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Abstract. The purpose of this paper is to present experimental applications of the
inverse heat transfer methods (conjugate gradient method and sequential method). Three
experiments are designed to estimate the heat ux and the heat transfer coe�cients. In the
third experiment, convective heat transfer coe�cient is estimated directly and indirectly. In
direct estimation, the conjugate gradient method with adjoint equation is used. The results
show that inverse heat transfer methods are able to estimate the desired parameters with
good accuracy in experimental state when mathematical model and boundary condition
are correct and appropriate with experimental model.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Being highly sensitive to random errors (noise) that
inherently exist in measured temperature data, in-
verse heat conduction problems are mathematically ill-
posed. In order to alleviate this problem, regularization
techniques are utilized [1]. Su et al. [2] used inverse
process method combined with grey prediction model
to estimate the inner surface geometry of a cylindrical
furnace wall. Inverse methods are commonly used
for thermo-physical parameter estimation problems.
Beck [3] estimated the thermal conductivity simulta-
neously with the volumetric heat capacity of nickel by
one-dimensional transient temperature measurements.
The research done by Jurkowski and Jarny [4] and
Garnier et al. [5] showed that small sensitivity co-
e�cients or the unbalance of the sensitivity matrix
result in instability of the estimation procedure. This
particular remark goes along with the fact that both
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the Gauss and modi�ed Box-Kanemasu methods [6]
have shown that the resulting instabilities cause the
divergence of the method when used with models
that contain correlated or nearly correlated thermal
properties. Several di�erent approaches have been used
to address this problem. One approach is to modify
the experimental design. Nevertheless, modi�cations
of the experimental design, such as the use of inter-
nal sensors, are not always feasible, especially when
nondestructive testing is required. In addition, the
use of embedded thermocouples can be a source of
important bias. Taler [7] compared two techniques-
Singular Value Decomposition (SVD) and Levenberg-
Marquardt { used in determining the space variable
heat transfer coe�cient on a tube circumference. Dong
et al. proposed a method of fundamental solutions
for inverse heat conduction problems in an anisotropic
medium [8]. Another approach is applying regu-
larization methods, which can be employed in two
ways. Although the regularization methods introduce
a bias into the estimation, they signi�cantly stabilize
the solution. In general, methods of solving the
inverse heat conduction problem can be divided into
two main groups: sequential methods and the whole-
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domain methods [9]. Each of the groups has its
own advantages. Sequential methods can be used
for real-time estimation and require less memory and
computational time. Whole-domain methods, on the
other hand, are more accurate than the sequential
methods since the whole-domain methods use all the
measured temperatures simultaneously in estimation
of any unknown parameter or function. The well-
known whole-domain methods are the conjugate gradi-
ent method and the Tikhonov regularization method.
One type of regularization, known as the \Tikhonov
Regularization," adds a penalty term to the objective
function. Additional comments on this type of regu-
larization can be found in chapter 2 of the book by
Woodbury [10]. The conjugate gradient method has
been widely used in the literature and is known as
one of the successful algorithms of IHCP, especially
for problems of which the boundary conditions cover
the major part of the boundary [11]. Kowsary and
Farahani [12] applied the de-noised measurement data
by using molli�cation method before the standard
IHCP algorithm for estimated heat ux for classical
inverse problems. The �lter method [13] used in this
paper is a representation of one of many IHCP solution
methods, such as Tikhonov Regularization, in a digital
�lter form.

In most of the previous studies on inverse
heat transfer, measured temperatures for the inverse
method are generated by using numerical simulations
and by adding random errors. In this study, three
experiments are designed that investigate ability of
the standard methods of inverse heat transfer. The
designed experiments include estimation of heat ux
and free convective heat transfer coe�cients. Metal
plates are made of stainless steel (AISI- 304) with
250, 70, and 5 mm of length, width, and thickness,
respectively. K-type (TP01) thermocouple is used to
measure temperature. Temperatures are recorded by
using a data acquisition system with time. Errors in
experimental data can be classi�ed into two categories:

�xed and random. The �xed errors have the same mag-
nitude in each measurement while random errors have
di�erent magnitudes in each experiment. Although the
�xed errors may be removed by appropriate calibration,
the random errors cannot be removed. The accuracy of
the K-type thermocouple is 0.1�C. It is assumed that
the uncertainty of the physical properties and geometry
is 0.01.

Measured temperatures before applying the in-
verse heat transfer method are de-noised by using a
moving average �lter. The moving average is the
most common �lter, mainly because it is the easiest
digital �lter to understand and use. In spite of
its simplicity, the moving average �lter is optimal
for reducing random noise of signal. Two inverse
methods, sequential speci�cation function method [8]
and conjugate gradient method [11], are used in this
paper.

1.1. First experiment
The �rst case study is performed on a rectangular
body as shown in Figure 1(a). The geometry and
boundary conditions of the �rst test case are presented
as well as the locations of the sensors. Two plates
have the same boundary conditions; thus, one plate is
modeled. Assuming constant thermal properties, the
heat equation is written as:

@2T
@x2 =

1
�
@T
@t
;

�k @T
@x

����
x=0

= q(t)( is unknown)� k
@T
@x

����
x=E

= h(T � T1);

T jt=0 = T0: (1)

1.2. Second experiment
Geometry and boundary conditions of the second test
case are shown in Figure 1(b), and location and

Figure 1. Schematic of experiments set-up: (a) Fist experiment; (b) the second experiment; and c) the third experiment.
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arrangement of the sensors are shown in Figure 1(b).
Assuming constant thermal properties, the governing
equation is written as:

@2T
@y2 =

1
�
@T
@t
;

�k@T
@y

����
x=E

= q(?); �k@T
@y

����
x=0

= 0;

and T jt=0 = T0: (2)

1.3. Third experiment
At this step, the test is designed to estimate free con-
vection heat transfer coe�cient of air by using inverse
heat transfer method. Figure 1(c) shows geometry,
boundary conditions, and location, and arrangement
of the sensors for the third test case. By measuring the
temperature of the end of the last layer of insulation, it
has been seen that the di�erence between its tempera-
ture and the ambient temperature is little. Thus, the
heat loss from the insulation to environment is almost
zero, but the amount of heat stored in the �rst layer
of insulation is remarkable. Therefore, the estimation
of heat transfer coe�cient is done in two steps. First,
heat ux transferred from the heater to the insulation is
estimated. Then, the heat ux transferred from heater
to plate is determined and the heat transfer coe�cient
is estimated. In inverse methods, mathematical model
is needed; thus, the problem should be modeled �rst.
Assuming constant thermal properties, the governing
equation of insulation layer is written as:

@2T
@y2 =

1
�ins;i

@T
@t
; i = 1; 2; 3;

�kins;1
@T
@y

����
y=01

= heat loss;

�kins;3
@T
@y

����
y=Eins;i

�= 0 and T jt=0 = T0: (3)

Assuming constant thermal properties, the governing
equation of metal plate is written as:

@2T
@y2 =

1
�
@T
@t
;

�k@T
@y

����
y=0

= Qs � heat loss;

�k@T
@y

����
y=E

= q = h(T � T1) + "�(T 4 � T 41);

T jt=0 = T0: (4)

2. The Conjugate Gradients Method (CGM)

In order to estimate the heat ux by using the con-
jugate gradient method, the error function S is also
de�ned as:

S(q) =
NsX
i=1

NmX
m=1

(Ti(tm)� Yi(tm))2; (5)

where Y is measured temperature at sensor location,
and T is the estimated value at sensor location. In heat
equation, the directional derivative of S can be used to
de�ne the gradient function of rS with respect to Q
as follows:
~rS = �2[X]T ([Y ]� [T ]); (6)

where all the mentioned parameters are evaluated at
the sensor location. The sensitivity coe�cients with
respect to each component of ~q are de�ned as:

Xp(xj ; yj ; tm) =
@T (xj ; yj ; tm)

@qm

j = 1; 2; � � � ; J; m = 1; 2; � � � ; n: (7)

Using the above equation, the conjugate direction (d)
can be calculated as:

dk = rS(Qk) + kdk�1: (8)

The conjugate coe�cient  is calculated as:

k=

0@ tfZ
t=0

�rS(Qk)
	2
dt

1A,0@ tfZ
t=0

frS(Qk�1)g2dt
1A ;

(9)

where 0 = 0. If Q0 = Qk + dk is substituted in heat
equation, then equation �T will be calculated at the
sensor location as follows:

�T = T (Q0)� T (Qk): (10)

Therefore, the search step size (�) can be obtained as:

�k =

0@ JX
j=1

MX
m=1

(Tj(tm)� Y mj (tm))�Tj(tm)

1A
,0@ kX

j=1

MX
m=1

�T 2
j (tm)

1A : (11)

In this method, an iterative procedure is used to
estimate the imposed heat ux. This iterative method
can be summarized by the following equation:

Qk+1 = Qk � �kdk; (12)

where \d" is a conjugate direction and � is the search
step size. The computational procedure for the solution
of this inverse problem may be summarized as follows:

Suppose Qn is available at iteration n.
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- Step 1. Solve the direct problem for T ;
- Step 2. Examine the stopping criterion considering
S(Q) < ��, where �� is a small speci�ed number.
Continue if not satis�ed.

The \Discrepancy Principle" in the conjugate
gradient method has been used in this study. In this
method, the iterations are terminated prematurely
when the following criterion is satis�ed [11]:

S(Q) < ��: (13)

In this case, the iterations stop when the residuals
between measured and estimated temperatures are
of the same order of magnitude of the measurement
errors. That is:

jY (t)�T (X; t)j<� (i.e. standard deviation): (14)

- Step 3. Solve the sensitivity equation for X;
- Step 4. Compute the gradient of the functional rS

from Eq. (6);
- Step 5. Compute the conjugate coe�cient k

and direction of descent dk from Eqs. (8) and (9),
respectively;

- Step 6. Set �Q = dk in heat equation for the
problem and solve it for the calculated �T ;

- Step 7. Compute the search step size �k by
Eq. (11);

- Step 8. Compute the new estimation for Qn+1 from
Eq. (12) and return to Step 1.

3. The Sequential Function Speci�cation
Method (SFSM)

This inverse method is sequential and uses Beck's
function speci�cation approach, where heat uxes of r
\future" time steps are temporarily assumed constant
and used to add stability to the estimations. It is
assumed that heat uxes from times 1; 2; � � � ; (m � 1)
are estimated, and now the unknowns in time m are to
be evaluated. The standard form of the IHCP is the
matrix equation (see [9]):

T = T jq=0 +Xq; (15)

where T jq=0 is the calculated temperatures at sensor
locations from the solution of the direct problem using
q1; � � � ; qm�1 and setting Eq. (5) to zero. For Np heat
ux parameters, Ns temperature sensors, and r future
times:

T =

26664
T (m)

T (m+ 1)
...

T (m+ r � 1)

37775 and T (i) =

26664
T1(i)
T2(i)

...
TNs(i)

37775 ;(16)

where T is an Ns:r � 1 matrix:

q =

26664
q(m)

q(m+ 1)
...

q(m+ r � 1)

37775 and q(i) =

26664
q1(i)
q2(i)

...
qNp(i)

37775 (17)

where T is an Np:r � 1 matrix:

Z =

26664
a(1)
a(2) a(1)

...
...

. . .
a(r) a(r � 1) � � � a(1)

37775 ; (18)

where Z is an Ns:r �Np:r matrix; and:

a =

26664
a11(i) a12(i) � � � a1Np(i)
a21(i) a22(i) � � � a2Np(i)

...
...

...
aNs1(i) aNs2(i) � � � aNsNp(i)

37775 ;
ajp =

@T (xj ; ti)
@qp

; (19)

where a(i) is a matrix of Ns�Np.
Note that there are Np unknown heat ux com-

ponents at each time tm. There are Ns measurements
at that time, and Ns should not be less than Np. To
produce stable results, we use r matrix equations in a
least-squares method. The sum of squares of the di�er-
ence between calculated and measured temperatures,
in matrix form, is:

S = (Y � T )t(Y � T ): (20)

With the temporary assumption of:

q1(m) = q1(m+ 1) = � � �
= q1(m+ r � 1) � � � qNp(m) = qNp(m+ 1)

= � � � = qNp(m+ r � 1); (21)

here, the function to be minimized is:

S = (Y � T jq=0 � Zq)T (Y � T jq=0 � Zq); (22)

where:

Z = XA; A =

264A(1)
...

A(r)

375 : (23)

For a constant q assumption, A(i) = INp�Np where I
is unity matrix.
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The matrix derivative of Eq. (22) with respect to q
(in order to minimize S) yields the estimator equation:

q̂ = (ZTZ)�1ZT (Y � T jq = 0); (24)

which gives the q̂(m) vector as is de�ned by Eq. (17).
The following estimation procedure is employed: X
and, consequently, Z are calculated; m is set to
one. Estimation begins with the calculation of T jq=0
using the direct problem and subsequent application
of Eq. (24). Then, m is increased by one, T jq=0 is
recalculated, and the estimator equation is used again.

4. Moving average �lter

A moving average �lter smoothes data by replacing
each data point with the average of the neighboring
data points de�ned within the span. This process is
equivalent to low-pass �ltering with the response of the
smoothing given by the di�erence equation:

Ys(i) =
1

2N + 1
(Y (i+N) + Y (i+N � 1)

+ � � �+ Y (i�N)); (25)

where Y (i) is noisy data and Ys(i) is the smoothed
value for the ith data point, N is the number of
neighboring data points on either side of Ys(i), and
2N + 1 is the span. The moving average smoothing
method used by curve �tting follows these rules:

1. The span must be odd;
2. The data point to be smoothed must be at the

center of the span;
3. The span is adjusted for data points that cannot

accommodate the speci�ed the speci�ed number of
neighbors on either side;

4. The end points are not smoothed because a span
cannot be de�ned.

5. Result and discussion

Sequential method and conjugate gradient method
were used in this study. The goal of the designed ex-
periments is estimation of time history for the unknown
parameter by using measured temperatures in experi-
mental state. Time step for recorded temperatures is
0.1 second. For solving, inverse technique is used in
0.1 second. Finite Element Method is used in numerical
solutions where ANSYS capabilities are utilized in the
mesh generation and numerical solution of the problem
in order to evade the need for coding the direct heat
conduction problem. By simulating the problem in the
graphic user interface of the software and saving it in
the form of a function, the numerical solution of the

problem can be performed merely by calling the saved
function. Inverse algorithms are written in ANSYS
Parametric Design Language (APDL). The element
type is Plane-55. In the following, processes of solving
three tests will be discussed. In the �rst test, before
using inverse algorithm, sensitivity coe�cients are
calculated. Governing equations for pulse sensitivity
coe�cients are obtained by taking the derivative of the
heat (Eq. (1)) with respect to each q, which yields:

@2X
@x2 =

1
�
@X
@t

;

�k@X
@x

����
x=E

= hX;

�k@X
@x

����
x=0

=

(
1xn < x < xn+1

0 otherwise

Xjt=0 = 0: (26)

Sensor is located in active surface (see Figure 1(a)).
Now, unknown heat ux is estimated by using the de-
scribed equations, measured temperatures, and inverse
method. Stop criterion for conjugate gradient method
is 10�6 and regularization parameter for sequential
speci�cation method is 5. Figure 2 shows the results
of using inverse technique. Heat uxes of two plates
are estimated with good accuracy. It is noted that
the purpose of `Exact' word in all of the �gures is
the value of the unknown parameter in experimental
model that must be estimated by inverse method.
Table 1 shows that the conjugate gradient method
estimated heat ux with smaller error than sequential
method. In the second test, the governing equations
for pulse sensitivity coe�cients are obtained by taking

Figure 2. Estimation of heat ux by using Sequential
Function Speci�cation Method (SFSM) and using
Conjugate Gradient Method (CGM) in the �rst
experiment.
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Table 1. The estimated heat ux and error percent in the �rst experiment.

Plate 1 Plate 2 Estimated heater's
heat ux

Exact heater's
heat ux

Error
percent

Beck's method 5416.9 6408.1 10825.4 10000.0 8.3%
Conjugate gradient method 5229.1 5308.1 10537.5 10000.0 5.4%

the derivative of the heat (Eq. (2)) with respect to each
q, which yields:

@2X
@y2 =

1
�
@X
@t

;

@X
@x

����
x=0

= 0;

�k@X
@x

����
x=E

=

(
1 xn < x < xn+1

0 otherwise

Xjt=0 = 0: (27)

Sensor is located in inactive surface; thus, sensitivity
coe�cient value is very small due to the phenomenon of
di�usion and time lagging. Now, unknown heat ux is
estimated by using the described equations, measured
temperatures, and inverse method. In this step, stop
criterion for conjugate gradient method is 10�6 and
regularization parameter for sequential speci�cation
method is 5. The results show that heat ux is
estimated well (Figure 3(a) and (b)). The conjugate
gradient method and sequential method are enabled
that estimate unknown heat ux in this case. Relative
error of estimation for conjugate gradient method is
smaller than sequential method (Table 2). In the
second section of this test, the plate is exposed to
step heat ux. In the previous section, the conjugate
gradient method was more accurate than sequential
method. Thus, conjugate gradient method is used for
estimation step of heat ux. Results of estimation are
shown in Figure 4. Error of estimation is almost 10%.
The result is acceptable and good as this case study
is highly ill-posed. In the last test for estimation of
the heat transfer coe�cient, two approaches can be
used: (a) direct estimation and (b) estimation of q(x; t),
subsequent calculation of Tsurf(x; t), and then using
Newton's law of cooling. While direct estimation might
seem more appealing, the second approach causes
IHCP to remain linear, thus eliminating the need for
iteration, which accelerates the solution considerably.

Figure 3. Estimation of heat ux by using (a) Sequential
Function Speci�cation Method (SFSM), and (b) Conjugate
Gradient Method (CGM) in the second experiment.

Note that in the present set-up, a heating foil generates
a constant known heat ux of Qs on the top surface. A
part of Qs, namely q(x; t), is conducted in the �rst layer
of insulations estimated by the IHCP and calculated
Qc. Then, the heat ux (q0) transferred to uid is
estimated by the IHCP (see Figure 5). This value is
summation of convection heat transfer and radiation
heat transfer. The heat transfer coe�cient is then

Table 2. The estimated heat ux and error percent in the second experiment.

Estimated
heat ux

Exact
heat ux

Error
percent

Conjugate gradient method 1232.5 1274.300 3.26%
Beck's method 1150.9 1274.300 9.46%
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Figure 4. Estimation step of heat ux by using
Conjugate Gradient Method (CGM) in the second
experiment.

calculated using the remaining part, which is carried
out by the jet, using Newton's law of cooling:

h(x) =
q0 � "�(T 4 � T 41)
Tsurf(x; t)� T1 ; (28)

where Tsurf(x; t) and T1 are the top surface and the
environment temperatures, respectively. In contin-
uation, this test includes two steps (see Figure 5).
Two sensors are used in this test; one is located in
0.5 mm from surface that is exposed to air ow and
another is located on active surface of insulation. In the
�rst step, the governing equations for pulse sensitivity
coe�cients are obtained by taking the derivative of the
heat (Eq. (3)) with respect to each q, which yields:

@2X
@x2 +

@2X
@y2 =

1
�ins;i

@X
@t

; i = 1; 2; 3;

@X
@x

����
x=0

=
@X
@x

����
x=L

= 0;

Figure 5. Schematic of solution process for the third
experiment.

�kins;1
@X
@y

����
y=01

=

(
1 xn < x < xn+1

0 otherwise

�kins;3
@X
@y

����
y=Eins;i

�= 0 and Xjt=0 = 0: (29)

In this step, stop criterion for conjugate gradient
method is 10�6. The results show that heat ux is
estimated well (Figure 6(a)). Thus, the heat loss from
the insulation to environment is almost zero, but the
amount of heat stored in the �rst layer of insulation is
remarkable and almost 37% of the heat ux generated
by the heater. In the next step, value of the heat
transferred from heater to metal plate is calculated. In
indirect estimation, the �rst value of heat transfer from
metal plate to uid is estimated and then convective
heat coe�cient is calculated by using Newton's law
of cooling. Pulse sensitivity coe�cient equation for

Figure 6. (a) Estimation of heat loss and heat ux
subjected to metal plate, and (b) estimation of radiation
heat ux transferred from metal plate to uid by using
Conjugate Gradient Method (CGM) in the third
experiment.
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indirect estimation is obtained by taking the derivative
of the heat Eq. (4) with respect to each heat ux, q0,
which yields:

@2X
@y2 =

1
�
@X
@t

;

@X
@y

����
y=0

= 0;

�k@X
@y

����
y=E

=

(
1 xn<x<xn+1

0 otherwise
Xjt=0 = 0:

(30)

Sensitivity coe�cient is linear and dependent on the
unknown parameter. In all of the calculations, sen-
sitivity coe�cient is constant. Emissivity coe�cient
of metal plate surface is measured by IR radiation
thermometer and its value is 0.85. Convection heat ux
and radiation heat ux are estimated by the mentioned
method (Figure 6(b)). The negative sign for heat ux is
the heat transfer from metal plate to the environment.
The radiation heat ux is little. Figure 7(a) shows
time history of convective heat transfer coe�cient.
Average value of time for h is 6.06 w/m2K. The
actual average free convection heat transfer coe�cient
is calculated by the relationships presented for the
horizontal plate in [14] and its value is 5.8 w/m2K. The
relative error for this estimation is 4.47%. In the last
step, convective heat transfer coe�cient is estimated
by direct estimation. In direct estimation, conjugate
gradient method with adjoint equation is used. The
error function S in integral form is also de�ned as:

S =

tfZ
t=0

L1Z
x=0

EZ
y=0

[Y � T ]�(x� xs)�(y � ys)dydxdt;
(31)

where Y is measured temperatures at sensor location,
and T is the estimated value at sensor location. In
Eq. (31), xs and ys refer to the location of sensor and
�(:) is the Dirac delta function. A Lagrange multiplier
�(x; t) comes into picture in the minimization of the
function in Eqs. (5) because the temperature T (x; t;h)
appearing in such function needs to satisfy a constraint
which is the solution of the direct problem. Such
Lagrange multiplier, needed for the computation of
the gradient equation (as will be apparent below), is
obtained through the solution of a problem adjoint to
the sensitivity problem given by Eq. (32).

In order to derive the adjoint problem, we write
the following extended function:

S(T; h) =

tfZ
t=0

L1Z
x=0

EZ
y=0

"
[Y � T ]2�(x� xs)�(y � ys)

��(x; y; t)
�
@2T
@x2 +

@2T
@y2 � 1

�
@T
@t

�#
dydxdt:

(32)

An expression for the variation �S(h) of the func-
tion S(h) can be developed by perturbing T (x; t)
by�T (x; t) in Eq. (5). We note that �S(h) is the
directional derivative of S(h) in the direction of the
perturbation �h = [�h1; � � � ;�hn]. Then, by re-
placing T (x; t) with [T (x:t) + �T (x; t)] and S(h) with
[S(h) + �S(h)] in Eq. (5), subtracting the original
Eq. (5) from the resultant expression, and neglecting
second-order terms, we �nd:

�S(T; q)

=

tfZ
t=0

L1Z
x=0

EZ
y=0

"
2[T�Y ]�(x�xs)�(y�ys)�T (x; t)

Figure 7. (a) Indirect estimation time history of
convective heat transfer coe�cient, and (b) direct
estimation time history of convective heat transfer
coe�cient in the third experiment.
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+�(x; y; t)

 
@2(�T )
@x2 +

@2(�T )
@y2 � 1

�
@(�T )
@t

!#
dydxdt: (33)

The second integral term on the right-hand side of this
equation is simpli�ed by integration of parts and by
utilizing the boundary and initial conditions of the
sensitivity problem. After some manipulation, the
adjoint di�erential equations are obtained as:

�xx+�yy+2
NsX
i=1

(T�Y )�(x�xi)�(y�yi)=��t=�;

�xjx=0 = �xjx=l = 0 and �(tf ) = 0;

�yjy=0 = 0 and

�k�yjy=E = (h+ 4"�T 3(x;E; t))�;

df = dL =
@L
@h

dh) rf
= ��(x;E; t)(T (x;E; t)� T1)=k: (34)

Note that in the adjoint problem, the condition
(�(tf ) = 0) is the value of the function �(x; t) at the
�nal time t = tf . Thus, this equation must be solved
backward. The gradient of the objective function is
obtained from the adjoint equations. Figure 7(b) shows
time-varying convective heat transfer coe�cient. Its
average value of time is 5.76 W/m2K. The relative error
for direct estimation is 1%.

In the review and analysis of three experiments, it
was found that if the mathematical model is consistent
with the experimental model, inverse technique has
good accuracy and high reliability and is needed for low
equipment. With this investigation, it is approved that
the inverse whole-domain method is more accurate.
This study is a starting point for using inverse meth-
ods in experimental investigation phenomena, such as
boiling in channel, impingement jet, etc.

6. Conclusion

This study investigated the reliability and accuracy
of the inverse heat transfer method in experimental
problems. Heat ux was estimated with good accuracy
by using inverse methods (CGM and SFSM) in the
�rst and second experiments. In the third experiment,
heat ux value transferred from the heater to insulation
was estimated by using the inverse method, CGM.
Free convection heat transfer coe�cient is estimated by
the two methods with good accuracy. As seen in the
results, direct estimation is more accurate than indirect
estimation. By the performed three experiments, it

is found that precision of the mathematical model for
the problem, correctness of its boundary conditions,
and appropriateness of the boundary conditions and
the experimental model are essential. In experimental
state, it is di�cult to �nd an appropriate model com-
pared to when the measurement data are obtained from
the numerical simulations. The results show that the
desired parameters can estimate with good accuracy
by using simple and inexpensive equipment and using
standard inverse methods. The inverse method can be
a practical tool in experiment.

Nomenclature

A Vector of unity matrices
D Bias error
E Plate thickness
h Heat transfer coe�cient (W/m2K)
k Thermal conductivity (W/m.K)
L Plate length
M Time index
N Number of discrete measurements
Np Number of unknown parameters
Ns Number of sensors
q Heat ux vector (W/m2)
Qs Heat ux generated by heater (W/m2)
r Number of future time steps
RMS Root Mean Square error
S Sum of squares (K2)
D Conjugate direction
T Vector of calculated temperatures
V Variance error
W Slot width
X Sensitivity coe�cient matrix (K/W)
x; y Space coordinates
Y Measured temperature
Z XA

Greek symbols

� Thermal di�usivity (m2/s)
� Standard deviation of noise
� Search step size
" Surface emissivity coe�cient
 Conjugate coe�cient

Subscripts

0 Initial state
J Position index
Surf Surface
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Ins Insulation
1 Ambient condition
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