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Abstract. This paper studies Joint Economic Lot-Sizing problem (JELS) for a single-
vendor single-buyer system while demand is dependent on selling price. This problem
is modeled for geometric shipment policy and a solution procedure is developed to �nd
a well approximation of the global optimal solution of the problem. Since the equal-
size shipment policy or geometric shipment policy may yield more joint pro�t compared
to each other, the most important factor that a�ects the break-even point of geometric
and equal-size policies is determined. The JELS problem for dependent demand is also
modeled for geometric-then-equal size and optimal shipment policies. Solution procedures
to �nd a well approximation of the global optimum of each problem are also developed
for these models. The models and solution procedures for geometric, geometric-then-equal
size, and shipment policies are novel in the literature. Numerical results of the models
show considerable improvement in the joint pro�t of the chain compared to lot-for-lot and
equal-size shipment policies for chains with price-sensitive demand and it could be very
interesting for supply chain coordinators and practitioners.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In today's competitive global market, companies are
pushed towards not only integrating di�erent decision
processes within their operational borders, but also
towards closely collaborating with their customers and
suppliers [1]. Therefore, all parties need to seek Eco-
nomic Order Quantity (EOQ) based on their integrated
total cost function, rather than each party's individual
cost functions. Such a problem is generally called Joint
Economic Lot-sizing Problem [2]. A thorough review
of the research dealing with coordinated vendor-buyer
Supply Chain (SC) is gathered by Glock [3]. The Joint
Economic Lot-Sizing problem (JELS) was developed in
di�erent aspects and focusing on shipment policies is
one of the earliest attempts in this context.
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The �rst shipment policy studied in the JELS
literature was lot-for-lot shipment policy (LP). In this
policy, a production batch is shipped to the buyer as
a single shipment. The �rst study modeled total joint
cost of a single-vendor single-buyer SC with in�nite
production rate and was published in 1977 [4]. Then,
this policy was developed by assuming �nite production
rate [5]. Kim et al. [6] also studied the LP for a system
consisting of a manufacturer and a retailer with price-
dependent demand while full coordination, partial
coordination, and non-coordination mechanisms were
applied to the system. Sana [7] adopted LP for a
chain consisting of a manufacturer and a retailer while
demand was dependent on the sale initiatives provided
by the retailer.

The second shipment policy considered in the
JELS literature was equal-size shipment policy (EP).
In this policy, a production batch is divided to equal
shipments. Two variants of EP are developed in the
literature: delayed EP introduced by Goyal [8] and
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non-delayed EP applied by Lu [9]. In the delayed
EP, it is assumed that shipping the products from
the vendor to the buyer is delayed until producing the
entire production batch is �nished. This assumption is
relaxed in non-delayed EP and the �rst shipment will
be sent to the buyer when it is produced at the vendor.
EP was investigated by Buscher and Lindner [10] for
a production system with rework considerations. The
focus of the paper is on the determination of production
and rework lot sizes, but the optimal number of
shipments is also determined by the proposed solution
procedure. Total cost of an integrated two-stage
system was optimized by Shu and Zhou [11] when
vendor invested on setup cost reduction, process quality
improvement, and EP as the shipment policy. Non-
delayed EP was also studied for a three-layer vertically
integrated SC involving a supplier, a manufacturer, and
multi retailers with constant demand and increasing in-
ventory holding costs in the downstream direction [12].
Abdelsalam and Elassal [13] extended the proposed
model of [12] by applying stochastic demand while each
retailer had its own holding and ordering costs that
were not necessarily equal to those of other retailers.
More examples of considering EP in the JELS problem
optimization can be found in [14-16].

The third shipment policy was introduced in
1995 [17] that is known as geometric shipment policy
(GP). In this policy, a growth factor that is equal to
the ratio of production rate to demand rate, p

D , is
applied to the size of shipments. Therefore, if size
of the �rst shipment is named q1, the nth shipment
size will be equal to q1

� p
D

�n�1. Later, Hill [18]
assumed the growth factor as a decision variable and
developed a solution procedure to �nd a locally optimal
solution of the resultant problem. GP with a constant
growth factor has recently been considered, in which
the production of defective items has been taken into
account and the manufacturer should pay a warranty
cost for each identi�ed defective product [19].

The fourth shipment policy in the JELS literature
is known as Geometric-then-Equal size Policy (GEP).
First, Goyal and Nebebe [20] considered the ratio of the
�rst shipment to the remaining equal shipments equal
to p

D . So they considered:

q1; q1
p
D
; q1

p
D
; q1

p
D
; :::

as the size of shipments.
Later, Ben-Daya et al. [1] generalized the pro-

posed policy of [20], considering that the �rst m
shipments followed the geometric policy and the size
of equal shipments was similar to that of the last
geometric shipment.

Hill [21] developed a new shipment policy as the
result of relaxing the assumption of predetermined
shipment policy using Lagrangian multiplier. He

proved that the developed policy, named Optimal
Policy (OP), is similar to GEP, but the size of n �m
equal shipments is not necessarily equal to the size
of the last geometric shipment. He also developed a
solution procedure to solve the joint cost model of the
chain.

Integrating pricing decision with ordering, in-
ventory, and shipment decisions is another stream of
research in JELS literature. Whitin [22] was the �rst
one who modeled EOQ for price-sensitive demand for
an SC in 1995. This stream was continued by Jokar
and Sajadieh [23]. They optimized total joint pro�t of
an SC by integrating ordering, shipment, and pricing
policies considering LP as shipment policy and price-
dependent demand. Another e�ort to optimize joint
pro�t of a chain with price-sensitive demand while
EP is applied can be found in [24]. Joint-pricing
and lot-sizing policies for price-dependent demand was
investigated by Kim et al. [25] for a system while LP
was adopted for shipment of the products. In another
study, Huang et al. [26] tried to coordinate pricing and
inventory decisions for a three-stage SC consisting of
multiple suppliers, single manufacturer, and multiple
retailers as a non-corporative game. More examples
of recent research in this area can be found in [27-
29]. The JELS problem was also modeled for price
and environmentally dependent demand when EP was
adopted [30]. Joint-pricing and lot-sizing problem for
a two-stage system was studied by Ghasemy Yaghin et
al. [31] when supplier followed EP and demand was
price-sensitive through a logit function with a price
discount for the orders arrived prior to the sale period.
A two-stage system was also investigated for a multi-
product chain where demand for each product at each
retailer was dependent on its price, price of other com-
petitors, and the price of substitutable products [32].
As another e�ort to integrate lot-sizing and pricing
policies, Taleizadeh and Noori-daryan [33] modeled a
three-stage SC to �nd the minimum total cost of the
chain using Stackelberg-Nash equilibrium to optimize
the cost incurred by the members. Wang et al. [34]
also modeled the JELS problem for price-dependent
demand with in�nite production rate. They considered
both linear and non-linear dependency functions and
solved the corresponding models for centralized and
decentralized conditions.

Besides the extensions focusing on the various
shipment policies and e�orts to integrate joint-pricing
and lot-sizing policies, the JELS problem was also
extended by other considerations. Integrated vendor-
buyer model with stock-dependent demand was studied
for coordinated and non-coordinated SCs [35]. Three-
stage SC with imperfect quality products was consid-
ered by Sanaz [36] while assuming production rate as
a decision variable and di�erent probability distribu-
tion functions for defective items. Lee and Fu [37]
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investigated a make-to-order two-echelon SC while
considering transportation cost between the vendor and
the buyer.

To the best of our knowledge, joint lot-sizing and
pricing is only studied for LP and EP and there is no
research considering it for neither GP, nor GEP, nor
OP. To �ll this gap, we model the joint pro�t of a two-
stage SC for these shipment policies and develop their
corresponding solution procedures to �nd the optimal
solutions. Besides, as for some problem instances,
total pro�t obtained by adopting EP is greater than
that of GP and vice versa. Also, there is no analysis
comparing optimal pro�ts of EP and GP; we compare
their optimal joint pro�ts for price-sensitive demand
and �nd the most important factor that a�ects break-
even point of them.

The main contributions of this paper can be
summarized as follows. First, for the joint pro�t model
of GP, the paper determines the upper and the lower
limits for the number of shipments and develops a
search based procedure to �nd the optimal solution.
Second, it determines the break-even point of EP and
GP for price-dependent demand. Third, similar to
GP, the optimal solution for the joint pro�t model is
determined. Fourth, for OP, the optimal selling price,
production batch size, and the number of shipments
are obtained by the proposed solution procedure.

In all of the developed solution procedures, secant
method is used to determine a well approximation of
the global optimum. Convergence properties of the
secant method are studied in some research like [38-
39]. In the current paper, the performance of the
proposed procedure is evaluated by comparison of its
optimal solution with the optimal solution obtained by
adopting a Simulated Annealing (SA) algorithm.

This paper is organized as follows. Section 2
de�nes the general JELS problem and its assumptions.
In section 3, the JELS problem with GP is modeled
and a solution procedure is developed to �nd the
optimal solution of the model. Section 4 investigates
the optimal solutions of the proposed procedure and
the SA algorithm. Section 5 gives a comparison of EP
and GP and also determines break-even point of these
policies. Section 6 deals with the JELS problem for
GEP. Section 7 models the JELS problem when OP is
applied to the chain and develops its optimal solution
procedure. Section 8 presents numerical results and
sensitivity analysis of the problem parameters. Finally,
Section 9 is devoted to the conclusions and recommen-
dations for future research.

2. Problem de�nition and assumptions

This paper studies a single-vendor single-buyer SC of a
single product. Similar to other research in the JELS

literature, time horizon is assumed to be in�nite, and
shortage is not allowed. In addition, production rate
is assumed to be �nite and greater than the demand
rate. The demand (D) for the �nal product is linearly
dependent on selling price (�). The dependency
function is D(�) = a � b�. The buyer's inventory
holding cost is greater than that of the vendor, and
the buyer continuously reviews its inventory. The
following notations are used in the paper:

P Vendor's production rate;
D Demand rate as a function of selling

price;
� Buyer unit selling price (paid by �nal

customer);
Av Vendor's setup cost;
Ab Buyer's ordering cost;
hv Vendor's inventory holding cost per

year per unit product;
hb Buyer's inventory holding cost per year

per unit product;
n Number of shipments;
m Number of equal shipments in a cycle;
l Geometric growth factor (p=D);
Q Vendor production batch size;
q1 First shipment size from the vendor to

the buyer.

The JELS model has a general formulation as
shown in Eq. (1). The objective of this model is to
minimize total cost of the chain and it consists of
ordering and inventory holding costs of the chain's
members:

TCjoint =
(Av + NAb)D

Q
+ hvIs + (hb � hv)Ib; (1)

where:

Is = q1
D
p

+ Q
(p�D)

2p
; (2)

Ib =
PPPn

1 q2
i

2Q
: (3)

3. Geometric shipment policy (GP)

The idea of GP was �rst introduced in 1995 [17]. In
this policy, the size of each shipment is a multiplier of
the �rst shipment size as presented in Eq. (4). The
production batch size is equal to the sum of shipments
in a cycle; its corresponding expression is shown in
Eq. (5):

qi = li�1q1 8 i = 1; :::;n: (4)
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The size of the �rst shipment can be written as Eq. (6):

Q =
q1(ln � 1)

l� 1
; (5)

q1 =
Q(l� 1)
ln � 1

: (6)

The objective of the general JELS model is to minimize
total joint cost of the chain, but the current paper
maximizes the total joint pro�t of the chain. Therefore,
the exchange price between the vendor and the buyer
has no e�ect on the joint pro�t of the chain. Here,
the chain revenue is achieved through selling the �nal
products to the customers, D�, that can be rewritten
as D(a�D)

b . By replacing inventories of the system
and the buyer in the general JELS model, total joint
pro�t of the chain for GP becomes as Eq. (7). Since
this expression is concave in q1, the optimal value of
this variable, q�1 , can be determined using the �rst
derivative of the joint pro�t relative to q1, as shown
in Eq. (8):

TOGP
joint(q1; D; n) =

D(a�D)
b

� (Av + nAb)
�
p�D
D

�
D

q1

�
pn�Dn
Dn

�
� hv

24D
p

+
(p�D)

�
pn�Dn
Dn

�
2p
�
p�D
D

� 35 q1

� (hb � hv)
24 (pn�Dn)

Dn

2
�
p+D
D

�35 q1; (7)

q�1GP =vuuuuut
(Av+nAb)( p�DD )D

( pn�DnDn )

hv
�
D
p + (p�D)( pn�DnDn )

2p( p�DD )

�
+(hb�hv)

�
( pn+Dn

Dn )
2( p+D

D )

� :
(8)

By replacing the optimal value of q1 in TPGP
joint(q1; D; n)

and after some manipulation, the total joint pro�t of
the chain becomes as Eq. (9). Constraints of this model
are shown in Relations (10) and (11):

TPGP
joint(D;n) =

D(a�D)
b

�2

s
(Av + nAb)D(Dhv + phb)(pn +Dn)(p�D)

2p(pn �Dn)(p+D)
;

(9)

D � 0; (10)

n : integer: (11)

Since there is no closed form for optimalD or n that can
be determined by the corresponding �rst and second
derivatives, the remaining analysis to �nd the optimal
values of these variables should be continued based on
the numerical methods.

As n is an integer variable, it is of great interest
to determine its upper and lower limits and then search
through the interval of these limits for optimal D.
To �nd these limits, the objective function can be
rewritten as a function of n as shown in Eq. (12):

TP 0GP
joint(n) = �

s
(Av + nAb)(pn +Dn)

(pn �Dn)
: (12)

The �rst derivative of the above expression relative to
n is as follows:

@TP 0GP
joint(n)
@n

=

�Ab(p2n�D2n)�2pnDn(Av+nAb)(log(p)�log(D))
2(pn�Dn)

p
(Av+nAb)(p2n�D2n)

:
(13)

As � � a
b , D belongs to (0; a). On the other hand p >

D, therefore @TP 0GP
joint(n)
@n is always less than zero and

consequently TP 0GP
joint(n) is a non-increasing function

of D. Therefore, the upper and the lower limits of n
can be found by the following two procedures:

- Procedure 1: Find the upper limit of n (nGP
max)

(a) Replace D with its lower limit, zero, in
TPGP

joint(D;n);
(b) Determine the optimal n that maximizes TPGP

joint
(D = 0; n) using Secant method [39];

(c) The ceiling of the resultant n is the upper limit of
this variable (nGP

max).
- Procedure 2: Find the lower limit of n (nGP

min)
(a) Replace D with its upper limit, a, in TPGP

joint(D;n);
(b) Determine optimal n that maximizes TPGP

joint(D =
a; n) using Secant method;

(c) The 
oor of the resultant n is the lower limit of this
variable (nGP

min).

Solution procedure
The following procedure is developed to solve the
model.

- Step 1. Calculate nGP
min and nGP

max;
- Step 2. Set TPGP

opt and n = nGP
min;

- Step 3. Determine D that maximizes TPGP
joint(D;n)

using Secant method and save the corresponding
objective function value;

- Step 4. If TPGP
joint(D;n) > TPGP

opt , then set nopt = n,
TPGP

opt = TPGP
joint(D;n), and Dopt = D;
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- Step 5. Increase n by 1.;
- Step 6. If n < nGP

max, go to Step 3; otherwise, go to
Step 7;

- Step 7. The current solution is optimal.

4. Investigate performance of the proposed
procedure vs. Simulated Annealing (SA)
algorithm

To study the performance of the proposed procedure
in Section 3, we solve the JELS problem for GP by
implementing a Simulated Annealing (SA) algorithm.
SA is a powerful algorithm commonly used for heuristic
optimization due to its simplicity and e�ectiveness.
Within this approach, variables to be optimized are
viewed as the degrees of freedom of a physical system
and the cost function of the optimization problem as
the energy [40]. We implement an SA algorithm while
the optimal solution obtained by the proposed proce-
dure is considered as the initial solution to start the SA
algorithm. The steps of the customized and tuned SA
algorithm to solve the JELS problem are as follows.
To reduce run time and enhance the performance of
the SA algorithm, the maximum number of neigh-
bors is linearly dependent on the temperature; more
neighbors are generated for high temperatures, and as
temperature decreases, less neighbors are considered to
accelerate the convergence process.

- Step 1. Set the optimal solution of the proposed
procedure as the initial solution and its objective
function value as Zopt;

- Step 2. Set initial temperature (t) = 100 and �nal
temperature = 10�200;

- Step 3. While t < 10�200:
3.1. Set maximum number of neighbors (nmax) as

70t;

3.2. While number of neighbors is less than nmax:
3.2.1 Randomly select between neighborhood

generation methods A and B:
A. Assign a random number to one

of the variables regarding its con-
straint;

B. Swap values of two variables regard-
ing their constraints.

3.2.2. Calculate objective function of the
neighbors (Z);

3.2.3. If Z > Zopt, update the optimal so-
lution found so far and increase num-
ber of neighbors by one. Otherwise,
calculate acceptance probability, p =
Z�Z opt

t . Generate a random number;
if p is greater than it, increase number
of neighbors by one.

3.3. Set the best solution found in this t as optimal
and its objective function value as Zopt;

3.4. Schedule cooling by updating temperature as
0:9t.

- Step 4. The best solution obtained in all tem-
peratures is the optimal solution. The comparison
between the optimal joint pro�ts of the SA algorithm
and the proposed procedure is shown in Table 1 for
the benchmark problem of the JELS literature. The
parameters of this problem are as follows:

p = 3200=year; hv = $4=unit=year;

hb = $5=unit=year Av = $400=setup;

Ab = $25=setup; a = 1500; b = 50:

As presented in the table, for 10 runs of the
algorithms, there is just a small di�erence between
their optimal pro�ts. Therefore, we can claim that

Table 1. Comparison of optimal pro�ts obtained by the SA algorithm and the proposed procedure.

Run # Optimal pro�t
obtained by SA

Optimal pro�t
obtained by the

proposed procedure

% di�erence in
optimal pro�t

1 9,617.502511572 9,617.519119639 0.000172686
2 9,617.504099580 9,617.519705279 0.000162263
3 9,617.517440652 9,617.519798804 0.000024519
4 9,617.507101522 9,617.518986796 0.000123579
5 9,617.513974360 9,617.518703130 0.000049168
6 9,617.519540566 9,617.519799290 0.000002690
7 9,617.513821152 9,617.519181529 0.000055736
8 9,617.519625431 9,617.519790744 0.000001719
9 9,617.508403004 9,617.519788001 0.000118378
10 9,617.513707257 9,617.519779509 0.000063137
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the proposed procedure to solve the JELS problem
has a good performance and its solution is a well
approximation of the global optimum of the problem.
It should be noti�ed that the proposed algorithm is
preferred due to its short run time compared to the
SA algorithm while its performance is approximately
the same. Besides, the proposed procedure uses secant
method that is a traditional method and it can be easily
implemented.

5. Comparison of equal shipment policy with
geometric shipment policy

In the EP, all the orders are equal; so ordering and
shipment management of this policy is simple for
partners. On the other hand, in GP, the size of orders
increases geometrically; so the time between two orders
and the transportation capacities should be altered for
each order. The main concentration of EP besides
the simplicity of management is to minimize average
inventory of the buyer while the main concentration
of GP is to minimize the vendor's average inventory.
These facts are presented in Figures 1 and 2 for the
benchmark problem of the JELS literature for di�erent
values of the buyer's inventory holding cost near its
value in the benchmark problem.

Therefore, it seems that the inventory holding
cost of the vendor and the buyer may a�ect the
e�ciency of these two policies. To study this issue, the
benchmark problem of JELS literature is considered.

Figure 3 illustrates the e�ect of hb=hv on the total
joint pro�t of the chain. It can be inferred from the
�gure that there is a Break-Even Point (BEP) of EP
and GP. Analyzing sensitivity of the total joint pro�t to
other parameters of the problem and determining the
BEP for some problem instances based on all parame-
ters con�rm the major e�ect of inventory holding cost

Figure 1. E�ect of buyer's inventory holding cost on
buyer's inventory.

Figure 2. E�ect of buyer's inventory holding cost on
vendor's inventory.

Figure 3. E�ect of hb=hv on the total joint pro�t.

on the BEP of EP and GP. Indeed, when the range of
parameters of a problem does not thoroughly change,
as in practice happens, the main factor that a�ects
this point is the ratio of hb to hv. When this ratio is
greater than BEP, less inventory of buyer is desired, so
EP shows better performance; but when this ratio is
less than BEP, less inventory of vendor is desired, so
GP is preferred. As shown in Figure 3, the value of
hb=hv at the BEP of the benchmark problem is equal
to 1.37. Therefore, when hv = 4, if hb is smaller than
5.48, GP shows better performance; otherwise, EP is
preferable. Determination of this point can be helpful
when the chain coordinator decides to choose between
EP and GP. The BEP can be determined using the
interpolation method to �nd the ratio of hb to hv.

6. Geometric-then-equal size shipment policy
(GEP)

As explained in Section 5, EP or GP may yield
more joint pro�t compared to each other. Therefore,
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it is of great interest to combine these policies and
simultaneously bene�t from their advantages. Ben-
Daya et al. [1] generalize the proposed policy of [20]
called geometric-then-equal size shipment policy. The
size of shipments in this combined policy is according
to Eq. (14):

qi =

(
li�1 � q1 i = 2; 3; :::;m
lm�1 � q1 i = m+ 1; :::; n

(14)

Based on the shipments' size, the production batch size
is shown in Eq. (15).

Q =
mX
i=1

� p
D

�i�1
q1 + (n�m)

� p
D

�m�1
q1

= q1

24�pm�DmDm

�
p�D
D

+ (n�m)
�
p
D
m�1

�35
= q1'q(D;m; n): (15)

The average inventories of the system and the buyer
are also obtained as follows:

Is=

26664Dp +
(p�D)

�� pm�Dm
Dm

�
p�D
D

+(n�m)
� p
D

�m�1
�

2p

37775 q1

= q1's(D;m; n); (16)

Ib=
q1

2

24 p2m�D2m

D2m +(n�m)
� p
D

�2m�2
�
p2�D2

D2

��
p+D
D

�h�
pm�Dm
Dm

�
+(n�m)

� p
D

�m�1
�
p�D
D

�i35
= q1'b(D;m; n): (17)

Using the above expressions, the total joint pro�t of
the chain for GEP is presented in Eq. (18). Again, this
equation is concave in q1 and by a similar analysis, the
optimal value of this variable is as Eq. (19) and the
modi�ed objective function with its 3 variables is show
in Eq. (20). It should be noti�ed that 1 � m � n.

TPGEP
joint (q1; D;m; n) =

D(a�D)
b

� (Av + nAb)D
q1'q(D;m; n)

� hvq1's(D;m; n)� (hb

� hv)q1'b(D;m; n); (18)

q�1GEP =s
(Av+nAb)D

'q(D;m;n)[hv's(D;m;n)+(hb�hv)'b(D;m;n)]
(19)

TPGEP
joint (D;m; n) =

D(a�D)
b

� 2s
(Av+nAb)D
'q(D;m; n)

[hv's(D;m; n)+(hb�hv)'b(D;m; n)]
(20)

Similar to GP, determining the upper and the lower
limits of n can be useful here. Since GEP is a
combination of GP and EP, �nding the upper and the
lower limits of n is straightforward. According to [24],
the lower and the upper limits of n for EP are as
Eqs. (21) and (22), respectively;

nEP
min = max

8<:
s
Av(hb � hv)

Abhv
; 1

9=; ; (21)

nEP
max =

s
Avp(hb � hv) + 2hvAva

Abhv(p� a)
: (22)

Since the optimal value of n is not out of the range
of this variable in its parent policies, GP and EP, the
limits of n in GEP, are as Eqs. (23) and (24).

nGEP
min = min

�
nEP

min; n
GP
min
	
; (23)

nGEP
max = max

�
nEP

max; n
GP
max
	
: (24)

To �nd the optimal values of variables with respect
to the constraints, the following algorithm depicted in
Figure 4 is developed. The proposed procedure to solve
the model is similar to what was developed for GP as
shown in Figure 4. According to Section 4, the �nal
solution is a well approximation of the global optimal
solution.

7. Optimal shipment policy (OP)

The last shipment policy introduced in the JELS
literature is OP. The size of shipments in this policy
is very similar to that in GEP. Using Lagrangian
multipliers recursively, Hill [41] introduced this policy
with the following size of shipments:

qi =

(
li�1 � q1 i = 1; 2; :::;m
Q�Pm

i=1 qi
n�m i = m+ 1; :::; n

(25)

Hill [41] de�nes c as hv
hb�hv and shows that if there

is no positive integer m < n, for which the following
constraint holds, the OP changes to GP. By careful
checking of this constraint, we found that there was
a mistake in his expression. In other words, when we
tried to obtain the constraint showed in Eq. (26) using
the steps explained in [41], the resultant constraint
was di�erent. Further e�orts ensured us that the
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Figure 4. Solution procedure for JELS model when geometric-then-equal size shipment policy is applied.

correct constraint was as Eq. (27); therefore, we use
this equation in the remaining analysis:

c � l(lm � 1)
(n�m)(l � 1)

+
l
�

(l2m�1)
(l2�1) + (lm�1)2

(n�m)(l�1)2

�
(n�m)lm + lm�1

l�1
;
(26)

c � l(lm � 1)
(n�m)(l � 1)

� l
�

(l2m�1)
(l2�1) + (lm�1)2

(n�m)(l�1)2

�
(n�m)lm + lm�1

l�1

= �(D;m; n): (27)

It should be noti�ed that l in the above constraint
is equal to p

D and can be replaced with this value.
According to [41], we can rewrite the size of the �rst
shipment as shown in Eq. (28). In a similar way,
average inventories of the system and the buyer are
presented in Eqs. (29) and (30), respectively:

q1 = Q

�
pm�Dm
Dm

�
(n�m)( p�DD ) � cD

p�
p2m�D2m

D2m

��
p2�D2

D2

� + ( pm�DmDm )2

(n�m)( p�DD )2

= Q�q(D;m; n);
(28)

Is =
�
�q(D;m; n)D

p
+

(p�D)
2p

�
Q = Q�s(D;m; n);

(29)

Ib =

26664
�
p2m�D2m

D2m

�
(n�m)

�
p2�D2

D2

� +
�
cD
p

�2

2
�� p2m�D2m

D2m

��
p2�D2

D2

� + ( pm�DmDm )2

(n�m)( p�DD )2

�
37775Q

= Q�b(D;m; n): (30)

Here, size of the production batch is considered as
a decision variable and again the total joint pro�t
is concave in Q. Therefore, the optimal production
batch size, Q�OP , and modi�ed objective function are
presented in Eqs. (32) and (33):

TPOPjoint(Q;D;m; n) =
D(a�D)

b
� (Av + nAb)D

Q

� hvQ�s(D;m; n)� (hb � hv)Q�b(D;m; n);
(31)

Q�OP =

s
(Av + nAb)D

hv�s(D;m; n) + (hb � hv)�b(D;m; n)
;
(32)
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Figure 5. Solution procedure for JELS model when optimal shipment policy is applied.

TPOPjoint(D;m; n) =
D(a�D)

b

�2
p

(Av+nAb)D[hv�s(D;m; n)+(hb�hv)�b(D;m; n)]:
(33)

As stated in [41], the minimum total cost of the chain is
achieved when hb = hv. In this condition, the objective
function becomes minimization of the total stock in the
system and this was used to determine the maximum
number of shipments, n.

There are two di�erences between the objective
functions of the current paper and the model consid-
ered in [41]. First, the objective of our model is to
maximize the total pro�t of the chain while minimizing
total cost is the objective of [41]; second, since we
consider D as a decision variable, the current paper
has a further variable compared to the model studied
in [41]. In the current paper, the upper limit of the
total joint pro�t is obtained by considering hb�hv and
it can be used to �nd the upper limit of n as presented
in Eq. (34):

TPOPlimit(D;m; n) =
D(a�D)

b

�2
p

(Av + nAb)Dhv�s(D;m; n): (34)

The solution procedure for the joint pro�t of the chain
when applying OP is depicted in Figure 5. As shown, if
there is no integer m < n that can pass the constraint,
the objective function of GP will be applied that is
referred to in the �gure as TPJ GP (D;n). Again,
according to Section 4, the �nal solution is a well
approximation of the global optimal solution of the
problem.

8. Numerical results and sensitivity analysis

To analyze and compare all the shipment policies intro-
duced in the literature for price-sensitive demand, we
�rst implement the solution algorithm of the equal-size
policy introduced by Sajadieh and Akbari Jokar [24]
in Matlab Software. Comparison of the results of the
implemented algorithm with numerical results of [24]
con�rmed the validity of this implementation. In
the current paper, GP, GEP, and OP are studied for
dependent demand.

The e�ect of di�erent values of b on the optimal
solution of the benchmark problem is shown in Table 2
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Table 2. Optimal solutions of equal, geometric, and geometric-then-equal shipment policies.

Shipment
policy

b n m D � q1 Q
Total
joint
pro�t

Equal
shipment
policy [24]

10 4 | 745.1 75.5 110.9 443.7 54568

Improvement
percentage relative

to equal policy

50 4 | 724.8 15.5 109.2 436.9 9578.4
100 4 | 698.3 8.02 107 427.9 3966.4
200 4 | 640.1 4.3 101.9 407.7 1182.3
300 3 | 564.3 3.12 120.6 361.7 277.8

Geometric
shipment

policy

10 3 | 745.9 75.41 18.26 432.7 54611 0.079%

Improvement
percentage relative
to geometric policy

50 3 | 729.3 15.41 17.31 426.6 9617.5 0.408%
100 3 | 707.4 7.93 16.11 418.6 4001.3 0.880%
200 3 | 659.5 4.2 13.63 400.7 1208.1 2.182%
300 3 | 603.5 2.99 11.03 379.5 292.6 5.328%

Geometric-
then-equal
shipment

policy

10 3 2 745.5 75.45 45.8 439 54635 0.123% 0.044% Improvement
percentage relative

to geometric-
then-equal

policy

50 3 2 727.2 15.46 44.14 432.7 9643 0.674% 0.265%
100 3 2 703.24 7.97 42.01 424.31 4028.6 1.568% 0.682%
200 3 2 651.3 4.24 37.48 405.8 1239.2 4.813% 2.574%
300 3 2 591.6 3.03 32.49 384 327.7 17.963% 11.996%

Optimal
shipment

policy

10 4 2 745.8 75.42 23.74 462.94 54637 0.126% 0.048% 0.004%
50 4 2 728.5 15.43 23.39 456.40 9644.5 0.690% 0.281% 0.016%
100 3 2 703.8 7.96 37.81 424.80 4029.8 1.598% 0.712% 0.030%
200 3 2 652.0 4.24 34.49 406.29 1239.9 4.872% 2.632% 0.056%
300 3 2 592.4 3.03 30.58 384.37 328.07 18.096% 12.123% 0.113%

for all shipment policies. As the ratio of hb to hv for this
problem is smaller than this ratio in the corresponding
BEP, it is expected that GP yields more joint pro�t
than EP.

According to the de�nition of b, as this parameter
increases, dependency of the demand on the selling
price increases. Therefore, determining the optimal
selling price is of great importance. According to
Table 2, as b increases, the total joint pro�t of the chain
deceases. A part of this decrease can be compensated
by using OP instead of the other policies. Using GEP
also yields more joint pro�t than its parents' policies.
For example, when b = 300, if the chain coordinator
applies GEP instead of EP, the total joint pro�t
increases by 17.96%; The resultant pro�t improvement
of applying OP instead of EP also increases by 18.09%.
These improvements can be very interesting for SC
members, especially for centralized chains as the chain
coordinator can decide how to ship the products be-
tween the chain members.

Figure 6 illustrates the e�ect of 50% increase
in the value of a; b; a1; a2, and p for the benchmark
problem. The e�ect of hb and hv on the joint pro�t
was previously studied in Section 9.

As expected, among these parameters, a has the
most impact and p has the least impact on the joint
pro�t of the policies. Since a is the potential demand
of a product, it has major in
uence on the joint pro�t;
but it is bene�cial to study the e�ect of b on the
objective function value. Figure 7 depicts the e�ect
of di�erent values of b on the optimal pro�t of the
chain for four shipment policies. The exponentially
decreasing behavior of the joint pro�t is similar for the
policies. The behavior can be explained by considerable
reduction in actual demand, a�b�, as sensitivity to the
selling price, b, increases slowly.

9. Conclusion and recommendations for future
studies

This paper analyzed the Joint Economic Lot-Sizing
(JELS) model for a two-stage supply chain while
demand for the �nal product was linearly dependent on
the selling price. The main contributions of this paper
can be summarized as follows. First, for the joint pro�t
model of geometric shipment policy (GP), it determines
the upper and the lower limits for the number of
shipments and develops a search based algorithm to
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Figure 6. Joint pro�t change for 50% increase in the values of parameters.

Figure 7. E�ect of b on joint pro�t of shipment policies.

�nd the optimal solution. Second, it determines the
break-even point of equal-size shipment policy (EP)
and GP for price-dependent demand. Third, similar to
GP, the optimal solution for the joint pro�t model is
determined. Fourth, for optimal shipment policy (OP),
the optimal selling price, production batch size, and
the number of shipments are obtained by the proposed
solution procedure. In all of the developed solution
procedures, secant method was used to determine a
well approximation of the global optimal solution.
The performance of the proposed procedure was also
veri�ed by investigating its optimal solution vs. the one
obtained by the simulated annealing algorithm.

To explain the second contribution of the paper, it
should be noti�ed that comparison of the optimal solu-
tions of EP and GP for di�erent instances proved that
choosing the best policy between them was dependent
on the parameters' values of the problem. As shown
in the paper, when the range of parameters does not

thoroughly change, as in practice happens, the ratio
of vendor's inventory holding cost to buyer's inventory
holding cost is the most important factor a�ecting
Break-Even Point (BEP) of these two policies. When
this ratio is greater than BEP, less buyer inventory is
desired, so EP has better performance than GP; but
when this ratio is less than BEP, less vendor inventory
is desired, so GP is preferred. To determine this point,
an interpolation method was applied.

Sensitivity analysis of the problem's parameters
con�rmed the major e�ect of demand dependency
function on the joint pro�t of the chain. The analysis
also showed an exponentially decreasing behavior of
the joint pro�t as the slope of demand function (b)
increased. Therefore, optimal solutions of the joint
model were studied for di�erent values of b. Numer-
ical results suggest when demand is price-sensitive,
applying OP, GEP, and GP, respectively, yields more
joint pro�t than EP. Numerical results also proved that
as b increased, more improvement would be achieved
compared to EP. As an example, if the vendor ships
the products to the buyer according to OP, the total
joint pro�t of the chain for the benchmark problem
of the JELS literature increases by 18.096% compared
to EP when b = 300. From the managerial insight
for products with high demand dependency on selling
price, selecting GP, GEP, or OP instead of adopting
lot-for-lot or equal shipment policies can signi�cantly
increase the joint pro�t of the chain. It should be no-
ti�ed that achieving such a percentage of improvement
by changing the shipment policy is straightforward and
does not need any more investment; it just needs a
good planning for shipments, while implementing other
ideas to increase joint pro�t is not simple or needs
considerable investment, such as investing in advertise-
ment to a�ect the parameters of demand dependency
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function. This signi�cant pro�t improvement can be
very interesting for supply chain coordinators as well
as the chain members, especially in centralized chains
that the joint pro�t is the main aim of all the members.

When adopting GP, GEP, or OP for the chain,
various sizes of shipments make the implementation
of these policies di�cult and need a good planning
and cooperation between the chain members to uti-
lize its more joint pro�t. On the other hand, if
we want to apply these policies for non-coordinated
supply chains, developing incentives and pro�t sharing
mechanisms are needed to persuade the members for
joint commitment to implement these policies. In
this study, the geometric growth factor considered
in GP, GEP, and OP is equal to production rate
to demand rate. Assuming it as a decision variable
would be interesting for future research. Studying non-
linear dependency of the demand on the selling price
could be interesting for more research. Considering
imperfect quality of the products and adding capacity
constraint of the transportation equipment to the
model is recommended for future studies. Integrating
inbound logistics of the vendor to the JELS model and
optimizing its corresponding costs are other areas for
future researches. Investigating more retailers by equal
or di�erent ordering cycles and di�erent demand rates
are also recommended for more research.
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