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Abstract. In this research, dynamic response of tapered plate made of MsM (magne-
tostrictive material) is studied for the �rst time. First-order Shear Deformation Theory
(FSDT) is used to derive the governing equations of tapered MsP (magnetostrictive plate)
while the thickness varies linearly. To enhance accuracy of the results, shear correction
factor is considered and a feedback control system is utilized to investigate the e�ects
of magnetic �eld on MsP. The �ve equations of motion that are obtained by Hamilton's
principle are solved using Di�erential Quadrature Method (DQM) and compared with those
available in the literature. Results indicate the e�ect of various parameters such as aspect
ratio, thickness ratio, taper ratio, boundary conditions, and the controller e�ect of velocity
feedback gain on the frequency of MsP. These �ndings can be used for active noise and
vibration cancellation systems in many smart structures.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Magnetostriction in MsM, such as iron, Terfenol-D,
Ferrite, Nickel, Cobalt, and their alloys, is a phe-
nomenon only found in ferromagnetic materials. The
magnetostrictive principle is based on certain magneto-
mechanical properties of these materials. MsMs deform
when exposed to magnetic �eld. The magnetostrictive
e�ect is an interaction of magnetic and mechanical
parameters of ferromagnetic materials. These ma-
terials have applications in development of electrical
machinery, fusion reactors, communications equip-
ment, and computers [1-3]. The literature contains
some papers that have analyzed MsM and then re-
viewed previous works about plates with variable thick-
ness.

*. Corresponding author. Tel.: +98 31 55912450;
Fax: +98 31 55912424
E-mail address: aghorban@kashanu.ac.ir (A. Ghorbanpour
Arani)

Moon and Pao [4] studied the instability of a
beam-plate in a transverse magnetic �eld. They pre-
sented a mathematical model according to distributed
magnetic torques along the plate. Their results in-
dicated that buckling may occur when the uniform
magnetic �eld intensity reaches a critical value. The
dynamic stability of ferromagnetic rectangular plate
under transverse magnetic �eld and in-plane periodic
compression for simply supported boundary condition
was presented by Wang and Lee [5]. They consid-
ered the e�ects of magnetic damping and excitation
frequency and solved the equation of motion of fer-
romagnetic plate by means of a linearized magneto-
elastic theory and perturbation technique. Moita
et al. [6] investigated a higher-order Finite Element
Model (FEM) for static and free vibration analyses of
magneto-electro-elastic thin and thick plates. Solutions
were obtained for di�erent laminations of the magneto-
electro-elastic and purely elastic plates. Free vibration
of Functionally Graded (FG) thick rectangular plates
was presented by Hashemi et al. [7] for two opposite
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edges simply supported and all possible combinations
of free, simply supported, and clamped boundary
conditions. Their plate was embedded in Winkler
or Pasternak elastic foundations. They derived and
exactly solved the equations of motion using FSDT
of plate by considering the shear correction factors.
Hong [8] proposed thermal sinusoidal vibration and
transient response of magnetostrictive FG material
plates without shear correction factor by using the
generalized DQM. Also, Hong [9] presented, in another
work, thermal vibration and transient response of
Terfenol-D FG material plates by using FSDT theory.
He used the generalized DQM for simply supported
boundary conditions for the center displacement. He
also analyzed shear correction coe�cient values, thick-
ness of mounted magnetostrictive layer, control gain
values, temperature of environment, and di�erent
boundary conditions.

Plates with variable thicknesses are used in
aerospace, ocean structures, turbine disk, and me-
chanical, civil, and electronics engineering. These
plates have applications in altering resonant frequency
and reducing the size and weight of the structure.
Therefore, it is very important to understand free
vibrations of plates with variable thicknesses [10,11].

Kukreti and Fursa [12] studied the fundamen-
tal frequency of simply supported, thin rectangular
plates with a linear taper in one direction. They
used Ritz and DQM to obtain the displacements and
solved the free vibration governing di�erential equation
of motion. They also compared their results with
those of the �nite element method. Free vibration
of isotropic and orthotropic rectangular plates was
presented by Civalek [10] with linearly varying thick-
nesses along one direction and for di�erent types
of boundary conditions. Thermal gradient e�ect on
vibration of non-homogeneous orthotropic plate with
linearly varying thickness was proposed by Gupta and
Sharma [13] for clamped-simply Supported-Clamped-
Simply Supported (CSCS). They considered the e�ect
of taper constant and aspect ratio on �rst and second
modes of vibration. Kang and Kim [14] investigated
free vibration of a simply supported rectangular plate
with unidirectional arbitrary-thickness variation. They
reported the results for linearly varying and quadratic
thickness function and mode shapes compared with
other analytical methods including FEM (ANSYS).
Singh and Saxena [15] presented transverse vibration
of a rectangular plate with bidirectional thickness vari-
ation for di�erent combinations of boundary conditions
at the four edges. They obtained the �rst three fre-
quencies with positive and negative taper parameters.
The mode shapes were plotted for several cases in
this work. E�ect of linear thickness variations in
both directions on vibration of viscoelastic rectangular
plate was studied by Gupta and Khanna [16]. They

derived the equations of motion by using Rayleigh-
Ritz technique with a two-term deection function
for clamped boundary conditions on all the four
edges.

In addition to the use of FSDT in this research,
the advanced Higher order Shear Deformation Theories
(HSDTs) are also introduced in this section to consider
the thickness stretching e�ect and the transverse shear
deformation e�ects without shear correction factors.
Since the displacement �eld of advanced HSDTs is
the function of thickness of plate, sophisticated math-
ematical calculations are required to compute total
energy of the system. In this regard, some of the
advanced HSDTs have been provided in this section
for researchers who would like to continue this work at
a higher level.

Tounsi et al. [17] presented a re�ned trigonometric
shear deformation theory for thermo-elastic bending
of FG sandwich plates. The number of unknown
functions involved was only four. This theory did
not require shear correction factor. They expressed
the displacement components by trigonometric series
through the thickness of plate in order to develop a two-
dimensional theory. Shear stress free surface conditions
are satis�ed in this theory because the transverse shear
stresses vary parabolically across the thickness of plate.
This paper investigated the inuences of transverse
shear deformation, thermal load, plate aspect ratio,
and volume fraction distribution.

An e�cient and simple higher order shear and
normal deformation theory for FG plates was analyzed
by Belabed et al. [18]. In this theory, the transverse
displacement is divided into the bending, shear, and
thickness stretching parts. Thus, the number of
unknowns for the present theory is reduced to �ve, as
opposed to six or even greater numbers in the case of
other shear and normal deformation theories. Consid-
ering hyperbolic variation of all displacements across
the thickness, both shear deformation and thickness
stretching e�ects are applied in this theory. Also,
the present theory accounts the stress-free boundary
conditions on the upper and lower surfaces of the plate
without requiring any shear correction factor. Hebali et
al. [19] developed a new quasi-three-dimensional (3D)
hyperbolic shear deformation theory for the bending
and free vibration analysis of FG plates. Like the
previous paper, the transverse displacement in this
theory is divided into three parts including bending,
shear, and thickness stretching parts. Their theory
satis�es the zero traction boundary conditions on the
surfaces of the plate without using shear correction
factor and accounts for both transverse shear and nor-
mal deformations. They concluded that the inclusion
of thickness stretching e�ect made a plate sti�er and
hence led to a reduction in deection and an increase
in frequency.



A. Ghorbanpour Arani et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 1741{1752 1743

Bending of FG material plate resting on elastic
foundation was studied by Zidi et al. [20]. The plate
was subjected to hygro-thermo-mechanical loading and
was analyzed using a four-variable re�ned plate theory.
This theory satis�es both quadratic variation of the
transverse shear strains across the thickness and the
zero traction boundary conditions on the top and
bottom surfaces of the plate without shear correction
factors. Also, the number of unknowns in the present
theory is only four. More details of these theories have
been presented in [21-24].

Despite the mentioned papers, the tapered MsPs
are analyzed for the �rst time in this work, where
thickness of MsP is varied linearly in x direction.
MsM, due to its reciprocal nature, is one of the
most a�ordable options in control systems. Magneto-
mechanical coupling in MsM, like electro-mechanical
coupling in piezoelectric materials, can be used in
stability of systems. Using a feedback control system,
the magnetic �eld is varied in order to study the
vibrational behavior of MsP. In this work, the variation
in magnetization of plate is investigated by considering
di�erent aspect ratios, thickness ratios, taper ratios,
and boundary conditions.

Variable thickness plates are commonly used in
aeronautical, mechanical, and ocean structures in order
to reduce the weight of structures and to improve their
dynamical behaviors. Plates of various geometries are
also key components in many structural and machin-
ery applications, particularly in aerospace, civil, and
automotive industries. Since the variable thickness
plates change the resonant frequency, free vibration
analysis of such plates is essential to have an e�cient
and reliable design [25,26].

The result of this study can be useful to reduce
the damage caused by the destructive vibrations and
control the systems such as electro-hydraulic actuator,
wireless linear motors, etc.

2. Tapered plate

A rectangular plate with the plane dimensions of (a�b)
is considered, as shown in Figure 1. The thickness of
plate varies linearly in the x direction based on h(x) =
h0(1 + � xa ) according to Figure 1. Where � is named
taper ratio and � = 0 means the thickness of plate is
constant. Also, in this work, the taper ratio changes
between �1 < � < 1.

3. Magneto-mechanical coupling in MsM

MsMs rely on the magnetostrictive e�ect where the
deformation is induced along the applied external
magnetic �eld [1,2].

The stress-strain relation for isotropic
MsM [27,28], and the magneto-mechanical coupling in

Figure 1. Geometry and coordinate of tapered plate.

these materials can be observed in Eq. (1):26666664
�xx
�yy
�zz
�xy
�xz
�yz
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"zz
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�
240 0 e31

0 0 e32
0 0 e34

3524 0
0
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35 ;
(1)

where �ij and "ij are stress and strain, respectively. As
seen from the constitutive model, the induced strain
is always positive and independent of the direction of
the applied magnetic �eld. Also Qij are the terms of
engineering constants:

�Q11 = �Q22 =
E

(1� �2)
;

�Q12 =
E�

(1� �2)
;

�Q66 = �Q55 = kf
E

2(1 + �)
;

�Q44 =
E

2(1 + �)
; (2)

in which E, �, and kf are Young modulus, Poisson's
ratio, and shear correction factor, respectively. It is
necessary to consider the shear correction factor to



1744 A. Ghorbanpour Arani et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 1741{1752

compute transverse shear forces. The shear correction
factor is typically taken to be 5/6 for homogeneous
plates. Also, it may be a function of material properties
and the geometric dimension of plate [7]. In this regard,
Timoshenko [29] presented the following relation:

kf =
5 + 5�
6 + 5�

: (3)

MsMs possess magnetic anisotropy in their atomic
structure and, therefore, they undergo dimensional
changes when placed in magnetic �elds as a re-
sult of reorientation (of the atomic magnetic mo-
ments) [30]. Similar to electrostrictive materials, the
one-dimensional constitutive model for converse e�ect
in magnetostrictive materials can be represented as
�i = Cik"k+ekiHk, where Cik, k, "k, and H are stress,
sti�ness coe�cient, strain, magnetostrictive constant,
and magnetic �eld, respectively [31]. Magnetic induc-
tion is introduced as Bi = eik"k + �kiHk, in which �ki
is magnetic permeability coe�cient. Also, Hk is equal
to @ k

@xk , where  k is the magnetic potential [32]. Hence,
the most common con�gurations for these actuators are
rod or cylindrical element wrapped in an exciting coil.

In this research, another model is used to follow
the magnetization e�ect on MsP where a feedback
control system investigates the intensity of magnetic
�eld. Chen et al. [31] and Pan et al. [32] have focused
on magnetic potential.

eij are magnetostrictive coupling modules, which
are determined as follow [27]:

e31 = ~e31 cos2 � + ~e32 sin2 �;

e32 = ~e31 sin2 � + ~e32 cos2 �;

e34 = (~e31 � e32) sin � sin �; (4)

where � represents the direction along which a given
magnetic anisotropy may have been induced. In this
study, Terfenol-D is used as a magnetostrictive alloy
that is sensitive to changes in magnetic �eld. A
unidirectional magnetic �eld is applied on Terfenol-D
in order to follow the magnetization e�ect on MsP in
a feedback control system. Since only e31 and e32 and
e34 have been presented for Terfenol-D, the magnetic
�eld is considered in z direction.

Hz is the magnetic �eld intensity and can be
expressed as follows [27,33,34]:

Hz = KcI(x; y; t) = KcC(t)
@ ~w(x; y; z; t)

@t
; (5)

where Kc = nc=
p
b2c + 4r2

c , in which bc is the coil
width, rc is coil radius, and nc is number of turns
in the coil. I(t), ~W (x; y; z; t), and C(t) are the coil
current, transvers deection of MsP, and the control
gain, respectively, which is assumed to be constant in
this study.

4. Energy method to derive motion equations

The energy method is used to obtain the governing
equation in this work. In this regard, the strain
energy and kinetic energy of an elastic body, such as
rectangular plate, is expressed as [35]:

U =
1
2

h(x)=2Z
�h(x)=2

bZ
0

aZ
0

(�xx"xx + �yy"yy + �xyxy

+ �xzxz + �yzyz)dxdydz; (6)

where � and " are normal stress and strain and � and
 are shear stress and strain of plate. Also, the kinetic
energy of the MsP is [35]:

K=
�mA

2

bZ
0

aZ
0

24 @ ~U
@t

!2

+

 
@ ~V
@t

!2

+

 
@ ~W
@t

!2
35dxdy;

(7)

where �m and A are the mass density and cross section
area of MsP.

4.1. First-order Shear Deformation Theory
(FSDT)

The Mindlin-Reissner theory of plates is an extension
of Kirchho�-Love plate theory and it is often called the
FSDT with the following assumptions [36]:

� Shear deformations through-the-thickness of a plate
are taken into account;

� Normal to the mid-surface remains straight but not
necessarily perpendicular to the mid-surface;

� FSDT is used to calculate the deformations and
stresses in a plate whose thickness is one-tenth the
planar dimensions while the Kirchho�-Love theory
is applicable to thinner plates;

� FSDT includes in-plane shear strains while
Kirchho�-Love plate theory incorporates �rst-order
shear e�ects.

HSDT is based on the same assumptions as those
of the Classical Plate Theory (CPT) and FSDT, except
that the assumption of the straightness and normality
of the transverse normal is relaxed [37]. It is worth
to mention that FSDT requires shear correction factor
and neglects the stretching e�ect while HSDTs account
for the transverse shear deformation e�ects without
requiring shear correction factors [38]. As mentioned in
the introduction section, since the displacement �eld of
advanced HSDTs is the function of thickness of plate,
sophisticated mathematical calculations are required to
compute total energy of the system. Therefore, FSDT
is used in this study.

According to the FSDT of plate, the displacement
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components of the middle surface along the x, y, and
z axes, shown by ~U , ~V and ~W , can be expressed as:

~U(x; y; z; t) = u0(x; y; t) + z�1(x; y; t);

~V (x; y; z; t) = v0(x; y; t) + z�2(x; y; t);

~W (x; y; z; t) = w0(x; y; t); (8)

where u0(x; y; t), v0(x; y; t), and w0(x; y; t) are dis-
placement along (x; y; z) direction and �1(x; y; t), and
�2(x; y; t) are rotations about x and y axes.

According to Hooke's law, the linear strain rela-
tions are presented by:

"xx =
@
@x
u0(x; y; t) + z

�
@
@x
�1(x; y; t)

�
;

"yy =
@
@y
v0(x; y; t) + z

�
@
@y
�2(x; y; t)

�
;

"zz = 0;

"xy =
1
2
@
@x
v0(x; y; t) +

1
2
z
�
@
@x
�2(x; y; t)

�
+

1
2
@
@y
u0(x; y; t) +

1
2
z
�
@
@y
�1(x; y; t)

�
;

"xz =
1
2
@
@x
w0(x; y; t) +

1
2
�1(x; y; t);

"yz =
1
2
@
@y
w0(x; y; t) +

1
2
�2(x; y; t): (9)

4.2. Hamilton's principle
According to Hamilton's principle, the �rst variation
form of motion equations must be zero [35]:

�
t2Z
t1

[K � U ]dt = 0: (10)

Substituting Eqs. (6) and (7) in Eq. (10) and consider-
ing following dimensionless parameters:

(�; �) =
�x
a
;
y
b

�
; (U; V;W ) =

�
u0

a
;
v0

b
;
w0

h0

�
;

�1 =�1; �2 =�2; (�; �; )=
�
h0

a
;
h0

b
;
a
b

�
;

Gij=
eijC(t)Kcp

E�m
; Qij =

�Qij
E
; �=

t
a

s
E
�m

: (11)

The equations of motion are obtained by setting the
coe�cients �U , �V , �W , ��1, and ��2 equal to zero as
follows:

�U : Q11�((�)� + 1)
d2U
d�2 +

1
2
Q66�((�)� + 1)

d2U
d�2

+Q11��
dU
d�

+
1
2
Q21��

dV
d�

+
1
2
Q21�((�)� + 1)

d2V
d�d�

+
1
2
Q12��

dV
d�

+
1
2
Q12�((�)� + 1)

d2V
d�d�

+
1
2
Q66�((�)� + 1)

d2V
d�d�

� �((�)� + 1)
d2U
d�2

� 1
2
G31

�
�2�

�
dW
d�

�
+�2((�)�+1)

d2W
d�d�

�
=0;

(12)

�V : +
1
2
Q21�((�)� + 1)

d2U
d�d�

+
1
2
Q12�((�)� + 1)

d2U
d�d�

+
1
2
Q66��

dU
d�

+
1
2
Q66�((�)�+1)

d2U
d�d�

+Q22�((�)�+1)
d2V
d�2

+
1

2
Q66��

dV
d�

+
1
2
Q66�((�)� + 1)


d2V
d�2

� �((�)� + 1)


d2V
d�2 � 1

2
G32��

d2W
d�d�

= 0; (13)

�W : +
1
2
Q44�2((�)� + 1)

d2W
d�2 +

1
2
Q55�2�

dW
d�

+
1
2
Q55�2((�)� + 1)

d2W
d�2 +

1
2
Q55���1

+
1
2
Q55�((�)� + 1)

d�1

d�

+
1
2
Q44�((�)� + 1)

d�2

d�
� �2((�)� + 1)

d2W
d�2

� 1
2
G31�((�)� + 1)

d2U
d�d�

� 1
2
G32�((�)� + 1)

d2V
d�d�

= 0; (14)

��1 : � 1
2
Q55�((�)� + 1)

dW
d�
� 1

2
Q55((�)� + 1)�1

+
1
24
Q66�2((�)� + 1)3 d2�1

d�2
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+
1
4
Q11�2((�)� + 1)2�

d�1

d�

+
1
12
Q11�2((�)� + 1)3 d2�1

d�2

+
1
8
Q21��((�)� + 1)2�

d�2

d�

+
1
24
Q21��((�)� + 1)3 d2�2

d�d�

+
1
8
Q12��((�)� + 1)2�

d�2

d�

+
1
24
Q12��((�)� + 1)3 d2�2

d�d�

+
1
24
Q66��((�)� + 1)3 d2�2

d�d�

� 1
12
�2((�)� + 1)3 d2�1

d�2 = 0; (15)

��2 : � 1
2
Q44�((�)� + 1)

dW
d�

+
1
24
Q21��((�)� + 1)3 d2�1

d�d�

+
1
8
Q66��((�)� + 1)2�

d�1

d�

+
1
24
Q12��((�)� + 1)3 d2�1

d�d�

+
1
24
Q66��((�)� + 1)3 d2�1

d�d�

+
1
8
Q66�2((�)� + 1)2�

d�2

d�

+
1
24
Q66�2((�)� + 1)3 d2�2

d�2

+
1
12
Q22�2((�)� + 1)3 d2�2

d�2

� 1
2
Q44((�)�+1)�2 � 1

12
�2((�)�+1)3 d2�2

d�2

= 0: (16)

5. Solution procedure using numerical method

The DQM is a numerical technique for solving di�eren-
tial equations. As compared to the conventional low-

order �nite di�erence and FEMs, the DQM can obtain
very accurate numerical results using a considerably
smaller number of grid points and hence requiring
relatively little computational e�ort.

5.1. 1D (Dimension) DQM
Before utilizing DQM, the Navier solution is used
considering the following form:

U(�; �; �) = U(�) sin(m��)e!� ;

V (�; �; �) = V (�) cos(m��)e!� ;

W (�; �; �) = W (�) sin(m��)e!� ;

�1(�; �; �) = �1(�) sin(m��)e!� ;

�2(�; �; �) = �2(�) cos(m��)e!� ; (17)

in which ! and m are the dimensionless frequency and
integer number, which are introduced as wave numbers.
Navier solution converts the 2D equations of motion to
a one-dimensional equation in which two edges of the
plate are simply supported. Then, DQM is used where
F is a function representing u, v, w, �1, and �2 with
respect to variable � in the domain of (0 < � < L) [39]:

@kF
@�k

=
NX
k=1

C(K)
pq F (�i); (18)

where C(k)
pq is the weighting coe�cients associated with

the kth-order partial derivative of F , and N is the num-
ber of grid points in longitudinal direction. Chebyshev
polynomials [39] are selected for positions of the grid
points. Substituting Eq. (17) into equations of motion,
the standard form of vibrational equation (M �X+C _X+
KX = 0) is derived. Considering the simply supported
boundary condition that was explained in Mantari
and Soares [40], the eigenvalues of state-space ma-

trix

0@[state� space] =

24 [0] [I]

�[MK] �[MC]

351A as di-

mensionless frequency are obtained. It is worth to
mention that M is the mass matrix, C is the damping
matrix, andK is the sti�ness; [I] and [0] are the unitary
and zero matrices.

5.2. The �-technique
The �-technique was proposed to eliminate the dif-
�culties in implementing two conditions at a single
boundary point. In �-technique, Dirichlet condition
(W = 0) is applied at the boundary point and the
derivative condition at its adjacent point which is at
a distance � form the boundary point. As shown in
Figure 2(a), the �-points are actually the grid points
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Table 1. Elastic properties of Terfenol-D [27].

Properties E � �m e31 = e32

Terfenol-D 30� 109 Pa 0:25 9:25� 103 kg/m3 442.55 N/(m.A)

Figure 2. Positions of the grid points in (a) �-technique
[39], and (b) 2D method.

X2 = � and XN�1 = 1 � �. As an example for simply
supported condition, @2W

@X2 = 0 is written as:
NX
k=1

C(2)
2;k :Wk = 0; and

NX
k=1

C(2)
N�1;k:Wk = 0:

(19)

5.3. 2D DQM
In this case, there is no need to apply Eq. (17) and the
problem is solved in 2D space as shown in Figure 2(b).
Firstly, the x and y derivations are introduced using
weighting coe�cients as follows:

@rF
@�r

����
(x;y)=(xi;yj)

=
NX
n=1

C(r)
in Fnj ;

@rF
@�r

����
(x;y)=(xi;yj)

=
MX
m=1

C(r)
jmFim;

@r+sF
@�r@�s

����
(x;y)=(xi;yj)

=
NX
n=1

MX
m=1

C(r)
in C

(s)
jmFnm;

i = 1; 2; � � � ; N; j = 1; 2; � � � ;M;

r = 1; 2; � � � ; N � 1; s = 1; 2; � � � ;M � 1: (20)

Then, the standard form of motion equation is solved
like that in 1D method using eigenvalues problem. It
is worth to mention that Chebyshev polynomials [39]
are also selected for positions of the grid points.

6. Numerical results and discussion

In this work, motion equations of tapered MsP using
FSDT were obtained. To account for the inaccuracy in
the shear strain, a shear correction factor was applied
so that the correct amount of internal energy was
predicted by the theory. Also, a feedback system
was used to control the vibration of MsP in presence
of magnetic �eld. Then, the vibration response of
MsP was investigated by stimulus factors such as
velocity feedback gain, boundary condition, aspect
ratio, thickness ration, and taper ratio.

The plate is made of Terfenol-D and its properties
are listed in Table 1.

In order to approve the accuracy of the solution
method, results of this work were compared with the
computed results of those available in the literature for
the isotropic case (Eq. (16) from Refs. [12,41]). Table 2
reports the results of seven di�erent solution methods.
As can be seen, Table 2 shows the good accuracy of the
obtained results.

Figure 3 shows the variation of dimensionless
frequency versus thickness ratio of MsP in di�erent
taper ratios. � changes from 0.1 to 0.3 for thick plates
and as can be seen in the �gure, increase in aspect ratio
leads to increase in frequency due to the e�ect of mass
and inertia. Also, by increasing the slope of thickness
function that is known as taper ratio, the frequency of
MsP changes and increases, like what has been reported
in [10].

Figure 4 illustrates variation of dimensionless
frequency versus thickness ratio of MsP in presence of
magnetic �eld. It is worth to mention that when the
MsMs are subjected to magnetic �eld, they deform due

Figure 3. Variation of dimensionless frequency versus
thickness ratio in di�erent taper ratios
( = 1;KcC(t) = 108).
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Table 2. The comparison of results for di�erent solution methods.

 � �-technique 2D 1D Ref. [12] Ref. [12] Ref. [12] Ref. [41]

1

0.1 20.7108 20.7105 20.7107 20.7296 20.7122 20.6237 20.7206
0.2 21.6544 21.6541 21.6543 21.7025 21.6506 21.5905 21.6919
0.3 22.5732 22.5729 22.5731 22.6669 22.5533 22.5486 22.6529
0.4 23.4699 23.4696 23.4698 23.6239 23.4203 23.4987 23.6049
0.5 24.3468 24.3465 24.3467 24.5740 24.2519 24.4418 24.5563
0.6 25.2058 25.2055 25.2057 25.5175 25.0490 25.3784 25.4961
0.7 26.0489 26.0485 26.0487 26.4547 25.81263 26.3092 26.4288
0.8 26.8776 26.8773 26.8775 27.3845 26.5440 27.2346 27.3535

Figure 4. Variation of dimensionless frequency versus
thickness ratio in di�erent velocity feedback gains
( = 1; � = 0:5).

Figure 5. Variation of dimensionless frequency versus
aspect ratio in di�erent taper ratios
(� = 0:2;KcC(t) = 108).

to reciprocal nature. It is possible to control MsP fre-
quency by change in velocity feedback gain parameter
KcC(t). As can be seen in Figure 4, the frequency
of MsP signi�cantly decreases with increasing velocity
feedback gain.

The changes of dimensionless frequency of tapered
MsP versus aspect ratio in di�erent taper ratios and
velocity feedback gains are demonstrated in Figures 5
and 6, respectively. It is clear in �gures that increasing

Figure 6. Variation of dimensionless frequency versus
aspect ratio in di�erent velocity feedback gains
(� = 0:2; � = 0:5).

Figure 7. Variation of dimensionless frequency versus
positive velocity feedback gains in di�erent taper ratios
( = 1; � = 0:2).

the aspect ratio from  = 0:5 to 3 leads to the
development of frequency as it is concluded in [10].
Also, Figure 5 shows that increasing the thickness of
MsP in x direction increases the natural frequency
of MsP while increase in velocity feedback gain has
contrary e�ect.

Figures 7 and 8 clearly show the e�ect of magnetic
�eld on tapered MsP by change in velocity feedback
gain. These �gures reveal how much e�ective the
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Figure 8. Variation of dimensionless frequency versus
negative velocity feedback gain in di�erent taper ratios
( = 1; � = 0:2).

Figure 9. The comparison of results in positive and
negative taper ratios ( = 1; � = 0:2).

magnetic �eld intensity is on natural frequency of
tapered MsP. Increase in velocity feedback gain from
KcC(t) = 107 to 108 signi�cantly decreases the natural
frequency of tapered MsP, as shown in Figure 7. Also,
the reverse magnetic �eld can increase the natural
frequency of tapered MsP with the same intensity.
Results show that the vibration of tapered MsP can
be controlled by velocity feedback gain parameter.

Figure 9 has been plotted to display the e�ect of
positive and negative values of taper ratio. It shows the
e�ect of magnetic �eld on tapered MsP by change in
velocity feedback gain. As can be seen in Figure 9, the
negative taper ratios create lower frequency considering
the dimension of MsP. The similar results have been
reported in [15].

Figure 10(b) has been drawn to show the e�ect
of di�erent boundary conditions that are displayed
in Figure 10(a) on natural frequency of taper MsP.
Since the governing equations have been solved by 1D
DQM, two opposite edges are simply supported that
are numbered by 1 and 2 in Figure 10(a). Changing the
boundary condition of edges by numbers 3 and 4 leads
to variation in natural frequency, especially at lower

Figure 10. (a) Display of di�erent boundary conditions
on four edges of tapered MsP. (b) E�ect of di�erent
boundary conditions on dimensionless frequency of
tapered MsP (� = 0:2; � = 0:5;KcC(t) = 108).

thickness ratios. Also, with increasing , the natural
frequency for di�erent boundary conditions converge
to the same value. The comparison among curves
designates the stable cases, respectively, in  = 1,
� = 0:2, � = 0:5, and KcC(t) = 108 as follows:

SSCC > SSSC > SSCS > SSSS:

Figure 11(a) and (b) show the variation of dimension-
less frequency versus di�erent wave numbers. All of the
�gures in the present work were plotted for m = 1. As
can be seen in Figure 10(b), the di�erences are clearer
in high wave numbers. According to Figure 11(a),
which is 3D the MsP is larger (with high  and �)
and the variation is more obvious.

All of the �gures in the present work (Figures 3
to 11) were plotted by considering the shear correction
factor. Since � = 0:25 for Terfenol-D, the shear
correction factor is calculated kf = 0:86 by Timoshenko
relation, which is much close to kf = 5=6 = 0:83, and
the di�erence between the results is very negligible.
Figure 12 approves that in MsP with large dimensions,
the shear correction factor must be considered; other-
wise, the results are not accurate.
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Figure 11. (a)Variation of dimensionless frequency
versus thickness ratio and aspect ratio at two di�erent
wave numbers (� = 0:5;KcC(t) = 108). (b) Variation of
dimensionless frequency of tapered MsP versus di�erent
wave numbers (� = 0:2;  = 1;KcC(t) = 108).

Figure 12. E�ect of shear correction factor on
dimensionless frequency of tapered MsP
(� = 0:5;KcC(t) = 108).

7. Conclusion

At the �rst time, free vibration of tapered plate made
of MsM was evaluated using feedback control system.
Thickness of MsP varied linearly in x direction by
h(x) = h0(1 + �x=a). Considering shear correction

factor in FSDT, equations of motion were derived and
solved by numerical method for di�erent boundary con-
ditions. Results showed the e�ect of main parameters
on frequency response of MsP that is presented below:

� Increasing the thickness ratio in the interval 0:1 �
� � 0:3 for thick plate increases the dimensionless
frequency of MsP;

� Increasing the aspect ratio (0:5 �  � 3) increases
the dimensionless frequency of MsP;

� Increasing the taper ratio (0 � � � 1) increases the
dimensionless frequency of MsP;

� Disregarding shear correction factor causes inaccu-
racy in the results at the large dimensions;

� Increasing the velocity feedback gain as a control pa-
rameter can reduce the frequency of MsP and makes
the other parameters (�; ; �) become ine�ective.

According to the above results, MsP can be used
to designate noise, shock, resonance, and control of
vibrational response of systems.
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