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Abstract. This paper presents an e�ective optimization method based on meta-heuristics
algorithms for the design of a multi-stage, multi-product solid supply chain network design
problem. First, a mixed integer linear programming model is proposed. Second, because
the problem is an NP-hard, three meta-heuristics algorithms, namely Di�erential Evolution
(DE), Particle Swarm Optimization (PSO), and Gravitational Search Algorithm (GSA),
are developed for the �rst time for this kind of problem. To the best of our knowledge,
neither DE, nor PSO, nor GSA have been considered for the multi-stage solid supply chain
network design problems. Furthermore, the Taguchi experimental design method is used
to adjust the parameters and operators of the proposed algorithms. Finally, to evaluate
the impact of increasing the problem size on the performance of our proposed algorithms,
di�erent problem sizes are applied and the associated results are compared with each other.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The Supply Chain Network (SCN) design problem
is an important strategic issue in supply chain man-
agement that has recently drawn the focus of many
researchers [1-4].

SCN is widely used and includes all activities in
the �eld of production and the �nal product provides
the service of distribution of the most elementary stage,
i.e. from the primary stage of raw materials, to the
most �nal stage, i.e. delivery to the customer and even
worn out product recycling. Supply chain manage-
ment includes managing supply and demand, supply
of components and raw materials, manufacturing and
assembly, storage and shipping of inventory, order
management, distribution channels, and supply and
delivery to the customer. Nowadays, service providers
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and products, distribution channels (distributors and
wholesalers), and customers as well as supply chain
management consultants, system developers and sup-
pliers of software products, and supply chain managers
are all key elements. Achieving the e�ective supply
chain management is dependent on the cooperation of
supply chain members.

A Multi-stage Supply Chain Network (MSCN)
can be modeled by means of a sequence of multiple
SCN stages for production of multi-product so that the

ow would be transferred only between two successive
stages. Since the MSCN is di�cult to solve opti-
mally [5], many researchers have developed heuristic
and meta-heuristic approaches to solve it. The work
done in this regard is as follows.

Jayaraman and Pirkul [6] have presented an
e�cient heuristic approach based on the Lagrangean
relaxation for the single-source, multi-product, multi-
stage SCN design problem. They use this heuristic
method to evaluate the performance of the model with
respect to solution quality and algorithm performance.
Syam [7] focused on a heuristic method proposed based



1430 A. Mahmoodirad and M. Sanei/Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 1429{1440

on Lagrangean relaxation and simulated annealing for
a multi-source, multi-product, multi-location frame-
work. Another heuristic approach based on steady-
state genetic algorithm has been developed by Alti-
parmak et al. [5] for a single-source, multi-product,
multi-stage SCN design problem. They propose two
di�erent encoding approaches to represent a solution
to the problems: priority-based encoding and integer
encoding. The priority-based encoding is used for
the �rst two stages of SCN and integer encoding is
used in the last stage. Moreover, the e�ciency and
e�ectiveness of the algorithm have been investigated
by comparing its results with those of other methods
such as CPLEX, Lagrangean heuristic, hybrid genetic
algorithm, and simulated annealing on a set of SCN
design problems with di�erent sizes.

Mehdizadeh and Afrabandpei [8] have proposed
a mixed integer nonlinear programming model for the
multi-stage, multi-product network design problem to
minimize the total cost of supply chain. They have
developed a hybrid priority-based Genetic Algorithm
(GA) and simulated annealing algorithm to �nd op-
timal solution in two phases. In the �rst phase,
the optimal routes are determined by the use of GA.
In the second phase, they use the SA algorithm for
convergence speed. They use a matrix and vector
to represent the solution. The obtained results have
shown that the proposed algorithms can �nd near
optimal solutions in reasonable time spans.

Kadadevaramath et al. [9] have presented an
integer linear programming model for the constrained
three echelons SCN problem to minimize the total
supply chain operating cost. They have used four
algorithms based on a Particle Swarm Optimization
(PSO) algorithm and Genetic Algorithm (GA) for
solving the problem and the obtained results of PSO
algorithms have been compared with those of GA.

Olivares-Benitez et al. [10] addressed a supply
chain design problem based on a two-echelon single-
product system. The meta-heuristic algorithm was pro-
posed to solve the problem, which combined principles
of greedy functions, Scatter search, Path relinking, and
Mathematical programming.

Mehdizadeh et al. [3] considered an integrated
multi-stage, multi-product logistic network design
problem which included forward and reverse logistics
and proposed a mixed integer nonlinear programming
model. To �nd the proper solutions, they developed
two meta-heuristic algorithms, namely hybrid priority-
based genetic algorithm and simulated annealing al-
gorithm. In order to tune the signi�cant parameters
of the algorithms, they used the response surface
methodology.

Crdenas-Barron and Trevino-Garza [11] devel-
oped a more general mathematical model proposed by
Kadadevaramath et al. [9] when the number of periods

and products was one. They solved all instances in
Kadadevaramath et al. [9] by CPLEX and showed that
all instances could easily be solved optimally by any
integer linear programming solver.

Kristianto et al. [12] developed a supply chain
network by optimizing inventory allocation and trans-
portation routing. They proposed a fuzzy shortest path
into two-stage programming in order to �nd the global
optimum solution.

Khalifehzadeh et al. [13] considered a four-echelon
supply chain network design with shortage. They
presented a multi-objective mathematical model to
minimize the total operating costs of all the supply
chain elements and to maximize reliability of the
system. They solved this problem by a comparative
particle swarm optimization algorithm.

The multi-product, multi-stage solid SCN design
problem considered in this paper consists of three
stages: supplier, plant, DC and customer. The problem
is to determine the optimal transportation network
in order to satisfy the customer demands of products
by using several kinds of conveyance with minimum
costs. To this end, �rstly, we propose a mixed integer
programming model for the multi-product, multi-stage
solid SCN design problem, in which the objective
is minimization of the total costs of supply chain.
Secondly, due to complexity of the problem, we develop
three meta-heuristic algorithms, namely Di�erential
Evolution (DE), Particle Swarm Optimization (PSO),
and Gravitational Search Algorithm (GSA), for this
problem. Furthermore, the Taguchi experimental
design method is used to adjust the parameters and
operators of the proposed algorithms. Finally, to
evaluate the impact of increasing the problem size on
the performance of our proposed algorithms, di�erent
problem sizes are applied and the associated results are
compared with each other.

The rest of this paper is arranged as follows:
In Section 2, we describe the mathematical model
and descriptions. Section 3 explains the proposed
solution approaches. Section 4 describes the Taguchi
experimental design and compares the computational
results. Finally, in Section 5, conclusions are made and
provided.

2. Problem description and mathematical
model

The considered problem can formally be described as
follows:

The multi-stage, multi-product solid SCN design
problem can consist of suppliers, plants, DCs, and
customers. In the �rst stage, the suppliers provide
the raw materials for the plants to produce multi-
product. In the second stage, the plants produce and
send the products to DCs. Finally, the DCs transport
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the products to the customers. Also, conveyances can
be considered as transportation types so that each
conveyance would be related to the cost, and one must
be selected to transport the products to each stage.
The objective is minimization of the total costs of
supply chain that will satisfy all capacities and demand
requirement for each product imposed by customers.
We formulated this problem as a mixed-integer non-
linear programming model. The assumption used in
this problem is as follows:

� The number of suppliers, the maximum number
of plants, the maximum number of DCs, and the
number of conveyances are known;

� The capacities of suppliers, plants, and DCs are
known;

� The number of customers and their demands are
known.

The following notations are used to de�ne the mathe-
matical model:

Set of indices:
R Set of raw materials (r = 1; 2; � � � ; R);
P Set of products (p = 1; 2; � � � ; P );
S Set of suppliers (s = 1; 2; � � � ; S);
I Set of plants (i = 1; 2; � � � ; I);
J Set of DCs (j = 1; 2; � � � ; J);
K Set of customers (k = 1; 2; � � � ;K);
M Set of conveyances in the �rst stage

(m = 1; 2; � � � ;M);
N Set of conveyances in the second stage

(n = 1; 2; � � � ; N);
L Set of conveyances in the third stage

(l = 1; 2; � � � ; L).
Parameters:
Esr Capacity of supplier s for raw

material r;
Di Capacity of plant i;
Wj Capacity of DCj;
Cpk Demand for product p at customer k;
urp Utilization rate of raw material r per

unit of product p;
Fi Fixed cost for operating a plant i;
Gj Fixed cost for operating a DCj;
arsim Cost of transporting and purchasing

for raw material r from supplier s to
plant i by conveyance m;

bpijn Cost of transporting one unit of
product p from plant i to DCj by
conveyance n;

cpjkl Cost of sending one unit of product p
from DCj to customer k by conveyance
l;

fsim Fixed cost of transporting for raw
materials from supplier s to plant i by
conveyance m;

gijn Fixed cost of transporting products
from plant i to DCj by conveyance n;

hjkl Fixed cost of sending products from
DCj to customer k by conveyance l;

vi Unit production cost of product at
plant i;

v0j Unit storing cost of product at DCj;

E(1)
m Maximum capacity of conveyance m in

the �rst stage;

E(2)
n Maximum capacity of conveyance n in

the second stage;

E(3)
l Maximum capacity of conveyance l in

the third stage.
Decision variables:
�i Binary variable equal to 1 if plant i is

opened and equal to 0 otherwise;
�j Binary variable equal to 1 if DCj is

opened and equal to 0 otherwise;
xrsim Quantity of raw material r shipped

from supplier s to plant i by
conveyance m;

ypijn Quantity of product p shipped from
plant i to DCj by conveyance n;

zpjkl Quantity of product p shipped from
DCj to customer k by conveyance l;

t(1)
sim Binary variable equal to 1 ifPR

r=1 xrsim > 0 and equal to 0
otherwise;

t(2)
ijn Binary variable equal to 1 ifPP

p=1 ypijn > 0 and equal to 0
otherwise;

t(3)
jkl Binary variable equal to 1 ifPP

p=1 zpjkl > 0 and equal to 0
otherwise.

The mathematical model of the multi-stage, multi-
product solid SCN design problem is as follows:

MinZ =
RX
r=1

SX
s=1

IX
i=1

MX
m=1

arsimxrsim

+
PX
p=1

IX
i=1

JX
j=1

NX
n=1

bpijnypijn
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+
PX
p=1

JX
j=1

KX
k=1

LX
l=1

cpjklzpjkl

+
SX
s=1

IX
i=1

MX
m=1

fsimt
(1)
sim +

IX
i=1

JX
j=1

NX
n=1

gijnt
(2)
ijn

+
JX
j=1

KX
k=1

LX
l=1

hjklt
(3)
jkl +

IX
i=1

Fi�i +
JX
j=1

Gj�j

+
PX
p=1

IX
i=1

JX
j=1

NX
n=1

viypijn

+
PX
p=1

IX
i=1

JX
j=1

NX
n=1

v0jypijn; (1)

subject to:
IX
i=1

MX
m=1

xrsim � Esr 8s; r; (2)

PX
p=1

JX
j=1

NX
n=1

ypijn � Di�i 8i; (3)

PX
p=1

JX
j=1

NX
n=1

urpypijn �
SX
s=1

MX
m=1

xrsim 8r; i; (4)

PX
p=1

IX
i=1

NX
n=1

ypijn �Wj�j 8j; (5)

KX
k=1

LX
l=1

zpjkl �
IX
i=1

NX
n=1

ypijn 8j; p; (6)

JX
j=1

LX
l=1

zpjkl � Cpk 8p; k; (7)

RX
r=1

SX
s=1

IX
i=1

xrsim � E(1)
m 8m; (8)

PX
p=1

IX
i=1

JX
j=1

ypijn � E(2)
n 8n; (9)

PX
p=1

JX
j=1

KX
k=1

zpjkl � E(3)
l 8l; (10)

�i 2 f0; 1g 8i; (11)

�j 2 f0; 1g 8j; (12)

t(1)
sim 2 f0; 1g 8s; i;m; (13)

t(2)
ijn 2 f0; 1g 8i; j; n; (14)

t(3)
jkl 2 f0; 1g 8j; k; l; (15)

xrsim; ypijn; zpjkl � 0 8r; p; s; i; j; k;m; n; l: (16)

In this model, objective function (1) minimizes the
total cost of supply chain network. Constraint (2) is the
capacity constraint for the suppliers. Constraint (3)
gives the plant capacity constraint. Constraint (4)
gives the raw material requirement. Constraint (5) is
the capacity constraint for DCs. Constraint (6) limits
the total quantity of products shipped from a DC to
customers and cannot exceed the amount of shipped
products in that DC. Constraint (7) represents demand
satisfaction for each customer. Constraints (8)-(10)
give capacity constraint for conveyance in the �rst,
second, and third stages, respectively. Ultimately,
Constraint sets (11)-(16) de�ne the decision variables.

Since the problem is minimization of the objective
function, in the optimal solution, no extra products
or raw materials are transported at various stages
of the supply chain network. Thus, in the optimal
solution of the equality, Constraints (4), (6), and (7)
are established.

3. Solution approach

Although the exact algorithms such as Dynamic
Programming, local search techniques, Branch-and-
Cut, Branch-and-Bound, Branch-and-Price, and La-
grangean relaxation guarantee the optimal solution or
prove that no feasible solution exists, the real-world
problems are time consuming. Therefore, the meta-
heuristic algorithms to �nd the near optimal solution
in a reasonable time have been proposed by researchers.
The meta-heuristics are simple, easy to implement,
robust, and have proven to be highly e�ective to solve
many optimization problems [14].

Since the single-stage �xed cost transportation
problem can be categorized as NP-hard [15,16], the
multi-stage, multi-product solid SCN design problem
is NP-hard, too. In this section, �rst, the solution rep-
resentation is described and then three meta-heuristic
algorithms are developed to �nd the near optimal
solutions.

3.1. Encoding scheme and initialization
The encoding scheme plays a very important role in the
e�ectiveness of the meta-heuristic algorithms. In fact,
it is the approach of making a solution recognizable
for the meta-heuristic algorithms. Among di�erent
methods of encoding, the priority-based encoding has
successfully been applied for many optimization prob-
lems [3,5,17-19]. It needs no repairing process and it
belongs to the permutation encoding category [19].
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In the single-stage �xed cost solid transportation
problem, we have two three-dimensional cost matrices,
namely the three-dimensional variable cost matrix and
the three-dimensional �xed cost matrix. Therefore,
selecting a route with minimum variable cost will not
give good solutions.

When the priority-based encoding is utilized for
the single-stage, single-product �xed cost solid trans-
portation problem, a solution consists of priorities of
sources (M), depots (N), and conveyances (K); in
this case, the solution length is equal to jQj = jM j +
jN j+ jKj. In the single-stage, multi-product �xed cost
solid transportation problem, consider P to be the set
of products. In this case, the solution based on the
priority-based encoding consists of jP j parts and the

length of each part is equal to jP j � jQj, and the digit
values of the solution are between 1 and jP j � jQj. To
obtain the priority-based encoding, in the single-stage,
multi-product �xed cost solid transportation problem,
a priority assignment to nodes is started from the
highest value (jP j � jQj) and it is reduced by one until
assigning a priority to all nodes.

In this paper, we develop the priority-based de-
coding procedure developed by Gen et al. [17,20] and
Altiparmak et al. [5] to adapt to the single-stage, multi-
product �xed cost solid transportation problem. The
procedure to decode the solution of the single-stage,
multi-product �xed cost solid transportation problem
is shown in Figure 1.

In the multi-stage, multi-product solid SCN prob-

Figure 1. Priority-based decoding procedure for the SFCSTP.
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lem, a solution consists of three segments. The solution
length is equal to the total length of segment one
jQ1j = jRj � (jSj + jIj + jM j), segment two jQ2j =
jP j � (jIj + jJ j + jN j), and segment three jQ3j =
jP j � (jJ j + jKj + jLj). Therefore, total length of the
solution is equal to jQ1j + jQ2j + jQ3j. We developed
the above procedure to the multi-stage, multi-product
solid SCN problem. The overall decoding procedure of
the three-stage multi-product solid SCN problem and
decoding procedures for the 3rd, 2nd, and 1st stages,
respectively, are presented in Figures 2-5.

3.2. Di�erential evolution algorithm
In this section, we develop the DE algorithm to use
for the problem. DE is a very simple and powerful
stochastic population-based search method, proposed
by Storn and Price [21], whose main objective is
functions optimization. Due to simplicity of implemen-
tation, reliability, and robustness, DE is considered as
an e�ective global optimization algorithm [22-25].

The key idea behind DE is a scheme for generating
trial vectors. Like other evolutionary-type algorithms,
it contains three basic operators: mutation, crossover,
and selection.

DE starts with an initial population of individ-
uals (candidate solutions) randomly selected from the

Figure 2. Decoding procedure for the priority based
encoding.

Figure 3. Decoding procedure for third segment of the
solution.

search space. It is usual to denote each individual by
a D-dimensional vector called a target vector.

Xi;G = (X1
i;G; � � � ; XD

i;G); i = 1; 2; � � � ; NP;
where NP denotes the population size and D denotes
the number of variables. Then, mutation and crossover
operators are applied to generate new candidate vectors
and a selection operator is employed to determine

Figure 4. Decoding procedure for second segment of the
solution.

Figure 5. Decoding procedure for �rst segment of the
solution.
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whether the o�spring or the parent survives in the
next generation. The above process is repeated until
a termination criterion is reached. According to Storn
and Price [21], the strategy of DE is described below.

3.2.1. Mutation operator
For each target vectorXi;G, i = 1; 2; � � � ; NP , a mutant
vector Vi;G is generated according to the following
scheme:

Vi;G = Xr1;G + F (Xr2;G �Xr3;G);

r1 6= r2 6= r3 6= i;

with randomly chosen indices and r1; r2; r3 2 f1; 2; � � � ;
NPg. Note that these indices have to be di�erent
from each other and from the running index i so that
NP must be at least 4. According to Storn and
Price [21], F 2 [0; 2] is to control the ampli�cation
of the di�erence vector.

3.2.2. Crossover operator
In order to increase diversity of the perturbed parame-
ter vectors, crossover is introduced after the mutation
operation. The target vector is mixed with the mutated
vector to get the trial vector Ui;G+1 according to the
following [21]:

Ui;j;G+1 =

8>>><>>>:
Vi;j;G+1 if rand(j) � CR or

j = rand(i)
Xi;j;G+1 if rand(j) > CR or

j 6= rand(i)

where rand(j) is the jth evaluation of a random
number uniformly distributed in the range [0; 1] and
randn(i) is a randomly chosen index from the set
f1; 2; � � � ; Ng. CR 2 [0; 1] is a crossover constant rate
that controls the diversity of the population. The more
the value of CR, the less the in
uence of the parent will
be.

3.2.3. Selection operator
To generate better o�spring for the next generation,
selection operation is performed between each individ-
ual and its corresponding trial vector by the following
greedy selection criterion:

Xi;G+1 =

(
Ui;G+1 if f(Ui;G+1) < f(Xi;G);
Xi;G otherwise;

where f is the objective function and Xi;G+1 is the
individual of the new population.

The steps of DE are shown in Figure 6.

3.3. Particle swarm optimization algorithm
The PSO was �rst introduced by Kennedy and Eber-
hart [26] to simulate the social behavior of animals
as a population based meta-heuristic. The PSO has

Figure 6. Steps of the DE algorithm.

rapid convergence speed and provides appropriate way
for performing global search [27]. In PSO, the social
interaction of a population is imitated in the sense that
the individuals, the so called particles, are encouraged
to move toward the best individual for �nding the best
position. Hence, the behavior of each individual is
formed by the personal and social information.

Each particle has its own position vector xi(t),
velocity vector vi(t), and best positions pi(t). First
random positions in range (0, positive number] and
with velocities between vmin and vmax are generated.
In each generation, the velocities and positions are
updated to their best encountered position and the
global best position encountered, pg(t), according to
the following equations:

vi(t) =w � vi(t� 1) + c1 � r1(t)� (pi(t)� xi(t))
+ c2 � r2(t)� (pg(t)� xi(t));

xi(t) = vi(t� 1) + vi(t);

where w is representative of the inertia weight, c1 is
cognition learning factor, c2 is social learning factor,
and r1(t) and r2(t) are two random deviates within
(0,1). The inertia weight is determined based on the
following equation:

w = wmax � (wmax � wmin)
st

� ct;
where wmax and wmin are higher and lower inertia
weight values, st and ct show the solving time and the
current time, respectively. The steps of PSO are shown
in Figure 7.

3.4. Gravitational search algorithm
GSA has �rst been introduced by Rashedi et al. [28]
and is a novel optimization algorithm based on New-
ton's laws of gravity and the law of motion. This

Figure 7. Steps of the PSO algorithm.
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algorithm has recently been used for many optimization
problems [23,29,30]. In GSA, each mass has four
attributes: position, inertial mass, active gravitational
mass, and passive gravitational mass. The position
of the mass is consistent with a solution of the op-
timization problem and moving the position of agent
results in an improvement of the solution's quality [31].
All masses are determined by using the evaluation
function.

To describe GSA in depth, consider a system with
N masses in which position of the ith mass is de�ned
as Eq. (17):

Xi = (x1
i ; � � � ; xdi ; � � � ; xni ) i = 1; 2; � � � ; N; (17)

where xdi denotes position of the ith mass in the dth
dimension. Then, the force of gravity on the mass
i from the mass j at a speci�c time t is de�ned as
Eq. (18):

F dij(t) = G(t)� Mi(t)�Mj(t)
Rij(t) + E � �xdj (t)� xdi (t)� ;

(18)

where Mi(t) and Mj(t) are the masses of agent i and
agent j, respectively, E is a small constant, Rij(t) is
the Euclidean distance between two agents i and j at
time t equal to Rij(t) = jjxi(t); xj(t)jj2, and G(t) is a
function of the initial value (G0) and time t; it will be
reduced with time given in Eq. (19):

G(t) = G0 exp
�
�� t

T

�
: (19)

In Eq. (3), � is a user-speci�ed constant, t is the current
iteration, and T is the total number of iterations [32].
The total force used for agent i at time t in the dth
dimension is presented in Eq. (20):

F di (t) =
NX

j2Kbest;j 6=i
randj � F dij(t); (20)

where randj is a uniformly distributed random variable
in the interval [0,1] and Kbest is the set of the �rst K
agents with the best �tness value and the biggest mass.
At the starting, Kbest is initialized at K0 and linearly
reduced step-by-step as time lapses.

Regarding the law of motion, the force that
accelerates the agent i is given as Eq. (21):

adi (t) =
F di (t)
Mii(t)

; (21)

whereMi(t) is the inertial mass of the agent i. The next
velocity and the next position of agent i in dimension
d are computed in Eqs. (22) and (23):

vdi (t+ 1) = randi � vdi (t) + adi (t); (22)

xdi (t+ 1) = xdi (t) + vdi (t+ 1); (23)

where in Eq. (6), randi is a uniformly distributed
random variable in the interval [0,1]. This random
number is used to give a randomized characteristic
to the search and vdi (t) and xdi (t) are its current
velocity and position, respectively. The masses of
agents are evaluated by the �tness function. Assuming
the equality of the gravitational and inertia mass, the
mass Mi(t) is updated by Eqs. (24), (25), and (26):

Mi = Mii i = 1; 2; � � � ; N; (24)

mi(t) =
fiti(t)� worst(t)
best(t)� worst(t) ; (25)

Mi(t) =
mi(t)PN
j=1mj(t)

; (26)

where fiti(t) represent the �tness value of the agent
i at time t, best(t) and worst(t) are the best and the
worst values of the �tness function at time t and for a
minimization problem are de�ned in Eqs. (27) and (28).

best(t) = min
j21;2;��� ;N fitj(t); (27)

worst(t) = max
j21;2;��� ;N fitj(t): (28)

The steps of GSA are shown in Figure 8.

4. Experimental design

4.1. Instances
To evaluate the e�ectiveness of the proposed algo-
rithms, we were required to generate some test prob-
lems. The data needed for this problem include the
number of products, the number of raw materials,
suppliers, plants, DCs, customers, conveyances, total
capacity of suppliers, plants and conveyance, total
demand of customers, range of variables, and �xed
costs. The experimental design is shown in Table 1.
Problem sizes are determined by the number of prod-
ucts, raw materials, suppliers, plants, DCs, customers,
and conveyances in each stage. Also, the utilization
rate of raw material r per unit of product p, namely urp,
is selected from a uniform distribution of U(0:5; 1:5).

Figure 8. Steps of the GSA.
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Table 1. Test problems characteristics.

Problem size Total
Esr

Total
Di

Total
Wj

Total
demand

Total
E(1)
m

Total
E(2)
n

Total
E(3)
l

Prob.�

type
Range of Range of

R�P�S�M�I�N�J�L�K variable
costs

�xed
costs

1�1�5�2�3�2�5�2�10 3000 2000 3000 1000 1500 1500 1500 A U(10,30) U(100,500)
1�1�10�2�5�2�10�2�20 6000 4000 6000 2000 3000 3000 3000 B U(10,30) U(100,500)
1�1�15�2�8�2�15�2�30 8000 6000 8000 3000 4500 4500 4500 C U(20,50) U(100,500)
2�2�20�2�10�2�20�3�40 11000 9000 11000 4500 7000 7000 7000 D U(20,50) U(100,500)
2�2�25�2�15�3�25�3�45 14000 12000 14000 5000 8000 8000 8000 U(20,50) U(100,500)
2�2�30�2�50�3�30�3�50 15000 13000 15000 7000 9500 9500 9500 U(30,60) U(100,500)
3�2�35�3�60�3�35�4�60 18000 15000 18000 9000 11000 11000 11000 U(30,60) U(100,500)
3�2�40�3�70�3�45�4�75 20000 18000 20000 11000 13000 13000 13000 U(30,80) U(100,500)
3�2�45�3�80�4�45�4�80 22000 20000 22000 13000 15000 15000 15000 U(40,100) U(100,500)
3�3�50�3�100�5�50�4�100 25000 23000 25000 15000 17500 17500 17500 U(40,100) U(100,500)
�Prob: Problem

4.2. Parameter setting
In this subsection, the e�ects of di�erent operators and
parameters of the proposed algorithms are presented.
To tune the operators and parameters of algorithms,
there are di�erent ways, of which one is the full factorial
design approach. It will test all possible combinations
of factors, but due to high cost and time is neither cost-
e�ective nor applicable. As we will see later, for DE,
there are 40 test problems, four 3-level factors, and one
3-level factor in our case, of which each should be run
for ten times. Therefore, the total number of runs for
the problem in DE is 40 � 33 � 10, which is equal to
10,800. In the same manner, the total numbers of runs
for the problems in PSO and GSA are equal to 874,800
and 32,400, respectively.

To decrease the number of experiments, several
experimental design methods have been proposed.
Among them, the Taguchi experimental design method
has successfully been employed for the analysis of many
di�erent operators and parameters without all the
combinations of the factors [33]. In Taguchi approach,
the orthogonal arrays are used for classifying the results
and analyzing a large number of variables with a small
number of experiments [16].

Taguchi [33] has employed a transformation of the
repetition data to another value, which is the measure
of variation. The transformation is the Signal-to-Noise
(S=N) ratio. The S=N ratio denotes the amount of
variations present in the response variable. The aim is
to maximize the signal-to-noise ratio. In the Taguchi
method, the S=N ratio of the maximization objectives
is as follows:

S=Nratio = �10 log10(objective function)2:

Here, the Taguchi approach is used for �ne-tuning the
parameters to get better robustness of the proposed
algorithms. The control factors of DE are as follows:
Popsize, mutation constant (F ), crossover constant

(CR). The control factors of PSO are Popsize,
minimum velocity (vmin), maximum velocity (vmax),
maximum value of inertia weight (wmax), minimum
value of inertia weight (wmin), and parameters (c1) and
(c2). The control factors of the GSA are as follows:
number of masses (N), initial Gravitational constant
(G0), constant (E), and user-speci�ed constant (�).
Table 2 shows the operators and parameters of the
proposed algorithms and their levels.

In order to solve this problem, the Relative Per-
centage Deviation (RPD) is applied for each instance.
The RPD is obtained by the following formula:

RPD =
Alogsol �Minsol

Minsol
� 100;

where Algsol and Minsol are the obtained objective
value and minimum objective value found from the
proposed algorithms for each instance, respectively.
Thus, the RPD measure in the proposed algorithms
is applied.

After obtaining the results of the test problems,
they are transformed into RPD measures. The RPD
measures are averaged and their values are shown in
Figures 9-11.

4.3. Experimental results
We applied searching time as stopping criterion to
be equal for all the algorithms which are equal to

Figure 9. Mean S=N ratio plot for each level of the
factors in DE.
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Table 2. Factors and their levels.

DE factors DE levels PSO factors PSO levels GSA factors GSA levels

Popsize A(1)-80 Popsize A(1)-50 N A(1)-50

A(2)-90 A(2)-55 A(2)-60

A(3)-95 A(3)-60 A(3)-70

F B(1)-0.45 vmin B(1)- (-2) G0 B(1)-40

B(2)-1 B(2)- (-1.5) B(2)-60

B(3)-1.5 B(3)- (-1) B(3)-80

CR C(1)-0.3 vmax C(1)-2.5 E C(1)-0.005

C(2)-0.4 C(2)-3 C(2)-0.007

C(3)-0.5 C(3)-3.5 C(3)-0.009

c1 D(1)-0.3 � D(1)-7

D(2)-0.4 D(2)-12

D(3)-0.5 D(3)-17

c2 E(1)-0.4

E(2)-0.5

E(3)-0.6

wmax F(1)-0.9

F(2)-0.85

F(3)-0.8

wmin G(1)-0.55

G(2)-0.5

G(3)-0.45

Figure 10. Mean S=N ratio plot for each level of the
factors in PSO.

0:6� (jQ1j+ jQ2j+ jQ3j) milliseconds. Therefore, this
criterion is a�ected by all problem characteristics.

In other words, any rise in the number of problem
size directly increases the searching time. Forty in-
stances for each of the ten problem sizes, i.e. totally 400
instances, are generated and are di�erent from the ones
used for calibration to avoid bias in the results. Each
instance is run ten times. In each algorithm, there are
forty instances considered for each of the ten problem
sizes and the instances are run ten times. Therefore, we
deal with 400 sets data for each algorithm by utilizing
RPD. Since we had to appraise the robustness of the

Figure 11. Mean RPD ratio plot for each level of the
factors in GSA.

algorithms in di�erent situations, the e�ects of the
problem sizes on the performance of algorithms have
been analyzed. The reciprocal relationship between the
capability of the algorithms and the size of problems is
illustrated in Figure 12. It shows the averages of the
mentioned 400 sets data for each algorithm and each
instance.

Based on the obtained results, we can conclude
that the proposed GSA is e�ective to solve the prob-
lems. In order to verify the statistical validity of the
results, we have performed an analysis of variance to
accurately analyze the results. The point concluded
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Figure 12. Means plot for the interaction between each
algorithm and problem size.

Figure 13. Means plot and LSD intervals for the
algorithms.

from the results shows a clear statistically meaningful
di�erence between the performances of GSA, DE, and
PSO. The means plot and LSD intervals for all the
algorithms are shown in Figure 13.

5. Conclusions and future research directions

In this paper, we proposed a mixed-integer program-
ming model for the multi-stage, multi-product solid
supply chain network design problem. The objective
was minimization of the total cost of supply chain
network. To solve this NP-hard problem, three meta-
heuristic algorithms, namely di�erential evolution, par-
ticle swarm optimization, and gravitational search
algorithm, were developed. Because of the dependency
of the meta-heuristic algorithms on the proper selection
of parameters, the experimental design approach was
applied. The computational results demonstrate the
convergence of GSA to solve the generated instances
and its higher performance compared with di�erential
evolution and particle swarm optimization algorithms
in all problem sizes. For future research directions, new
algorithms based on other meta-heuristic algorithms
can be developed and compared with the proposed
algorithms in this paper. Uncertainties in the model
parameters and variables can be extended. Fur-
thermore, for tuning the parameters of these algo-
rithms, we can use the response surface methodol-
ogy.
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