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Abstract. Dealing with more than one response in the process optimization has been a
great issue in recent years; therefore, multiple-response optimization studies have grown
in the published works. In the common problems, there are some input variables which
can a�ect output responses, but optimization can be more complex and more real when
the responses have correlation with each other. In such problems, the analyst should
consider the correlation structure in addition to the e�ects of input variables. In some
cases, response variables may emerge by di�erent distributions from the normal ones, which
can be analyzed by the proposed method. Moreover, in some problems, response variables
may have di�erent levels of importance for the decision maker. In this study, we try to
propose an e�cient method to �nd the best treatment in an experimental design, which
has di�erent weights for correlated responses ,either cardinal or ordinal. Also, a heuristic
method is proposed to deal with problems that have a considerable number of correlated
responses, or treatments. The results of some numerical examples con�rm the validity of
the proposed method. Moreover, a real case of air pollution in Tehran is studied to show
the applicability of the proposed method in the real problems.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, due to the growth of industry and need
to consider more than one output in the experiments,
multiple responses optimization has been discussed in
many articles. Accordingly, several methods have been
proposed to optimize problems with multiple quality
characteristics. Each method has its properties and the
analyst should choose the best approach with regard
to the problem issue. In some problems, all the
responses have the same value for us and �nding the
best treatment will not be a very di�cult problem. On
the other hand, there are so many multiple-response
problems with di�erent levels of response importance
in the real world cases. In these problems, a response
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may be more important for the analyst than others and
the analyzer may be interested in �nding the values of
controllable factors with the least deviation from the
more important response target.

By study of the literature, it can be seen that
there are many methods to optimize multiple-response
problems when each response has a weight. But, in
most of them, the correlation between responses have
been ignored. For example, Jeyapaul et al. [1] used the
genetic algorithm to obtain weights for each response
and optimized them. However, they assumed that re-
sponses were independent from each other. Chiao and
Hamada [2] proposed a probabilistic method to study
problems with correlated responses, but there is a ques-
tion about the interpolating weights of each response in
such method. Maghsoodloo and Chang [3] developed
the quadratic loss function and signal to noise ratio for
a bivariate response when both quality characteristics
were from the same type. They interpolated social
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quality loss for each response to consider the impor-
tance of each quality characteristic. Maghsoodloo
and Huang [4] focused on mixed bivariate responses
and developed quadratic loss function and signal to
noise ratios for them. Ozdemir and Maghsoodloo [5]
extended quadratic quality loss function and signal to
noise ratios for trivariate cases. Wu [6] proposed a
method by considering the double-exponential desir-
ability function, which has been modi�ed based on
Taguchi's loss function, to �nd the optimum values
for correlated multiple quality characteristics. Ko
et al. [7] suggested a new loss function method to
accommodate robustness, quality of predictions, and
bias in a single framework. Importance of each
response was not considered in this approach. Some
studies used Principal Component Analysis (PCA) to
transform correlated responses to independent ones
and then performed optimization. Antony [8] used
only the �rst PC, but Liao [9] considered all PC's
and proposed weighted principal component method.
Datta et al. [10] performed PCA method and then
utilized the genetic algorithm. Hejazi et al. [11]
applied goal programming to model and optimize
multi-response surfaces. They used group decision
making to obtain the weights of response variables.
In many publications, arti�cial neural network has
been used to estimate values of responses for non-
performed treatments. For example, Noorossana et
al. [12] used an arti�cial neural network to estimate
the quantitative and qualitative response functions
and then performed the optimization step by using
genetic algorithm. Salmasnia et al. [13] used neuro-
fuzzy and PCA to make a desirability function to
optimize correlated multiple responses. Bashiri and
Bakhtiarifar [14] proposed an optimality probability
index to choose the best treatment in an experimental
design with correlated normal responses. With regard
to this information, it can be concluded that there
is lack of an appropriate and practical method which
can consider both cardinal and ordinal importance of
correlation structure and responses.

Dealing with non-normal multivariate responses
can be very problematic for most researchers. To
simplify these problems for analysis, a transformation
can be applied to normalize non-normal responses.
Niaki and Abbasi [15] transformed multi-attribute data
in a way that their marginal probability distributions
had almost zero skewness. Riani [16] introduced
alternative tests which did not require the maximum
likelihood estimates of the transformation parameters.

Review of previous works shows that a compre-
hensive study on the multiple correlated non-normal
responses optimization with di�erent response weights
does not exist; therefore, this study attempts to
propose a method to consider the mentioned problem.
To show the e�ciency of the proposed method in real

cases, an example about the air pollution problem of
Tehran is studied.

The next section contains the proposed method,
which starts with model statement in three cases
of responses without weights, cardinally weighted re-
sponses, and ordinally weighted responses for normal
and non-normal ones. Then, estimation of the needed
parameters is explained in Section 3 and afterwards, a
heuristic algorithm is presented to �nd the optimum
treatment using the proposed indices in Section 4
section. In Section 5, some numerical examples of
di�erent cases and a real problem are given for better
illustration of the proposed approach. Finally, the
last section includes the conclusion and future research
directions.

2. Proposed method

The aim of this method is to extend the optimality
probability index, which has previously been proposed
by Bashiri and Bakhtiarifar [14]. The presented
index tries to �nd the best treatment by calculating
its optimality probability in comparison with other
treatments. In their proposed index, it is assumed that
all responses are normally distributed while there is
no a priori information of responses. In real cases, we
deal with non-normal responses while some of them
are more important than others; therefore, in this
study, the optimality index is extended to be calculated
in more real situations. The proposed method is
explained for both normal and non-normal cases in
three states of response importance. In a nutshell,
the contributions of this paper, compared to Bashiri
and Bakhtiarifar [14], can be mentioned as the ability
of incorporating cardinal and ordinal weights as well
as considering non-normal distribution for correlated
responses.

2.1. Normally distributed responses
Suppose that we have an experimental design with
n treatments and m normally distributed correlated
responses. We interest to �nd the best treatment
to achieve optimum values for the responses. To
do this, we de�ne a multivariate probability for each
combination which shows the probability of being op-
timum in all responses between all the treatments. As
mentioned before, the proposed method is considered in
three states of non-weighted, cardinally weighted, and
ordinally weighted of responses, which are described in
the following subsections.

Each response can be of a Smaller The Better
(STB), Larger The Better (LTB), or Nominal The Best
(NTB) type. In the case of STB responses, it is obvious
that a treatment which has smaller values can dominate
another one with larger values of responses. We can
state this by de�ning a probability measure as stated
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below:

PIk;i = P (y1k < y1i; :::; ymk < ymi) ; (1)

where PIk;i is the probability that kth treatment is
better than ith treatment and ymi is the mth response
value corresponding to the ith treatment.

To �nd the best treatment, the analyzer should
�nd the Optimality Probability Index (OPI) proposed
by Bashiri and Bakhtiarifar [14] for each treatment as
follows:

OPIk =
n
�
i=1
i 6=k

P (y1k < y1i; :::; ymk < ymi); (2)

where OPIk is the optimality probability index of kth
treatment.

Similarly, we can �nd OPI for problems with
LTB-type responses. In such problems, the best
treatment should have larger response values than
other treatments. In the case of NTB responses, we
need to �nd absolute target corrected values for each
response in each treatment. The treatment with the
minimum absolute deviation value from its target is
our favorite one. The OPI for the kth treatment is
product of probabilities that shows k is better than
other treatments:

OPIk =
n
�
i=1
i 6=k

P
�jy1k � t1j < jy1i � t1j; :::; jymk � tmj

< jymi � tmj�; (3)

where ymi is the mth response corresponding to the ith
treatment and tm is target value for the mth response
when its type is Nominal The Best (NTB).

The multivariate probability function of absolute
deviation for NTB responses can have another distribu-
tion rather than the normal one. So, calculating Eq. (3)
may be very di�cult. To solve this problem, we can
transform NTB responses into STB-type by using the
deviation terms as new variables. This transformation
can violate the normality assumption. So, we should
use another transformation on new STB values to
change their distribution into the multivariate normal
one.

In some cases, when we deal with some responses
with di�erent types, for example when the problem has
some LTB and STB responses, we can use negative
values for LTB-type response(s) to transform them into
STB or use a mixed multivariate probability which can
be obtained by changing Eq. (2).

2.1.1. Multiple responses without weights
In case of responses with the same importance, the
proposed Bashiri and Bakhtiarifar's OPI [14] can be
used. Moreover, other methods from literature, such
as Chiao and Hamada [2], can be utilized as well.

Figure 1. The con�dence region for the mentioned
probability.

2.1.2. Multiple responses with cardinal weights
In some problems, responses have di�erent levels of
importance for the analyzer. It means that one or
more responses may be more attractive than the others.
In these cases, we cannot use the previous equations
to �nd the best treatment, because the importance
of responses has been ignored in the OPI index. So,
weights of responses should be considered in a new
developed optimality index.

For better comprehension, describing an example
can be helpful. Suppose that there is an experimental
design with two correlated normal STB-type responses.
The mean array of the responses for the kth treatment
is computed as [3 5], while it is equal to [10 1] for the ith
treatment. The covariance matrix of the responses in

both of the treatments is equal to
�
10 2
2 5:1

�
. Figure 1

illustrates the 95% con�dence region for P (y1k <
y1i; y2k < y2i).

It can be concluded that the kth treatment has
better value in the �rst response, but worse in the
second one. In this situation, we expect that allocating
greater weight to the �rst response would increase the
desired probability while allocating greater weight to
the second response would decrease it. At �rst, we
transform the weights through dividing them by the
minimum weight. Then, we perform a t-test for each
response. If the test shows that treatment k has better
value in the nth response, then we multiple yni by the
corresponding transformed weight; but if the test shows
that treatment k has worse value in the nth response,
then we multiple ynk by the corresponding transformed
weight. Therefore, in the mentioned example, the
weighted probability for treatment k to be better than
treatment i; WPIk;i is calculated as follows:

WPIk;i = P (y1k < w1y1i; w2y2k < y2i) ; (4)

where wj is the transformed weight of the jth response.
It is obvious that PIk;i is a special version of WPIk;i for
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Figure 2. The con�dence regions for the WPIki based on
di�erent weights.

equal weights. Figure 2 shows various 95% con�dence
regions based on di�erent weights for WPIk;i in the
mentioned example.

In the case of LTB and NTB responses WPIk;i is
obtained by the same logic. Therefore, the Weighted
Optimality Probability Index (WOPI) for the kth
treatment can be computed by multiplying WPIs as
follows:

WOPIk =
n
�
i=1
i 6=k

WPIk;i: (5)

2.1.3. Multiple responses with ordinal weights
In case of ordinal weights, we deal with responses
which have di�erent levels of importance de�ned by
ranks. It means that order of the responses shows
the importance of them. It is clear that in such
cases, we do not have cardinal weight value for each
response to �nd weighted optimality probability like
the aforementioned equations. In this situation, we
should consider responses ranking in the optimality
probability calculation. For better comprehension,
suppose that all of the responses are of the STB type.
First, we sort responses based on their importance in
a descending order and put them in a set named J .
Then, to �nd the Ordinal Optimality Probability Index
(OOPI) for the kth treatment, we should calculate
the probability of the kth treatment to have a smaller
value for J(1) response as the most important response
versus other possible treatments. If the most important
response (J(1)) value for the kth treatment is statis-
tically equal to its value in the ith treatment, then
we should �nd the probability for the kth treatment
to have a smaller value of J(2) than that of the ith
treatment, and so on. Therefore, to �nd OOPI, we
need to perform a t-test to verify the hypothesis of
equality of J(1) values for the treatment and other
ones. If the equality cannot be rejected, then another
hypothesis test should be done on J(2) value, and so

on. After selecting the proper response based on this
method, the e�ect of other responses from the measure
should be eliminated. To do this, we �nd proper
weight coe�cients, wj , for other responses such that
the equality t-test on them in two compared treatments
cannot be rejected and it has an enough great p-value.
Note that the placing side of weight coe�cients should
be selected based on the explanations in the previous
subsection. For better understanding, consider the
example with two STB correlated responses in the
previous subsection. The hypothesis t-test on the
equality of y1k and Y y1i is rejected by a near zero p-
value. Therefore, we should �nd a proper weight for the
second response to eliminate its e�ect in the proposed
measure as follows:

OPk;i = P (y1k < y1i; w2y2k < y2i) : (6)

By iterating these steps for all other treatments, the
OOPIk can be calculated as follows:

OOPIk =
n
�
i=1
i 6=k

OPk;i: (7)

2.2. Other multivariate distributions
Suppose that the response values have another mul-
tivariate distribution rather than the normal one. In
such problems, an idea is using a transformation to
normalize responses before optimization stage. In
this paper, NORTA inverse method, proposed by
Niaki and Abbasi [17], is used to transform correlated
values into normal ones. For better comprehension,
consider normal to anything (NORTA) method (Cario
and Nelson [18]) which can generate a k-dimensional
random vector X where Xi has an arbitrary cumulative
distribution function FXi with correlation matrix. In
this situation, a transformation on a k-dimensional
standard multivariate normal vector Z with correlation
matrix

P
z should be performed to generate vector X

as follows:

X =

0BBB@
F�1
X1

[�(z1)]
F�1
X2

[�(z2)]
...

F�1
Xk [�(zk)]

1CCCA ; (8)

where � is the cumulative distribution function of a
univariate standard normal. To �nd the correlation
between Xi and Xj , the following equation should be
solved for each pair of variables:

E(XiXj) = E
�
F�1
Xi [�(zi)]F�1

Xj [�(zj)]
�

=
Z +1

�1

Z +1

�1
F�1
Xi [�(zi)]F�1

Xj [�(zj)]

'�z(i;j)(zi; zj)dzidzj : (9)
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Since these equations are usually unsolvable for many
marginal distributions, Cario and Nelson [18] presented
some theorems to help researchers do this. As another
alternative, the simulation can be used to estimate the
covariance matrix.

By such descriptions, as can be deduced, the
NORTA inverse method transforms a vector of multi-
attribute variables such that they have multivariate
normal distribution. The following formula is used for
this purpose:

Y = [Y1; Y2; :::; Yk]T =
�
��1 (FX1(x1)) ;

��1 (FX2(x2)) ; :::;��1 (FXk(xk))
�T
: (10)

Thereafter, the covariance matrix of the generated
normal attributes is estimated through the simulation.

2.3. Parameter estimation
In order to calculate the previous equations, we should
estimate parameters for multivariate normal distribu-
tion, in each treatment. To do this, regression can be
used for each parameter when the hypothesis of its
normality cannot be rejected. Eq. (11) shows multi-
variate normal distribution where Y = [y1; y2; :::; ym],
M = [�1; �2; :::; �m], and

P
= b�yiyjc (i = 1; 2; :::;m;

j = 1; 2; :::;m) are response vector, mean vector, and
covariance matrix, respectively:

f(y1; y2; :::; ym)=
1

(2�)
m
2 jP j 12 e(� 1

2 (Y�M 0)P�1(Y�M));
(11)

where jP j is determinant of covariance matrix and
(Y �M)0 is transpose of (Y �M). As can be seen, we
need to estimate mean and variance for each response
and covariance for each couple of responses in each
treatment. The least square estimators are as follows:

�̂i = x�i; i = 1; :::;m; (12)

log(�̂2
i ) = x�i; i = 1; :::;m; (13)

tanh�1(�̂ij) = xij ; 1 � i � j � m; (14)

where x is a row vector of controllable variables and
�i, �j , and ij are the column vectors that their com-
ponents determine the impact of associated variables.

To ensure positive values for variances, logarith-
mic model is used. On the other hand, as correlation
coe�cients should be between -1 and 1, we use the
inverse hyperbolic tangent transformation [19], which
is de�ned as:

tan�1(�) =
1
2

log
(1 + �)
(1� �)

: (15)

Weighted optimality probability index can be cal-

Figure 3. Computational time against the number of
controllable factors.

culated for each possible treatment with respect to
other treatments by estimating these parameters for
responses corresponding to each treatment.

In the case of non-normal parameters, arti�cial
neural network can be a good method to estimate
parameters for any possible treatment. Note that the
number of neurons can change with regard to each
design.

2.4. The proposed heuristic algorithm
Calculation of WOPI or OOPI for all possible factor-
level combinations may be very time consuming, espe-
cially when we deal with sizeable number of responses
and controllable factors.

For better comprehension, suppose that we want
to calculate WOPI for some problems with di�erent
numbers of controllable factors. Figure 3 shows esti-
mation of computational time to solve such problems
on a notebook with an AMD E-350 processor and 4
gigabytes of RAM when all factors have 3 levels. To
estimate the computational time, the algorithm was
performed for few numbers of controllable factors and
then, the computational time was estimated for large
numbers of factors using the regression.

It can be seen that by increasing the number
of factors, calculation time increases exponentially.
So, a heuristic algorithm can be useful to reduce
computational time. As another solution for the
dominating time problem, we can use an arti�cial
neural network. At �rst, we need to calculate WOPI
for some treatments to train our network. Then, we can
use the trained ANN instead of WOPI equation, but
it is clear that this approach may cause non-negligible
errors.

The proposed heuristic algorithm tries to �nd the
most probable treatment in each iteration of prob-
ability calculation. By this approach, the solution
space decreases in each iteration and, consequently, the
number of calculations can be reduced. The proposed
approach is described in Table 1 as pseudo-code.

Note that the proposed heuristic approach can be
extended for problems with ordinal weights as well.
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Table 1. Pseudo-code of the proposed heuristic algorithm to �nd the best combination.

Transform all responses to STB type;
Find the estimation equations for the parameters of multivariate normal probability or train ANN to estimate responses;
Select a random factor-level combination k;
Calculate multivariate normal probability parameters for responses in combination k;
Calculate WOPIk;

Set k� = k, and WOPI� = WOPIk;
Set the number of desired combinations to check l;
Select l combinations with minimum WPIk;j values and store in J ;
repeat

for k = J(1) to J(l)
Calculate multivariate normal probability parameters for responses in combination k;
Calculate WOPIk;
If WOPIk > WOPI�, set k� = k and WOPI� = WOPIk;

Next k;
Select l combinations with minimum WPIk;j value and store in J ;

Until WOPI� does not change.

3. Numerical examples

In this section, two numerical examples from the
previous articles are studied according to the proposed
method and the results are compared with results of
the reference articles. Then, a simulated numerical
example with large number of factors is presented to
show e�ciency of the proposed heuristic algorithm.

3.1. Example 1
As the �rst example, consider an experimental design
described by Chiao and Hamada [2]. The goal is
to minimize the imbalance of a plastic wheel cover
the component when we deal with two NTB quality
characteristics: total weight (Y1) and the balance of the
component (Y2). There are seven controllable factors
with two levels which have e�ect on balance of the
component. Table 2 shows the values of two correlated
responses in the 8 runs.

The �rst step is using Johnson transformation [20]
to change NTB responses into STB-types in order to
use the proposed method as mentioned in Section 2.
Eqs. (16) and (17) show the proper transformations
for two responses and as can be seen, Z1 and Z2 are
transformed into STB-type responses:

Z1 =0:387228 + 0:365089

� Ln
� jY1 � �1j � 0:0888751

21:2924� jY1 � �1j
�
; (16)

Z2 =0:122266 + 0:389592

� Ln
� jY2 � �2j � 0:0863844

1:26185� jY2 � �2j
�
: (17)

Now, the least square estimators can be written for
multivariate distribution parameters using Eqs. (12)-
(15) as follows:

�̂1 = 0:079� 0:288x4 + 0:643x5 � 0:297x7;

�̂2 =�0:047+0:109x3+0:241x1+0:763x5�0:486x7;

log(�̂2
1)=�1:060�0:390x1+0:202x4�0:267x7;

log(�̂2
2)=�0:870�0:282x2;

tanh�1(�̂1;2)=�0:106+0:559x1�0:318x5�0:494x7:
(18)

Table 3 shows three best factor-level combinations for
this example. It can be concluded from Eqs. (18) that
factor F is not signi�cant and can be ignored in the
estimation of parameters. The optimal combination
by the proposed method is (-1,-1,-1,-1,-1, ,1) with
optimality probability index of 0:2326 � 10�12, where
an insigni�cant factor has been denoted by \ ". To
ensure that our proposed WOPI can �nd the true
order of treatments, we can consider the same weights
for responses and use Eq. (5) to calculate WOPI's.
Moreover, the proportion of conformance, proposed by
Chiao and Hamada [2], is calculated. It can be seen
that the OPI and WOPI results are the same.

Now, suppose that the �rst response is important
for us. Therefore, we deal with a multi-response op-
timization problem with ordinal response weights. As
described before in section 2, to �nd the best treatment,
we should calculate OOPI for each of them. Table 4
illustrates the �rst three treatments with corresponding
ordinal optimality probability indices.
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Table 2. Responses values in Example 1.

RUN F1 F2 F3 F4 F5 F6 F7 Replicates
1 -1 -1 -1 -1 -1 -1 -1 Y1 711.9 713.4 712.3 712.4 711.9

Y2 0.59 0.59 0.47 0.71 0.63

2 -1 -1 -1 1 1 1 1 Y1 725 720.1 711.8 723.9 720.9
Y2 0.7 0.91 1.13 0.79 0.78

3 -1 1 1 -1 -1 1 1 Y1 711.6 711.7 711.3 712.1 711.7
Y2 0.56 0.44 0.46 0.53 0.46

4 -1 1 1 1 1 -1 -1 Y1 733.7 724.1 732 732.7 733.3
Y2 1.5 1.55 1.38 1.45 1.45

5 1 -1 1 -1 1 -1 1 Y1 725.4 721.6 722.6 723.1 721.1
Y2 1.25 1.36 1.51 1.22 1.25

6 1 -1 1 1 -1 1 -1 Y1 728.7 721.1 722.9 723 719.7
Y2 1.17 0.97 0.98 0.97 0.73

7 1 1 -1 -1 1 1 -1 Y1 726.6 731.4 731.4 729.6 731.3
Y2 1.52 1.58 1.61 1.4 1.57

8 1 1 -1 1 -1 -1 1 Y1 714.3 714.4 713.6 716.3 714.6
Y2 0.57 0.51 0.44 0.44 0.56

Table 3. Weighted optimality probability index versus POC for the best three treatments in Example 2.

A B C D E G POC OPIk Weighted OPIk
-1 -1 -1 -1 -1 1 0.5332 3:4843� 10�13 3:4843� 10�13

-1 1 -1 -1 -1 1 0.71216 8:6260� 10�15 8:6160� 10�15

-1 -1 1 -1 -1 1 0.5332 1:1306� 10�18 1:1306� 10�18

Table 4. The best three treatments with the considered
ordinal weights in Example 1.

A B C D E G OOPIk
-1 -1 -1 1 -1 1 3:1880� 10�173

1 1 -1 -1 -1 1 5:7665� 10�295

-1 1 -1 -1 -1 1 5:1807� 10�304

To verify the e�ciency of OOPI, WOPI with
appropriate weights can be used. For this example,
if we choose w1 and w2 0.9 and 0.1, respectively, it can
be seen that treatment (-1,-1,-1, 1,-1, ,1) with a WOPI
of 4:0041� 10�38 is the most probable one.

3.2. Example 2
Consider a simulated design which has nine controllable
factors with three levels for each of them and two STB
correlated responses. In such a problem, because of
the number of factors and their levels, using a heuristic
algorithm is necessary. Table 5 shows the calculated
parameters for each treatment.

The least square estimators for multivariate nor-
mal distribution parameters can be found below:

�̂1 =6:518 + 0:494x1 � 0:271x2 � 1:758x3

+ 0:447x2
3 + 0:643x5 + 0:337x8x9;

�̂2 =114:104 + 2:241x4 � 7:825x6 � 7:822x8

+ 4:587x6x8;

log(�̂2
1) =� 2:011� 0:054x1x2 + 0:091x7x9

+ 0:065x8x9;

log(�̂2
2) = 1:701� 0:216x1 � 0:223x7 � 0:077x4x6;

tanh�1(�̂1;2) = �1:132 + 1:165x1x6 + 0:125x2x3:
(19)

Solving such problem on a notebook with an AMD E-
350 dual-core processor and 4 gigabytes of RAM can
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Table 5. The calculated parameters in each treatment for Example 2.

Treatment A B C D E F G H I �1 �2 �2
1 �2

2 �(1;2)

1 1 1 1 1 1 1 1 1 1 4.1470 102.2243 0.0108 15.1017 -0.2968
2 1 1 1 1 2 2 2 2 2 3.3581 112.8818 0.0068 1.9950 -0.5470
3 1 1 1 1 3 3 3 3 3 3.8452 114.4757 0.0042 6.3085 0.8369
4 1 2 2 2 1 1 1 2 2 2.6830 103.8821 0.0079 8.8593 -0.2996
5 1 2 2 2 2 2 2 3 3 2.3656 95.9612 0.0020 1.8893 -0.7966
6 1 2 2 2 3 3 3 1 1 2.7403 109.2219 0.0028 3.4271 -0.8795
7 1 3 3 3 1 1 1 3 3 4.2255 102.5917 0.0204 15.2438 0.9620
8 1 3 3 3 2 2 2 1 1 3.2540 106.0403 0.0034 7.8308 0.3466
9 1 3 3 3 3 3 3 2 2 2.1211 100.5824 0.0054 2.8403 0.4179
10 2 1 2 3 1 2 3 1 2 3.1943 103.1929 0.0040 1.3277 -0.2117
11 2 1 2 3 2 3 1 2 3 4.3310 109.2780 0.0192 2.1912 0.3644
12 2 1 2 3 3 1 2 3 1 3.1498 106.6018 0.0019 7.9685 0.6525
13 2 2 3 1 1 2 3 2 3 3.9268 112.3448 0.0011 1.3944 -0.3144
14 2 2 3 1 2 3 1 3 1 3.1411 108.5867 0.0073 9.6146 -0.0389
15 2 2 3 1 3 1 2 1 2 3.5400 98.00457 0.0045 3.2939 -0.0311
16 2 3 1 2 1 2 3 3 1 3.6162 107.0205 0.0036 0.6142 -0.9760
17 2 3 1 2 2 3 1 1 2 3.3618 97.19684 0.0013 12.3763 0.8491
18 2 3 1 2 3 1 2 2 3 3.1058 106.5303 0.0060 6.0686 -0.9593
19 3 1 3 2 1 3 2 1 3 4.5658 102.2799 0.0122 1.0111 0.5382
20 3 1 3 2 2 1 3 2 1 3.5561 101.0539 0.0040 6.8441 0.1881
21 3 1 3 2 3 2 1 3 2 4.8375 101.3454 0.0075 3.4844 -0.0213
22 3 2 1 3 1 3 2 2 1 3.6075 103.2989 0.0051 0.0620 0.9199
23 3 2 1 3 2 1 3 3 2 3.7011 96.95306 0.0043 3.2635 -0.9215
24 3 2 1 3 3 2 1 1 3 3.9105 104.8708 0.0003 5.3679 0.0167
25 3 3 2 1 1 3 2 3 2 3.2120 107.8587 0.0044 17.8818 0.9324
26 3 3 2 1 2 1 3 1 3 2.6008 103.7729 0.0004 0.7953 0.5587
27 3 3 2 1 3 2 1 2 1 4.6149 102.5406 0.0093 1.3074 -0.2479

Table 6. Optimality probability for the best three treatments in Example 3.

Rank A B C D F G H I OPIk WOPIk
1 1 3 2 1 3 3 1 1 4:8997� 10�128 4:8997� 10�128

2 1 3 2 1 3 2 1 1 1:0896� 10�144 1:0896� 10�144

3 1 3 2 1 3 1 1 1 3:1330� 10�169 3:1330� 10�169

take much time, i.e. about 3340 hours. Therefore, it
is better to use the proposed heuristic approach. By
considering 0.5 as weight value for both responses, the
proposed algorithm is coded in MATLAB. After about
3823 seconds as computational time, it shows that
optimum combination is (1,3,2,1, ,3,3,1,1) with WOPI
of 4:8997�10�128 between 6561 possible combinations.
The OPI values con�rm our results. Table 6 shows
optimality probability values for the best three combi-
nations.

3.3. Example 3
Consider a 23 full factorial design with three correlated
STB type responses which are generated using NORTA

method. Each treatment has four replicates per each
response. Because there is no other possible treatment,
we do not need to �nd estimators for parameters.
Table 7 shows experimental design and response values
for this example.

As expressed in Section 2, in such problems,
�rst, we can use NORTA inverse method to transform
multivariate exponential responses into normal ones
and then calculate the optimality probability index.
Based on the transformed response values, mean,
variances and correlation coe�cients can be calculated
for each treatment. Table 8 shows multivariate normal
parameters for each treatment.

After computing normal parameters, we can cal-
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Table 7. Experimental design with correlated exponential response in Example 3.

Treatment A B C Y1 Y 2 Y 3
1 1 -1 -1 0.08 0.14 0.16 0.22 2.82 5.87 6.45 12.31 55.53 55.74 56.44 62.15
2 1 1 1 0.35 0.39 0.40 0.42 19.34 20.10 23.61 23.95 175.70 177.25 223.08 226.15
3 -1 -1 1 0.54 0.55 0.61 0.89 25.09 33.99 42.37 46.04 307.42 334.23 383.93 386.09
4 1 1 -1 1.00 1.10 1.17 1.19 50.06 56.37 56.60 70.88 399.63 425.76 441.15 487.42
5 1 -1 1 1.25 1.47 1.50 1.88 78.10 87.93 91.01 92.44 600.79 666.50 714.33 806.93
6 -1 -1 -1 2.22 2.31 2.64 2.76 100.75 111.85 116.95 119.34 1035.33 1076.38 1110.87 1240.80
7 -1 1 -1 2.90 3.69 3.92 5.26 137.29 139.16 149.00 164.05 1482.25 1637.67 1689.20 1726.50
8 -1 1 1 5.40 6.66 8.50 16.15 233.06 233.16 255.92 311.97 1762.07 2062.43 3002.15 3641.25

Table 8. Mean, variances, and correlation coe�cients for normalized responses in Example 3.

Treatment �1 �2
1 �2 �2

2 �3 �2
3 �(1;2) �(1;3) �(2;3)

1 -1.33 0.24 -1.81 0.12 -1.37 0.13 0.98 0.87 0.75
2 -0.75 0.01 -1.28 0.19 -0.70 0.01 0.90 0.96 0.80
3 -0.39 0.03 -0.56 0.00 -0.40 0.00 0.84 0.66 0.92
4 -0.04 0.00 -0.42 0.01 -0.29 0.00 0.80 0.88 0.96
5 0.27 0.00 -0.11 0.01 -0.01 0.01 0.85 0.93 0.96
6 0.45 0.00 0.28 0.03 0.16 0.00 0.98 0.93 0.96
7 0.80 0.13 0.70 0.02 0.93 0.04 0.76 0.87 0.94
8 2.08 0.51 1.67 0.23 1.69 0.27 0.96 0.94 0.95

Table 9. OPI values for each treatment in Example 3.

Treatment OPI

1 0.2887
2 0.0090
3 3:9543� 10�8

4 1:3368� 10�15

5 2:5850� 10�33

6 1:2941� 10�61

7 3:0134� 10�61

8 2:1035� 10�35

culate optimality probability index for each treatment.
Table 9 shows OPI for each treatment. It can be
seen that the �rst treatment is the best factor-level
combination by a probability of 0.2887.

3.4. A real case
To study the applicability of the proposed method,
consider a real case of air pollution in Tehran. Some

of the important factors, including the number of
taxies (NTX), the number of minibuses (NMB), the
number of bus lines (NLB), the length of Lines for
Bus Rapid Transportation in kilometer (LBRT), the
length of metro lines in kilometer (LML), the Number
of Metro Trains (NMT), and the Number of Metro
Stations (NMS), were collected from 2009 to 2013 and
are represented in Table 10 (from o�cial webpage
http://tmicto.tehran.ir). Moreover, three correlated
air pollution indices including CO, O3, and NO2 were
gathered in the mentioned period and are illustrated in
Table 11 (from o�cial webpage http://air.tehran.ir).

The goal is to �nd the year with minimum
polluted air by considering w =

�
0:6 0:1 0:3

�
as

weights array. By applying the proposed method, it
can be seen that 2013 is the best year with WOPI equal
to 5:6864 � 10�7. As another scenario, r =

�
1 3 2

�
is selected as order of responses. By calculating OOPI
for all years, 2013 with OOPI=0.1656 is selected as the
best year. Table 12 shows the WOPI and OOPI results
for the years.

Table 10. The values of some important factors of air pollution indices in the di�erent years.

Year NTX NMB NLB LBRT LML NMT NMS
2009 70460 1356 359 62.1 106.2 95 64
2010 72370 982 308 85 125 105 70
2011 78857 1442 263 105 129 129 76
2012 77949 1285 246 114.2 140 148 84
2013 77949 1144 244 158.4 152 148 85
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Table 11. The mean, variance, and correlation coe�cients of indices in di�erent years.

Year �CO �2
CO �O3 �2

O3 �NO2 �2
NO2 �(CO;O3) �(CO;NO2) �(NO2;O3)

2009 48.022 525.639 48.315 1478.529 23.734 97.054 -0.170 0.203 0.048

2010 50.756 641.287 42.296 1259.854 46.476 1044.879 -0.036 0.198 -0.392

2011 39.223 210.866 35.739 396.605 59.917 1096.366 -0.010 0.225 -0.085

2012 39.330 273.022 37.189 433.455 55.074 616.104 0.004 0.258 0.040

2013 36.732 206.044 41.417 339.423 54.636 705.961 -0.105 0.369 -0.253

Table 12. WOPI for each year.

Year WOPI OOPI

2009 1:2139� 10�8 0.0261
2010 3:8470� 10�9 0.0074
2011 4:2432� 10�9 0.1284
2012 4:1819� 10�9 0.1262
2013 5:6864� 10�7 0.1656

Although there are several nuisance factors such
as rainfall, wind speed, and temperature inversion
which have e�ect on the air pollution, it can be seen
that increase in LML and LBRT as well as decrease
in NMB could lead the indices to a better point in
2013. Therefore, based on the results, there is hope
that continuing these transportation policies leads to
decrease in the air pollution.

Note that there is not any proper alternative
method to consider weights as well as correlation struc-
ture to compare the results. On the other hand, using
methods which have independent viewpoints ignores
the correlation structure and thus may lead to a false
result.

4. Conclusions

Because of di�culty in considering correlated multiple
responses in the optimization problems, there are a few
studies in this �eld. However, such problem would be
more di�cult when the responses have not the same
importance for us. In these cases, the signi�cance of
each response should be interpolated in the model as
weights, either ordinal or cardinal. In this paper, we
developed a probabilistic index to �nd the optimal
treatment in an experimental design with normally
distributed weighted correlated responses. Moreover, a
transformation method from literature was considered
to equip the proposed approach to solve the problems
with non-normal correlated responses. To show the
e�ciency of the proposed optimality indices, three nu-
merical examples were presented. In the �rst example,
a comparison between OPI, WOPI, and OOPI showed
that the results of indices could con�rm each other.
Moreover, a real case of air pollution in Tehran was
studied to clarify the practical aspects of the proposed

method. Other multivariate distributions, such as
exponential, gamma, etc. can be considered for future
studies.
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