and by increasing the
vibration mode, FE-CPT formulation errors increase
sharply, but the FE-RPT formulation errors remain
nearly constant. It can be concluded that classical
plate theory overpredicts all the vibration frequencies
for thick plates and higher frequencies for thin plates,
as discussed before.

Figure 5 shows the e�ect of side-to-thickness ratio
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on the fundamental natural frequency obtained by both
FE-RPT and FE-CPT formulations. For thick plates,
results of FE-CPT di�er from those of FE-RPT and by
decreasing the plate thickness, the results of FE-RPT
coincide with those of FE-CPT, which shows that shear
locking in the presented formulation does not occur.

It can be concluded that though FE-RPT leads
to good results for vibrating of both thin and thick
plates in lower and higher modes, FE-CPT gives
good results just for vibrating of thin plate in lower
modes. Since in FE-RPT formulation, two sets of
fourth-order di�erential equations should be solved, the
computational time is nearly twice that of FE-CPT
formulation; but in comparison to other higher-order
shear deformation theories, the FE-RPT formulation
is simple and e�cient. It must be noticed that CPT
formulation cannot predict shear deformation e�ects
and is completely weak in simulation of thick plates and
even in prediction of higher-mode natural frequencies
of thin plates.

The natural frequencies for fully clamped square
isotropic plate are obtained by FE-CPT and FE-RPT
formulations and the results are compared with those of
FSDT mesh free method [28] in Tables 3 and 4 for thin
and thick plates, respectively. Again, in this case, for
thick plates, results of FE-RPT formulation are more
accurate than those of FE-CPT formulation. For thin
plates, results of FE-CPT and FE-RPT formulations

Table 3. Comparison of �! for CCCC square plate with
a=h = 100.

m n FSDT [28] FE-CPT FE-RPT
1 1 0.1743 0.175 0.175
2 1 0.3576 0.356 0.356
1 2 0.3576 0.356 0.356
2 2 0.5240 0.523 0.522
3 1 0.6465 0.639 0.638
1 3 0.6505 0.643 0.641
3 2 0.8015 0.796 0.794
2 3 0.8015 0.796 0.794

Table 4. Comparison of �! for CCCC square plate with
a=h = 10.

m n FSDT [28] FE-CPT FE-RPT
1 1 1.558 1.734 1.603
2 1 3.018 3.487 3.093
1 2 3.018 3.487 3.093
2 2 4.171 5.054 4.351
3 1 5.121 6.122 5.082
1 3 5.159 6.157 5.159
3 2 6.017 7.537 6.203
2 3 6.017 7.537 6.203

Table 5. Comparison of �! for SCSC square plate with
a=h = 100.

m n FSDT [26] FE-CPT FE-RPT

1 1 0.141 0.141 0.141
2 1 0.268 0.266 0.266
1 2 0.337 0.337 0.337
2 2 0.460 0.458 0.457
3 1 0.498 0.496 0.496
1 3 0.628 0.628 0.626
3 2 | 0.677 0.676
2 3 | 0.748 0.746

Table 6. Comparison of �! for SCSC square plate with
a=h = 10.

m n FSDT [26] FE-CPT FE-RPT

1 1 1.302 1.397 1.324
2 1 2.398 2.607 2.423
1 2 2.888 3.299 2.957
2 2 3.852 4.431 3.924
3 1 4.237 4.775 4.257
1 3 4.936 6.017 5.040
3 2 | 6.431 5.531
2 3 | 7.095 5.934

are close at lower modes and they diverge for higher
frequencies.

The natural frequencies for square plate with
two clamped opposite edges and two simply supported
edges (SCSC) are computed by the present formu-
lations and the results are compared with those of
FSDT [26] in Tables 5 and 6. For thin plate, results
of FE-RPT and FE-CPT are in good agreement with
those of FSDT. In comparison to FDT, FE-RPT
formulation gives more accurate results than FE-CPT
for thick plate. It should be noticed that the presented
formulation is a higher-order shear deformation theory
and the related results must di�er from FSDT results.

3.2. Orthotropic Levy-type plates
In this section, an orthotropic square plate, which
is simply supported on two opposite edges and has
arbitrary boundary conditions along the other edges, is
considered. For simplicity, a two-letter notation is used
to describe the boundary conditions of the remaining
edges as shown in Figure 6. For example, SC shows
that one edge is simply supported and the other is
clamped.

Material properties of orthotropic plates are con-
sidered as follows:

G12=E2 = G13=E2 = 0:5; G23=E2 = 0:2;

�12 = 0:25: (35)
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Figure 6. Boundary condition of Levy-type plate [29].

Table 7. Comparison of normalized natural frequency of CC plate.

a=h
E1=E2

10 20 30 40 50

5
FE-RPT 10.8314 11.8276 12.3669 12.7543 13.0698

FE-CPT 20.4791 28.3771 34.5129 39.7118 43.9438

RPT [29] 10.8428 11.8374 12.3765 12.7642 13.0803

10
FE-RPT 16.0445 18.9743 20.5200 21.5141 22.2278

FE-CPT 21.0285 29.1389 35.4397 40.7783 45.4948

RPT [29] 16.0752 19.0023 20.5455 21.5377 22.2500

20
FE-RPT 19.4384 25.1987 28.9115 31.5873 33.6366

FE-CPT 21.1728 29.339 35.6831 41.0585 45.8074

RPT [29] 19.4909 25.2595 28.9746 31.6502 33.6985

50
FE-RPT 20.8991 28.5777 34.3119 38.9887 42.9705

FE-CPT 21.2137 29.3958 35.7522 41.138 45.8951

RPT [29] 20.9637 28.6650 34.4146 39.1030 43.0937

100
FE-RPT 21.1392 29.1915 35.3824 40.5744 45.115

FE-CPT 21.2196 29.4039 35.7621 41.1494 45.9088

The normalized fundamental natural frequency for
orthotropic plate is de�ned as Eq. (36).

�! = !
a2

h
p
�=E2: (36)

In Table 7, the normalized natural frequencies for CC
orthotropic plate with di�erent side-to-thickness (a=h)
and orthotropy (E1=E2) ratios are compared with
analytical RPT solution. For thick plate (a=h = 5),
the presented FE-RPT formulation has good agree-
ment with analytical RPT solution, but the FE-CPT
formulation does not provide proper results. By

increasing the side-to-thickness ratio, results of FE-
CPT formulation converge to those of FE-RPT, as
shown in Figure 7. Also, it is observed that in-
creasing orthotropy ratio causes the normalized nat-
ural frequency to increase. The normalized natural
frequencies obtained by FE-RPT and FE-CPT for-
mulations for orthotropic plates with SC, SS, FC,
FS, and FF edges are compared with the analytical
RPT solution in Tables 8-12, respectively, and similar
results to those in Table 7 are observed in these
tables.

The e�ects of side-to-thickness ratio on normal-
ized fundamental natural frequency of orthotropic plate
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Table 8. Comparison of normalized natural frequency of SC plate.

a=h E1=E2

10 20 30 40 50

5
FE-RPT 9.5333 10.6768 11.2625 11.6455 11.9307
FE-CPT 14.6464 19.9556 24.1235 27.6707 30.8122
RPT [29] 9.5462 10.6878 11.2725 11.6549 11.9399

10
FE-RPT 12.8341 15.7706 17.5131 18.6948 19.5608
FE-CPT 15.0255 20.4725 24.7487 28.3879 31.6109
RPT [29] 12.8632 15.8014 17.5431 18.7235 19.5882

20
FE-RPT 14.4516 18.9992 22.2158 24.7015 26.7135
FE-CPT 15.1249 20.6081 24.9127 28.5760 31.8204
RPT [29] 14.4921 19.0510 22.2738 24.7632 26.7775

50
FE-RPT 15.0374 20.3574 24.4537 27.8742 30.8475
FE-CPT 15.1531 20.6466 24.9592 28.6294 31.8798
RPT [29] 15.0824 20.4197 24.5288 27.9597 30.9416

100 FE-RPT 15.1278 20.5783 24.8359 28.4416 31.6193
FE-CPT 15.1571 20.6521 24.9658 28.6370 31.8884

Table 9. Comparison of normalized natural frequency of SS plate.

a=h E1=E2

10 20 30 40 50

5
FE-RPT 7.8175 9.0331 9.7223 10.1756 10.5020
FE-CPT 10.1395 13.3585 15.9409 18.1599 20.1360
RPT [29] 7.8304 9.0458 9.7339 10.1864 10.5121

10
FE-RPT 9.5403 11.906 13.5305 14.7443 15.6957
FE-CPT 10.3827 13.6789 16.3233 18.5955 20.6190
RPT [29] 9.5628 11.9334 13.5598 14.7744 15.7267

20
FE-RPT 10.2079 13.2310 15.5414 17.4360 19.0484
FE-CPT 10.4463 13.7627 16.4233 18.7094 20.7452
RPT [29] 10.2349 13.2676 15.5845 17.4839 19.1002

50
FE-RPT 10.4246 13.6960 16.2967 18.5166 20.4757
FE-CPT 10.4643 13.7864 16.4516 18.7417 20.7810
RPT [29] 10.4530 13.7360 16.3474 18.5726 20.5377

100 FE-RPT 10.4569 13.7670 16.4169 18.6891 20.7082
FE-CPT 10.4669 13.7898 16.4556 18.7463 20.7861

with orthotropy ratios 10 and 50 have been studied
in Figures 8 and 9, respectively. By increasing the
side-to-thickness ratio, the normalized frequencies in-
crease �rstly and then reach constant values. Fig-
ures 8 and 9 show that plates with sti�er bound-
ary conditions possess higher normalized frequencies
than the plates with softer boundary conditions. In

Figures 10 and 11, the e�ects of orthotropy ratio
(E1=E2) on normalized natural frequencies of thick
(a=h = 5) and thin (a=h = 100) orthotropic plates
are studied. By increasing the orthotropy ratio, the
normalized frequencies increase and this ratio has more
signi�cant e�ect on normalized frequencies for thinner
plates.
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Table 10. Comparison of normalized natural frequency of FS plate.

a=h E1=E2

10 20 30 40 50

5
FE-RPT 4.2797 4.8388 5.2589 5.5912 5.8629
FE-CPT 4.9366 5.8489 6.6333 7.3334 7.9719
RPT [29] 4.2840 4.8450 5.2661 5.5990 5.8710

10
FE-RPT 4.8152 5.6169 6.2744 6.8353 7.3251
FE-CPT 5.0225 5.9517 6.7503 7.4630 8.1129
RPT [29] 4.8210 5.6262 6.2861 6.8489 7.3401

20
FE-RPT 4.9890 5.8868 6.6483 7.3192 7.9233
FE-CPT 5.0447 5.9783 6.7806 7.4965 8.1493
RPT [29] 4.9954 5.8973 6.6621 7.3356 7.9419

50
FE-RPT 5.0418 5.9707 6.7672 7.4764 8.1217
FE-CPT 5.0510 5.9857 6.7891 7.5059 8.1596
RPT [29] 5.0483 5.9816 6.7816 7.4938 8.1417

100 FE-RPT 5.0496 5.9830 6.7848 7.4998 8.1515
FE-CPT 5.0519 5.9868 6.7903 7.5073 8.1611

Table 11. Comparison of normalized natural frequency of FF plate.

a=h E1=E2

10 20 30 40 50

5
FE-RPT 3.2575 3.2580 3.2585 3.2588 3.2591
FE-CPT 3.5368 3.5369 3.5370 3.5372 3.5373
RPT [29] 3.2577 3.2582 3.2586 3.2589 3.2591

10
FE-RPT 3.5100 3.5104 3.5107 3.5109 3.5110
FE-CPT 3.5922 3.5104 3.5927 3.5929 3.5930
RPT [29] 3.5102 3.5105 3.5108 3.5110 3.5111

20
FE-RPT 3.5849 3.5853 3.5856 3.5858 3.5859
FE-CPT 3.6065 3.6068 3.6071 3.6072 3.6074
RPT [29] 3.5851 3.5854 3.5857 3.5858 3.5859

50
FE-RPT 3.6070 3.6073 3.6076 3.6078 3.6079
FE-CPT 3.6105 3.6108 3.6111 3.6113 3.6114
RPT [29] 3.6072 3.6074 3.6077 3.6079 3.6080

100 FE-RPT 3.6102 3.6105 3.6108 3.6110 3.6111
FE-CPT 3.6111 3.6114 3.6117 3.6119 3.6120

4. Conclusions

The �nite element formulation for free vibration anal-
ysis of isotropic and orthotropic plates has been de-
veloped based on two-variable re�ned plate theory.
This theory, which can be used for both thin and
thick plates, predicts parabolic variation of transverse
shear stresses across the plate thickness, satis�es the

zero traction condition on the plate surfaces, and
does not need the shear correction factor. After
constructing weak-form equations using the Hamil-
ton principle, a new 4-node rectangular plate ele-
ment with six degrees of freedom at each node was
introduced for discretization of the domains. The
e�ciency and accuracy of the presented formulation
were proved by solving some benchmark isotropic and
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Table 12. Comparison of normalized natural frequency of FF plate.

a=h E1=E2

10 20 30 40 50

5
FE-RPT 2.5757 2.5750 2.5748 2.5748 2.5747
FE-CPT 2.5048 2.8038 2.8036 2.8035 2.8035
RPT [29] 2.5756 2.5749 2.5748 2.5747 2.5747

10
FE-RPT 2.7723 2.7714 2.7712 2.7711 2.7711
FE-CPT 2.8389 2.8379 2.8387 2.8376 2.8376
RPT [29] 2.7721 2.7713 2.7712 2.7711 2.7711

20
FE-RPT 2.8302 2.8293 2.8291 2.8290 2.8289
FE-CPT 2.8476 2.8466 2.8464 2.8463 2.8463
RPT [29] 2.8301 2.8292 2.8290 2.8289 2.8289

50
FE-RPT 2.8472 2.8463 2.8291 2.846 2.8459
FE-CPT 2.8501 2.8491 2.8464 2.8488 2.8487
RPT [29] 2.8470 2.8462 2.8460 2.8459 2.8459

100 FE-RPT 2.8497 2.8487 2.8485 2.8484 2.8484
FE-CPT 2.8504 2.8494 2.8491 2.8491 2.8491

Figure 7. The e�ect of side-to-thickness ratio on
normalized frequency of CC orthotropic plate
(E1=E2 = 10).

Figure 8. The e�ect of side-to-thickness ratio on
normalized natural frequency of orthotropic plate
(E1=E2 = 10).

Figure 9. The e�ect of side-to-thickness ratio on
normalized natural frequency of orthotropic plate
(E1=E2 = 50).

Figure 10. The e�ect of orthotropy ratio on normalized
natural frequency of thick orthotropic plate (a=h = 5).
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Figure 11. The e�ect of orthotropy ratio on normalized
natural frequency of thin orthotropic plate (a=h = 100).

orthotropic plate problems. The comparison showed
that besides simplicity of the presented formulation,
the obtained results were in good agreement with
exact values and analytical solutions available in the
literatures. Because of considering shear deforma-
tion e�ects, the present formulation gave proper re-
sults for all natural frequencies of both thin and
thick plates. By decreasing side-to-thickness ratio,
the obtained frequencies converged to CPT results,
which showed that the present formulation was free
from shear locking e�ect. Also, the e�ects of side-
to-thickness ratio, material properties, and types of
boundary conditions on the obtained results were
investigated.
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