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Abstract. Many 2-tuple linguistic aggregation operators and linguistic Multi-Criteria
Group Decision-Making (MCGDM) approaches have been successfully applied to numerous
problems; they are di�cult to reect the di�erent semantics of linguistic terms, distances
between adjacent linguistic terms, and the subjective sensations of decision-makers in
diverse decision-making problems. In this paper, some 2-tuple linguistic aggregation
operators are proposed which are based on the subjective sensation scale and objective
numerical scale, and a method is developed, which is based on the proposed operators,
to overcome the aforementioned limitations. Firstly, the subjective sensation scale
based on linguistic term sets and the subjective sensation scale and objective numerical
scale based on 2-tuples are presented. Then, some 2-tuple linguistic operators based
on the two scales are developed, namely the Generated Extended 2-Tuple Weighted
Averaging (GE2T-WA) operator, Generated Extended 2-Tuple Ordered Weighted Aver-
aging (GE2T-OWA) operator, Generated Extended 2-Tuple Weighted Geometric (GE2T-
WG) operator, and Generated Extended 2-Tuple Ordered Weighted Geometric (GE2T-
OWG) operator. Subsequently, based on the GE2T-WA and GE2T-OWA operators,
or on the GE2T-WG and GE2T-OWA operators, an MCGDM method is developed.
Finally, an example is provided and the proposed method is compared with some
existing approaches, using the same illustrative example, for con�rming its feasibility and
rationality.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Studies on Multi-Criteria Group Decision-Making
(MCGDM) problems that investigate a wide range of
practical issues have made a great deal of progress
in recent years and many MCGDM methods that use
quantitative data have been proposed for solving such
problems. Owing to the complexity of the objects and
the vagueness of human thinking, it is di�cult to obtain
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accurate assessment values when evaluating objects
without incurring high costs. Therefore, decision-
makers often use linguistic descriptors to express their
assessments when facing those di�culties and these
decision-making cases are linguistic MCGDM prob-
lems. The existing approaches for solving linguistic
MCGDM problems include the following four types:
converting linguistic assessment information into fuzzy
numbers [1-5]; using the index of linguistic terms to
resolve linguistic assessment information, and assemble
the alternatives with the de�ned aggregation operators
or outranking relations [6-11]; applying the cloud
model [12-15]; and relying on the 2-tuple linguistic
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representation model for computing with words to
solve MCGDM problems [16-20]. The 2-tuple linguistic
models can overcome the shortcomings of informa-
tion loss and distortion that may exist in converting
linguistic assessment information into fuzzy numbers;
moreover, they also can guarantee the continuity of
linguistic assessment information, which can make the
result of linguistic assessment information practical and
understandable.

There has been a large amount of progress in
research on investigating 2-tuple linguistic models for
computing with words in decision-making since the 2-
tuple linguistic representation model was introduced
by Herrera and Martinez [21]. In order to overcome
the limitation of Herrera and Martinez's model [21],
which is only suitable for the linguistic term sets that
are uniformly and symmetrically distributed, some 2-
tuple linguistic models have been proposed for dealing
with more complex linguistic information that includes
non-homogeneous information [22,23], multi-granular
linguistic information [24-27], and unbalanced linguis-
tic information [28-31]. These models can improve
the accuracy and recognition of the processing results
in decision-making. Moreover, some extended 2-tuple
linguistic models have been proposed for extending
the model to improve the feasibility and accuracy of
computing with words. Wang and Hao [32] extended
the original model [21] by presenting a proportional
2-tuple fuzzy linguistic representation model and Li
and Dong [33] developed an MCGDM method with
linguistic assessments and linguistic weights based on
this model. However, the semantics of linguistic terms
in the linguistic term set used in the models [32]
can only be de�ned by using symmetrical trapezoidal
fuzzy numbers [34]. Dong et al. [34] generalized their
proposals by considering linguistic 2-tuples under more
general contexts and extended the 2-tuple fuzzy linguis-
tic representation models by using the numerical scale
for transforming the linguistic 2-tuples into numerical
values. Due to the fact that the numerical scale
model can provide a uni�ed framework to integrate
the models of Herrera and Martinez [21], Wang and
Hao [32], and Herrera et al. [28], the interval version
of the 2-tuple fuzzy linguistic representation model,
which was based on the interval numerical scale [35,36],
and models that apply the numerical scale to un-
balanced linguistic information [37] and the analytic
hierarchy process [38] have been proposed for e�ectively
improving precision of the results in computing with
words.

In light of the fact that information aggrega-
tion always plays an important role in the 2-tuple
linguistic decision-making process, many 2-tuple lin-
guistic aggregation operators have been proposed to
aggregate linguistic information. These operators
generally include the following eight cases: (1) the

2-Tuple Arithmetic Averaging (TAA) operator, 2-
Tuple Weighted Averaging (TWA) operator, 2-Tuple
Ordered Weighted Averaging (TOWA) operator, Ex-
tended 2-Tuple Weighted Averaging (ET-WA) operator
developed by Herrera and Martinez [21] and some
researchers extended 2-tuple linguistic operators based
on these four operators [17,18,39-42]; (2) the 2-Tuple
Linguistic Geometric Bonferroni Mean (2TLGBM)
operator and Weighted 2-Tuple Linguistic Geomet-
ric Bonferroni Mean (W2TLGBM) operator [43]; (3)
the 2-Tuple Linguistic Weighted Harmonic Averag-
ing (TWHA) operator, 2-Tuple Linguistic Ordered
Weighted Harmonic Averaging (TOWHA) operator, 2-
Tuple Linguistic Combined Weighted Harmonic Aver-
aging (TCWHA) operator [44], and the extended 2-
tuple linguistic harmonic operators [45]; (4) the 2-Tuple
Hybrid Weighted Arithmetic Average (THWA) oper-
ator, 2-Tuple Hybrid Linguistic Weighted Arithmetic
Average (T-HLWA) operator, and Extended 2-Tuple
Hybrid Linguistic Weighted Arithmetic Average (ET-
HLWA) operator [46]; (5) the Proportional 2-Tuple
Weighted Geometric Averaging (PTWGA) operator,
Proportional 2-Tuple Ordered Weighted Geometric
Averaging (PTOWGA) operator, and Proportional 2-
Tuple Hybrid Geometric Averaging (PTHGA) opera-
tor [47]; (6) 2-Tuple Linguistic Power Average (2TLPA)
operator, 2-Tuple Linguistic Power Weighted Average
(2TLPWA) operator, 2-Tuple Linguistic Power Or-
dered Weighted Average (2TLPOWA) operator [47],
and the Linguistic Proportional 2-Tuple Power Av-
erage (LP2TPA) operator [29]; (7) the Dependent
Interval 2-Tuple Weighted Average (DITWA) operator,
and Dependent Interval 2-Tuple Weighted Geometric
(DITWG) operator [49]; (8) the interval 2-tuple cor-
related averaging operator and the interval 2-tuple
correlated geometric operator [50]. However, when
using most of the operators mentioned above, the
distances between adjacent linguistic terms given by
decision-makers are assumed to be equal, and the
linguistic terms symmetrically distributed, as occurs
when using the operators proposed in [39,40]. Such
an assumption causes information distortion if the
non-equidistant distances between adjacent linguis-
tic terms are rigidly transformed to linear equidis-
tant numerical distances. Furthermore, the assess-
ment information given by decision-makers di�ers
from one another and these di�erences may emanate
from the semantics of linguistic terms, distances of
adjacent linguistic terms, and the subjective sensa-
tions of decision-makers in diverse problems. To
date, there have been few 2-tuple linguistic aggrega-
tion operators that can correctly reect these situa-
tions.

Motivated by the numerical scales proposed by
Dong [20], and taking into account the limitations
existing in the 2-tuple linguistic operators mentioned
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above, some new scale functions are proposed in this
paper for resolving linguistic translation issues under
di�erent semantic and perceptual situations. These
scale functions can improve the exibility and feasi-
bility of modeling linguistic information. Moreover,
some 2-tuple linguistic aggregation operators based
on these scale functions and a new MCGDM method
to avoid the information distortion caused by the
transformation from non-equidistant distances of ad-
jacent linguistic terms to linear equidistant numerical
distances are proposed; this is in order to reect the
di�erences of decision-makers' sensations and provide
a feasible solution when the linguistic terms are not
symmetrically distributed.

The rest of the paper is organized as follows.
In Section 2, some basic concepts regarding linguis-
tic 2-tuples are briey reviewed. In Section 3, the
subjective sensation scale based on linguistic term
sets, the subjective sensation scale and objective nu-
merical scale based on 2-tuples, and some 2-tuple
linguistic aggregation operators based on the subjective
sensation scale and objective numerical scale are all
proposed. The proposed aggregation operators include
the Generated Extended 2-tuple Weighted Averaging
(GE2T-WA) operator, Generated Extended 2-Tuple
Ordered Weighted Averaging (GE2T-OWA) opera-
tor, Generated Extended 2-Tuple Weighted Geomet-
ric (GE2T-WG) operator, and Generated Extended
2-Tuple Ordered Weighted Geometric (GE2T-OWG)
operator. The MCGDM method based on the GE2T-
WA and GE2T-OWA operators, or on the GE2T-WG
and GE2T-OWA operators, is developed in Section 4.
An illustrative example is provided in Section 5.1
and comparisons with other methods are presented in
Section 5.2 in order to show validity and feasibility of
the proposed approach. Finally, conclusions are drawn
in Section 6.

2. Preliminaries

In this section, some basic concepts and de�nitions
related to 2-tuples are introduced, including linguistic
term sets, the 2-tuple linguistic model and its com-
parison method, and the canonical characteristic value.
These will be utilized in the subsequent analysis.

Let S = fsiji = 0; 1; � � � ; 2g; g 2 N�g be a linguis-
tic term set, where N� is the set of positive integers and
si represents a possible value for a linguistic variable.
The set S satis�es the following properties [16]:

1. The linguistic term set is ordered as: i > j , si >
sj ;

2. There is a negation operator which is Neg(si) = sj ,
where i+ j = 2g. Particularly, Neg(sg) = sg.

Example 1. A linguistic term set including seven

elements can be expressed as follows:

S1 = fs0 = Extremely Poor (EP);

s1 = Very Poor (VP); s2 = Poor (P);

s3 = Medium (M); s4 = Good (G);

s5 = Very Good (VG);

s6 = Extremely Good (EG)g:
Herrera and Martinez [16] introduced a 2-tuple lin-
guistic representation model on the basis of symbolic
translation, whereby the linguistic information can be
represented by linguistic 2-tuples. A 2-tuple can be
expressed as (hi; �i), where hi 2 S is a linguistic term
and �i 2 [�0:5; 0:5) is a numerical value showing the
deviation between the assessment result and hi. The
set of 2-tuples is denoted by Ŝ.

De�nition 1 [16]. Let S = fs0; s1; � � � ; s2gg be a
linguistic term set, � 2 [0; 2g], g be a positive integer,
and � support the result of a symbolic aggregation
operation. Then, a 2-tuple (hi; �i)(hi 2 S; �i 2
[�0:5; 0:5)), which expresses the equivalent information
to �, can be de�ned by the following function:

� : [0; 2g]! S � [�0:5; 0:5);

�(�) = (hi; �i);

with:(
hi; i = Round(�)
�i = � � i

where Round is the usual round operation, hi is the
closest index label to �, and �i is the value of the
symbolic translation. � is a function that can convert
� into (hi; �i).

Obviously, a linguistic term, hi 2 S, can be
directly converted into a 2-tuple, (hi; 0).

On the contrary, there is always an inverse func-
tion, denoted by ��1, so that a linguistic 2-tuple
(hi; �i) can be transformed to its equivalent numerical
value � 2 [0; 2g] � R. The function can be obtained as
follows:

��1 : S � [�0:5; 0:5)! [0; 2g];

��1(hi; �i) = i+ �i = �:

De�nition 2 [16]. Let (hl; �m) and (hk; �n) be two
2-tuples. The comparison methods for two 2-tuples can
be described as follows:
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1. If l < k, then (hl; �m) < (hk; �n);
2. If l = k, then:

(a) If �m < �n, then (hl; �m) < (hk; �n);
(b) If �m > �n, then (hl; �m) > (hk; �n);
(c) If �m = �n, then (hl; �m) = (hk; �n).

De�nition 3 [32]. Let S be a linguistic term set and
ci 2 [0; 1] (i = 0; 1; � � � ; 2g) satisfying c0 < c1 < � � � <
c2g is called the Canonical Characteristic Value (CCV)
of the linguistic term si 2 S. Then, the CCV function
can be de�ned as follows:

CCV : S ! [0; 1];

CCV(si) = ci:

When the linguistic terms are converted to trapezoidal
fuzzy numbers [b � �; b; c; c + �] in the interval [0; 1],
the CCV of the linguistic term si can be obtained as
CCV(si) = (b+ c)=2 [32].

Example 2. Use the data of Example 1; si 2 S1,
and the semantics of the linguistic terms can be
described by using trapezoidal fuzzy numbers as shown
in Table 1.

Therefore, the following results are true:

CCV(s0)=0; CCV(s1)=(0:01+0:03)=2=0:02;

CCV(s2) = 0:14; CCV(s3) = 0:5;

CCV(s4) = 0:86; CCV(s5) = 0:98;

CCV(s6) = 1:

3. Some new linguistic scales and 2-tuple
linguistic aggregation operators based on
the subjective sensation scale and objective
numerical scale

The assessment information given by decision-makers
is subjective, which is also signi�cantly distinctive

Table 1. The conversion of linguistic terms into
trapezoidal fuzzy numbers.

Linguistic terms Trapezoidal fuzzy numbers

EP [0, 0, 0, 0]
VP [0, 0.01, 0.03, 0.04]
P [0.03, 0.10, 0.18, 0.25]
M [0.36, 0.42, 0.58, 0.64]
G [0.75, 0.82, 0.90, 0.97]

VG [0.96, 0.97, 0.99, 1]
EG [1, 1, 1, 1]

between di�erent decision-makers regarding the seman-
tics of linguistic terms and distances of adjacent linguis-
tic terms, and also depends on the subjective sensations
in di�erent decision-making problems; therefore, the
linguistic terms may not be symmetrically distributed
and the distances between adjacent linguistic terms
are often unequal. For solving these problems, the
subjective sensation scale based on linguistic term sets,
the subjective sensation scale and objective numerical
scale based on 2-tuples, and some 2-tuple linguistic ag-
gregation operators based on the subjective sensation
scale and objective numerical scale are proposed in this
section.

3.1. The subjective sensation scale based on
linguistic term sets

In this subsection, the subjective sensation scale based
on linguistic term sets is improved. The scale can re-
ect the di�erences between the semantics of linguistic
terms, distances of adjacent linguistic terms, and the
di�erences between the decision-makers' sensations in
diverse situations.

In order to preserve all the information pro-
vided in the decision-making process and facilitate
the calculation, the linguistic term set S = fsiji =
0; 1; � � � ; 2g; g 2 N�g is replaced with the extended
linguistic term set ~S = fsiji = 0; 1; � � � ; t; t 2 N�g,
where si > sj(i > j), t � 2g, and N� is the set of
positive integers. Correspondingly, the extended set of
2-tuples is denoted by �S = f(hi; �i)ji = 0; 1; � � � ; t; t 2
N�g, where hi 2 ~S, and �i 2 [�0:5; 0:5). If the
linguistic term is si 2 S, then it is referred to as
the original linguistic term; otherwise, si is called the
virtual linguistic term. In general, decision-makers
use original linguistic terms to evaluate alternatives
with virtual linguistic terms only appearing in the
operations to avoid information loss and enhance the
decision-making process [51].

De�nition 4. Let S = fsiji = 0; 1; � � � ; 2g; g 2 N�g
be a linguistic term set, ~S = fsiji = 0; 1; � � � ; t; t 2 N�g
be an extended linguistic term set, and R be the set of
real numbers. Then, the subjective sensation function
of ~S: SNS : ~S ! R can be de�ned as follows:

SNS(si)=

8>>><>>>:
�g; i=0

�g+
2g� iP

j=1
dist(sj�1;sj)

2gP
j=1

dist(sj�1;sj)
; i=1; 2; � � � ; t

where dist(sj�1; sj) (j = 1; 2; � � � ; t) is the subjective
distances of the adjacent linguistic terms sj�1 and sj .

dist(sj�1; sj) can be directly provided by the
decision-makers, and it can also be obtained by the
semantics of linguistic terms, e.g. dist(sj�1; sj) =
CCV(sj)�CCV(sj�1) [32]. If j > 2g, then CCV(sj) =
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�CCV(s2g) + CCV(sj�2�g), where � = int(j=2g) and
int(:) is the bracket function.

Example 3. Use the data of Example 2 and let
the extended linguistic term set be ~S1 = fsiji =
0; 1; � � � ; 8g.

Therefore, the CCVs of si(i = 0; 1; � � � ; 8) can be
calculated as follows:

CCV(s0) = 0;

CCV(s1) = (0:01 + 0:03)=2 = 0:02;

CCV(s2) = 0:14; CCV(s3) = 0:5;

CCV(s4) = 0:86; CCV(s5) = 0:98;

CCV(s6) = 1;

CCV(s7) = CCV(s6) + CCV(s1) = 1:02;

CCV(s8) = CCV(s6) + CCV(s2) = 1:14:

The subjective distances of the adjacent linguistic
terms, dist(sj�1; sj) (j = 1; 2; � � � ; 8), can be obtained
according to the CCVs of si(i = 0; 1; � � � ; 8) as:

dist(s0; s1) = CCV(s1)� CCV(s0) = 0:02;

dist(s1; s2) = 0:12; dist(s2; s3) = 0:36;

dist(s3; s4) = 0:36; dist(s4; s5) = 0:12;

dist(s5; s6) = 0:02; dist(s6; s7) = 0:02;

dist(s7; s8) = 0:12:

Therefore, the subjective sensation scales of si(i =
0; 1; � � � ; 8) can be obtained as follows:

SNS(s0) = �3;

SNS(s1) = �3 +
6� 1P

j=1
dist(sj�1; sj)

6P
j=1

dist(sj�1; sj)

= �3 +
6� 0:02

1
= �2:88;

SNS(s2) = �2:16; SNS(s3) = 0;

SNS(s4) = 2:16; SNS(s5) = 2:88;

SNS(s6) = 3; SNS(s7) = 3:12;

SNS(s8) = 3:84:

Theorem 1. If s1 < sk for 8sl, sk 2 ~S, then
SNS(sl) < SNS(sk).

Proof. If sl < sk for 8sl, sk, then two cases need to
be discussed.

1. If 0 = l < k, then:

SNS(sk)� SNS(sl) = �g +
2g � kP

j=1
dist(sj�1; sj)

2gP
j=1

dist(sj�1; sj)

� (�g) =
2g � kP

j=1
dist(sj�1; sj)

2gP
j=1

dist(sj�1; sj)
> 0:

2. If 0 < l < k, then:

SNS(sk)� SNS(sl) = �g

+
2g � kP

j=1
dist(sj�1; sj)

2gP
j=1

dist(sj�1; sj)

�

0BBB@�g +
2g � lP

j=1
dist(sj�1; sj)

2gP
j=1

dist(sj�1; sj)

1CCCA

=
2g � kP

j=l
dist(sj�1; sj)

2gP
j=1

dist(sj�1; sj)
> 0:

Thus, SNS(sl) < SNS(sk).

3.2. The subjective sensation scale based on
2-tuples

In this subsection, the subjective sensation scale based
on 2-tuples is proposed. It can solve problems regard-
ing di�erences between the semantics of linguistic terms
and distances of adjacent linguistic terms, and also
di�erences between the decision-makers' sensations in
diverse situations. Moreover, it is feasible for situations
regarding assessment information in the form of 2-
tuples.

De�nition 5. Let �S be a set of 2-tuples and R be
the set of real numbers. Then, the subjective sensation
function of �S can be de�ned as follows:
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SNS : �S ! R;

SNS((h; �))=

8>>>>>><>>>>>>:
SNS(sj)+��(SNS(sj+1)�SNS(sj));

� � 0 and h = sj

SNS(sj)+��(SNS(sj)�SNS(sj�1));
� < 0 and h = sj

where sj ; h 2 ~S and (h; �) 2 S.

Example 4. Use the data of Example 1, Let �S1 be
an extended 2-tuple linguistic set, (s0; 0:1); (s1;�0:2) 2
�S1(s0; s1 2 S1), and the subjective distances of the
adjacent linguistic terms be dist(sj�1; sj) = 1.

SNS((s0; 0:1)) = SNS(s0)+0:1�(SNS(s1)�SNS(s0))

= �3 + 0:1� (�2� (�3)) = �2:9;

SNS((s1;�0:2)) = SNS(s1)�0:2�(SNS(s1)�SNS(s0))

= �2� 0:2� (�2� (�3)) = �2:2:

Theorem 2. If (hl; �m) < (hk; �n) for 8(hl; �m);
(hk; �n) 2 �S, then SNS((hl; �m)) < SNS((hk; �n)).

Proof. For 8(hl; �m); (hk; �n), if (hl; �m) < (hk; �n),
then hl < hk, or hl = hk and �m < �n.

1. If hl < hk, then k � 1 � l, i.e. k � l + 1.
According to Theorem 1, SNS(hk�1) � SNS(hl)
and SNS(hk) � SNS(hl+1) can be obtained.

SNS((hk; �n))� SNS((hl; �m)) � SNS(hk) + �n

� (SNS(hk)� SNS(hk�1))

� (SNS(hl) + �m�(SNS(hl+1)� SNS(hl)))

> SNS(hk)� SNS(hl)� 0:5

� (SNS(hk)� SNS(hk�1))

� 0:5� (SNS(hl+1)� SNS(hl))

> SNS(hk)� SNS(hl)� 0:5

� (SNS(hk)� SNS(hk�1))

� 0:5� (SNS(hk)� SNS(hl))

= 0:5� (SNS(hk)� SNS(hl))� 0:5

� (SNS(hk)� SNS(hk�1))

= 0:5� (SNS(hk�1)� SNS(hl)) � 0:

2. If hl = hk, then three cases need to be discussed:

(a) If 0 < �m < �n, then:

SNS((hk; �n))� SNS((hl; �m)) = SNS(hk)

+ �n � (SNS(hk+1)� SNS(hk))

� (SNS(hl) + �m � (SNS(hl+1)

� SNS(hl))) = (�n � �m)(SNS(hl+1)

� SNS(hl)) > 0:

(b) If �m < 0 < �n, then:

SNS((hk; �n))� SNS((hl; �m))

= SNS(hk) + �n � (SNS(hk+1)

� SNS(hk))� (SNS(hl) + �m

� (SNS(hl)� SNS(hl�1))) > 0

� (SNS(hk+1)� SNS(hk))� �m
� (SNS(hl)� SNS(hl�1)) > 0:

(c) If �m < �n < 0, then:

SNS((hk; �n))� SNS((hl; �m)) = SNS(hk)

+ �n � (SNS(hk)� SNS(hk�1))

� (SNS(hl) + �m � (SNS(hl)

� SNS(hl�1))) = (�n � �m)(SNS(hk)

� SNS(hk�1)) > 0:

Therefore, SNS((hl; �m)) < SNS((hk; �n)).

De�nition 6. Let Q be the set of SNS((hi; �i)).
Then, the approximation function can be de�ned as
follows:

� : Q! ~S;

�(�k) = max
i
fhig;

where hi satis�es jSNS(hi)��kj = min
j
fj�k�SNS(hj)jg,

hi, hj 2 ~S, and �k 2 Q.

Example 5. Use the data of Example 1, and
let the distance of the adjacent linguistic terms be
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dist(sj�1; sj) = 1 and �1 = 1:5. According to
De�nition 6:

min
j
fj1:5� SNS(sj)jg = 0:5

can be obtained.
Since SNS(s4) = 1 and SNS(s5) = 2, jSNS(s4) �

1:5j = jSNS(s5)� 1:5j = 0:5 can be obtained.
Therefore, we have �(�1) = max

i
fs4; s5g = s5.

Theorem 3. Let Q be the set of SNS((hi; �i)) and
SNS be the subjective sensation function of ~S. There is
always an inverse function of SNS denoted by SNS�1.

SNS�1(�k) = (hi; �i);

where:

hi = �(�k);

�i =

8>>>><>>>>:
�k�SNS(sj)

SNS(sj+1)�SNS(sj) ; �k � SNS(sj) and
sj = hi

�k�SNS(sj)
SNS(sj)�SNS(sj�1) ; �k < SNS(sj) and

sj = hi

Proof. According to Theorem 3 and De�nition 5,
the fact that the function is a strictly monotonically
increasing and continuous function can be obtained.

1. Since �k = SNS((hi; �i)), SNS�1(�k) = SNS�1

(SNS((hi; �i))) = (hi; �i) can be obtained;

2. Since (hi; �i) = SNS�1(�k), SNS((hi; �i)) =
SNS(SNS�1(�k)) = �k can be obtained.

Therefore, there is always an inverse function
SNS�1(�k) = (hi; �i).

Example 6. Use the data of Example 5, �(�1) =
max
i
fs4; s5g = s5.
Since 1:5 < SNS(s5) = 2, we have:

�5 =
1:5� SNS(s5)

SNS(s5)� SNS(s4)
=

1:5� 2
2� 1

= �0:5:

Therefore, SNS�1(1:5) = (s5;�0:5) can be obtained.

Theorem 4. If �l < �k for 8�l; �k 2 Q, then SNS�1

(�l) < SNS�1(�k).

Proof. If 8�l; �k, �l < �k, SNS((hl; �m)) < SNS((hk;
�n)) can be obtained. According to the conclusion, the
inequality of Theorem 4 can be proved as follows:

1. If hl = �(�l) = �(�k) = hk, then �m < �n and
SNS�1(�l) = (hl; �m) < (hk; �n) = SNS�1(�k);

2. If hl = �(�l) < �(�k) = hk, then SNS�1(�l) =
(hl; �m) < (hk; �n) = SNS�1(�k).

Therefore, SNS�1(�l) < SNS�1(�k).

3.3. The objective numerical scale based on
2-tuples

In this subsection, the objective numerical scale based
on 2-tuples is introduced in order to normalize the data
that is in the form of a subjective sensation scale, which
can process the data more accurately.

De�nition 7. The objective numerical function of �S
can be de�ned as follows:

� : �S ! [0; 1];

�((h; �)) =

8>>>>>>><>>>>>>>:

a�SNS(s0)+aSNS((h;�))�2
2aSNS(s2g)�2

;
SNS((h; �)) � 0

�a�SNS((h;�))+a�SNS(s0)

2aSNS(s2g)�2
;

SNS((h; �)) < 0

where a > 1, s0; s2g; h 2 ~S and (h; �) 2 �S.
Di�erent scales can be obtained by setting a.

There are two methods, namely the experimental
method and subjective method, for determining the
value of a and usually a 2 [1:36; 1:4] [52,53].

Example 7. Use the data of Example 1, let �S2 be
an extended 2-tuple linguistic term set, the subjec-
tive distances of the adjacent evaluation values be
dist(sj�1; sj) = 1, (s0; 0:2); (s3; 0) 2 �S2, and a = 1:4.

Since SNS((s0; 0:2)) = �2:8 < 0;

Then:

�((s0; 0:2)) =
�1:4�SNS((s0;0:2)) + 1:4�SNS(s0)

2� 1:4SNS(s6) � 2

=
�1:42:8 + 1:43

2� 1:43 � 2
= 0:052;

can be obtained. Similarly:

SNS((s3; 0)) = 0 � 0;

and thus:

�((s3; 0)) =
1:4�SNS(s0) + 1:4SNS((s3;0)) � 2

2� 1:4SNS(s6) � 2

=
1:43 + 1:40 � 2

2� 1:43 � 2
= 0:5:
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Theorem 5. For 8(hl; �m); (hk; �n) 2 �S, if (hl; �m)
< (hk; �n), �((hl; �m)) < �((hk; �n)).

Proof. For 8(hl; �m); (hk; �n), if (hl; �m) < (hk; �n)
and a > 1, SNS((hl; �m)) < SNS((hk; �n)) and
aSNS((hk;�n)) + aSNS((hl;�m)) � 2 > 0 can be obtained.
According to the conclusion, the inequality of Theo-
rem 5 can be proved as follows:

1. If 0 < SNS((hl; �m)) < SNS((hk; �n)), then:

SNS((hk; �n))� SNS((hl; �m))

=
a�SNS(s0) + aSNS((hk;�n)) � 2

2aSNS(s2g) � 2

� a�SNS(s0) + aSNS((hl;�m)) � 2
2aSNS(s2g) � 2

=
aSNS((hk;�n)) � aSNS((hl;�m))

2aSNS(s2g) � 2
> 0:

2. If SNS((hl; �m)) < 0 < ((hk; �n)), then:

SNS((hk; �n))� SNS((hl; �m))

=
a�SNS(s0) + aSNS((hk;�n)) � 2

2aSNS(s2g) � 2

� �a�SNS((hl;�m)) + a�SNS(s0)

2aSNS(s2g) � 2

=
aSNS((hk;�n))+a�SNS((hl;�m))�2

2aSNS(s2g) � 2
> 0:

3. If SNS((hl; �m)) < SNS((hk; �n)) < 0, then:

SNS((hk; �n))� SNS((hl; �m))

=
�a�SNS((hk;�n)) + a�SNS(s0)

2aSNS(s2g) � 2

� �a�SNS((hl;�m)) + a�SNS(s0)

2aSNS(s2g) � 2

=
�a�SNS((hk;�n)) + a�SNS((hl;�m))

2aSNS(s2g) � 2
> 0:

Therefore, �((hl; �m)) < �((hk; �n)).

Theorem 6. Let U be the set of �((h; �)), (h; �) 2 �S,
and  2 U . Then, there is always an inverse function
of � denoted by ��1.

��1() =

8>>>>>>>>>><>>>>>>>>>>:

SNS�1(loga((2aSNS(s2g) � 2)
� a�SNS(s0) + 2))

 � 0:5

SNS�1(� loga(�(2aSNS(s2g) � 2)
+ a�SNS(s0)))

 < 0:5

where a > 1.
For proof of ��1, one can refer to Theorem 3.

Example 8. Use the data of Example 1, let the
subjective distances of the adjacent evaluation values
be dist(sj�1; sj) = 1, a = 1:4, 1; 2 2 U , 1 = 0:455,
and 2 = 0:587.

Because  = 0:455 < 0:5, the following can be
obtained:

��1(0:455)

=SNS�1(� log1:4(�0:455�(2�1:43�2)+1:43))

= SNS�1(�0:431) = (s3;�0:431):

Similarly,  = 0:587 � 0:5, and thus:

��1(0:587)

=SNS�1(log1:4(0:587(2�1:43�2)�1:43+2))

= SNS�1(0:788) = (s4;�0:212):

Theorem 7. For 8l; k 2 U , if l < k, then
��1(l) < ��1(k).

For proof of ��1(l) < ��1(k) in the case of
l < k, one can refer to Theorem 4.

3.4. 2-tuple linguistic aggregation operators
based on the subjective sensation and
objective numerical scales

Some operators are proposed in this subsection that
are based on the functions � and ��1.

De�nition 8. Let (hi; �i)(i = 1; 2 � � � ; n) be a set of
n 2-tuples, which has an associated weight vector w =
((w1; �1); (w2; �2); � � � ; (wn; �n)). Then, the GE2T-
WA operator can be de�ned as follows:

GE2T-WA : �Sn ! �S;

GE2T�WA((h1; �1); (h2; �2); � � � ; (hn; �n))

=��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((hi; �i))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA ;
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where (hi; �i); (wi; �i) 2 �S(hi; wi 2 ~S;�i; �i 2 [�0:5;
0:5); i = 1; 2 � � � ; n), and � is a parameter in the interval
(0;+1).

Some desirable properties of the GE2T-WA oper-
ator are shown as follows.

Property 1. If (h; �); (hi; �i); (~hi; ~�i) 2 �S(h; hi; ~hi 2
~S;�; �i; ~�i 2 [�0:5; 0:5); i = 1; 2 � � � ; n), then the
following must be true:

(a) (Idempotence) For 8i, if (hi; �i) = (h; �), then:

GE2T-WA((h1; �1); (h2; �2); � � � ; (hn; �n))

= (h; �):

(b) (Monotonicity) For 8i, if (~hi; ~�i) � (hi; �i), then:

GE2T-WA((~h1; ~�1); (~h2; ~�2); � � � ; (~hn; ~�n))

�GE2T-WA((h1; �1);(h2; �2); � � �; (hn; �n)):

(c) (Boundedness)

minf(hi; �i)g
�GE2T-WA((h1; �1); (h2; �2); � � � ; (hn; �n))

�maxf(hi; �i)g:
Proof.

(a) For 8i, if (hi; �i) = (h; �), then:

GE2T-WA((h1; �1); (h2; �2); � � � ; (hn; �n))

= ��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((hi; �i))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA

= ��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((h; �))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA

= ��1
��

��((h; �))
�1=��

= (h; �):

(b) For 8i, if (~hi; ~�i) � (hi; �i), �((~hi; ~�i)) �
�((hi; �i)) can be obtained according to Theo-
rem 7. Therefore:

nX
i=1

�((wi; �i))��
�

(~hi; ~�i)
�

nP
i=1

�((wi; �i))

�
nX
i=1

�((wi; �i))��((hi; �i))
nP
i=1

�((wi; �i))
:

According to Theorem 7, the following can be
obtained:

��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��
�

(~hi; ~�i)
�

nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA

� ��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((hi; �i))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA :

Therefore:

GE2T-WA
��

~h1; ~�1

�
;
�

~h2; ~�2

�
; � � � ;�~hn; ~�n

��
�GE2T-WA((h1; �1);(h2; �2); � � � ;(hn; �n)):

(c) Since minf(hi; �i)g � (hi; �i) and maxf(hi; �i)g �
(hi; �i), according to Property 1(a):

minf(hi; �i)g = GE2T-WA(minf(hi; �i)g;
minf(hi; �i)g; � � � ;minf(hi; �i)g);

can be obtained and according to Property 1(b):
GE2T-WA(minf(hi; �i)g;minf(hi; �i)g; � � � ;

minf(hi; �i)g) � GE2T-WA((h1; �1); (h2; �2);

� � � ; (hn; �n));

can also be obtained.
Similarly:

GE2T-WA((h1; �1); (h2; �2); � � � ; (hn; �n))

� maxf(hi; �i)g:
Therefore,

minf(hi; �i)g
� GE2T-WA((h1; �1);(h2; �2); � � �; (hn; �n))

� maxf(hi; �i)g:
De�nition 9. Let (hi; �i)(i = 1; 2 � � � ; n) be a set of
n 2-tuples which has an associated weight vector w =
((w1; �1); (w2; �2); � � � ; (wn; �n)). Then, the GE2T-
OWA operator can be de�ned as follows:

GE2T-OWA : �Sn ! �S;

GE2T-OWA((h1; �1); (h2; �2); � � � ; (hn; �n))

=��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((h�(i); ��(i)))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA ;
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where (hi; �i); (h�(i); ��(i)); (wi; �i) 2 �S(hi; h�(i); wi 2
~S;�i; ��(i); �i 2 [�0:5; 0:5); i = 1; 2 � � � ; n), � is a
parameter in the interval (0;+1) and a permutation
of (1; 2; � � � ; n) is (�(1); �(2); � � � ; �(n)), which satis�es
the inequality (h�(i); ��(i)) � (h�(i+1); ��(i+1)) for 8i 2
f1; 2; � � � ; n� 1g.

Some properties of the GE2T-OWA operator are
shown below:

Property 2. If (h; �); (hi; �i); (~hi; ~�i); (�hi; ��i) 2
�S(h; hi; ~hi; �hi 2 ~S;�; �i; ~�i; ��i 2 [�0:5; 0:5); i =
1; 2 � � � ; n), then the following must be true:

(a) (Idempotence) For 8i, if (hi; �i) = (h; �), then

GE2T-OWA((h1; �1); (h2; �2); � � � ; (hn; �n))

= (h; �):

(b) (Monotonicity) For 8i, if (~hi; ~�i) � (hi; �i), then:

GE2T-OWA
��

~h1; ~�1); (~h2; ~�2

� � � � ;�~hn; ~�n
��

�GE2T-OWA((h1; �1); (h2; �2);� � �; (hn; �n)):

(c) (Boundedness)

minf(hi; �i)g
�GE2T-OWA((h1; �1); (h2; �2);� � �; (hn; �n))

� maxf(hi; �i)g:
(d) (Commutativity)

If ((�h1; ��1); (�h2; ��2); � � � ; (�hn; ��n)) is a permuta-
tion of ((h1; �1); (h2; �2); � � � ; (hn; �n)), then:

GE2T-OWA
�
(�h1; ��1); (�h2; ��2); � � � ; (�hn; ��n)

�
=GE2T-OWA((h1; �1); (h2; �2);� � �; (hn; �n)):

Proof. For proof of items (a), (b), and (c), one can
refer to Property 1, and item (d) can be obtained as
follows:

since ((�h1; ��1); (�h2; ��2); � � � ; (�hn; ��n)) is a permu-
tation of ((h1; �1); (h2; �2); � � � ; (hn; �n)),

GE2T-OWA
�
(�h1; ��1); (�h2; ��2); � � � ; (�hn; ��n)

�
=��1

0BBB@
0BB@ nX
i=1

�((wi; �i))��((h�(i); ��(i)))
nP
i=1

�((wi; �i))

1CCA
1=�
1CCCA

=GE2T-OWA((h1; �1); (h2; �2); � � � ; (hn; �n)):

De�nition 10. Let (hi; �i)(i = 1; 2 � � � ; n) be a set of
n 2-tuples which has an associated weight vector w =
((w1; �1); (w2; �2); � � � ; (wn; �n)). Then, the GE2T-
WG operator can be de�ned as follows:

GE2T-WG : �Sn ! �S;

GE2T�WG((h1; �1); (h2; �2); � � � ; (hn; �n))

= ��1

0@ nY
i=1

(�((hi; �i)))

�((wi;�i))
nP
i=1

�((wi;�i))

1A ;

where:

(hi; �i); (wi; �i) 2 �S(hi; wi 2 ~S;�i; �i

2 [�0:5; 0:5); i = 1; 2 � � � ; n):

Some properties of the GE2T-WG operator are shown
as follows.

Property 3. If (h; �); (hi; �i); (~hi; ~�i) 2 �S(h; hi; ~hi 2
~S;�; �i; ~�i 2 [�0:5; 0:5); i = 1; 2 � � � ; n), then the
following must be true.

(a) (Idempotence) For 8i, if (hi; �i) = (h; �), then:

GE2T-WG((h1; �1); (h2; �2);� � �; (hn; �n))=(h; �):

(b) (Monotonicity) For 8i, if (~hi; ~�i) � (hi; �i), then:

GE2T-WG
��

~h1; ~�1

�
;
�

~h2; ~�2

�
; � � � ;�~hn; ~�n

��
� GE2T-WG((h1; �1); (h2; �2); � � � ; (hn; �n)):

(c) (Boundedness)

minf(hi; �i)g
�GE2T-WG((h1; �1);(h2; �2); � � � ;(hn; �n))

� maxf(hi; �i)g:
For proof of Property 3, one can refer to Property 1.

De�nition 11. Let (hi; �i) = (1; 2; :::; n) be a set of
n 2-tuples which has an associated weight vector w =
((w1; �1); (w2; �2); � � � ; (wn; �n)). Then, the GE2T-
WG operator can be de�ned as follows:

GE2T-OWG : �Sn ! �S;

GE2T-OWG((h1; �1); (h2; �2); � � � ; (hn; �n))

= ��1

0@ nY
i=1

(�((h�(i); ��(i))))

�((wi;�i))
nP
i=1

�((wi;�i))

1A ;
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where:

(hi;�i); (h�(i); ��(i)); (wi; �i) 2 �S
�
hi; h�(i); wi

2 ~S;�i; ��(i); �i 2 [�0:5; 0:5); i = 1; 2 � � � ; n�;
and a permutation of (1; 2; � � � ; n) is (�(1); �(2);
� � � ; �(n)), which satis�es the inequality (h�(i); ��(i)) �
(h�(i+1); ��(i+1)) for 8i 2 f1; 2; � � � ; n� 1g.

Some properties of the GE2T-OWG operator are
shown as follows:

Property 4. If (h; �); (hi; �i); (~hi; ~�i); (�hi; ��i) 2
�S(h; hi; ~hi; �hi 2 ~S;�; �i; ~�i; ��i 2 [�0:5; 0:5); i =
1; 2 � � � ; n), then the following must be true:

(a) (Idempotence) For 8i, if (hi; �i) = (h; �), then:

GE2T-OWG((h1; �1); (h2; �2); � � � ; (hn; �n))

= (h; �):

(b) (Monotonicity) For 8i, if (~hi; ~�i) � (hi; �i), then:

GE2T-OWG
�

(~h1; ~�1); (~h2; ~�2); � � � ; (~hn; ~�n)
�

�GE2T-OWG((h1;�1);(h2; �2);� � � ; (hn; �n)):

(c) (Boundedness)

minf(hi; �i)g
�GE2T-OWG((h1;�1);(h2;�2); � � � ;(hn; �n))

� maxf(hi; �i)g:
(d) (Commutativity) If ((�h1; ��1); (�h2; ��2); � � � ; (�hn;

��n)) is a permutation of ((h1; �1); (h2; �2); � � � ;
(hn; �n)), then:

GE2T-OWG
���h1; ��1

�
;
��h2; ��2

�
; � � � ; ��hn; ��n

��
=GE2T-OWG((h1; �1);(h2; �2); � � � ;(hn; �n)):

For proof of Property 4, one can refer to Property 2.

Example 9. Use the data of Example 1, let �S3 =
f(s0; 0:2); (s2;�0:2); (s3; 0); (s4; 0:3); (s5; 0)g be a set of
four 2-tuples, its associated weight vector be w3 =
((s2; 0:1); (s0; 0:1); (s1; 0:3); (s3;�0:1); (s2; 0)), the sub-
jective distances of the adjacent evaluation values be
dist(sj�1; sj) = 1. a = 1:4, � = 1 and:

�((ŝ; �̂)) =�((s2; 0:1)) + �((s0; 0:1)) + �((s1; 0:3))

+ �((s3;�0:1)) + �((s2; 0))

Therefore, the results, shown in Box I, are true.

4. A 2-tuple linguistic MCGDM method based
on the proposed 2-tuple linguistic operators

In this section, the GE2T-WA and GE2T-OWA oper-
ators, or the GE2T-WG and GE2T-OWG operators,
are applied to MCGDM problems based on linguistic
information.

For an MCGDM problem with linguistic infor-
mation, let S be a linguistic term set and ~S be an
extended linguistic term set, D = fD1; D2; � � � ; Dpg
be the set of decision-makers and � = (�1; �2; � � � ; �p)
be the weight vector of decision-makers, where �k 2
S(k = 1; 2; � � � ; p), and let A = fA1; A2; � � � ; Amg
be the set of alternatives and C = fC1; C2; � � � ; Cng
be the set of criteria whose associated weight vec-
tor is w = (w1; w2; � � � ; wn), where wj 2 S, j =
1; 2; � � � ; n. The decision-maker Dk(k = 1; 2; � � � ; p)
evaluates the alternative Ai(i = 1; 2; � � � ;m) with
respect to the criteria Cj(j = 1; 2; � � � ; n) to get hkij(i =
1; 2; � � � ;m; j = 1; 2; � � � ; n), where hkij 2 S, and then
the decision matrix Rk = (hkij)m�n is obtained. A
method of determining the ranking of the alternatives
is introduced in the following subsection.

The decision-making procedure is as follows:

Step 1. Normalize the decision matrices.
Normalize the decision-making information hkij

in the matrix Rk = (hkij)m�n. The criteria can be
classi�ed into the bene�t type and the cost type. For
the bene�t-type criterion, the form of the linguistic
information changes nothing; but for the cost-type
criterion, the linguistic negation operator is used.

The normalization of the decision matrices can
be represented as follows:(

~hkij = hkij ; Cj 2 BT
~hkij = neg(hkij); Cj 2 CT

where BT is the set of bene�t-type criteria and CT is
the set of cost-type criteria.

The normalized decision matrices are denoted
as �Rk = (~hkij)m�n;
Step 2. Convert the linguistic information into 2
tuples.

Convert the decision-making information ~hkij in
the matrix �Rk = (~hkij)m�n to (~hkij ; 0) for obtaining
the matrix ~Rk((~hkij ; 0))m�n; convert the weight vec-
tor of decision-makers � = (�1; �2; � � � ; �p) to ~� =
((�1; 0); (�2; 0); � � � ; (�p; 0)); and convert the weight
vector of criteria w = (w1; w2; � � � ; wn) to ~w =
((w1; 0); (w2; 0); � � � ; (wn; 0));
Step 3. Aggregate all the values of each alternative
on each criterion to get the collective linguistic 2-
tuple values.

Based on De�nition 8 or De�nition 10, the col-
lective linguistic 2-tuple values (hki ; �ki )(hki 2 ~S; �ki 2
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GE2T�WA((s0; 0:2); (s2;�0:2); (s3; 0); (s4; 0:3); (s5; 0))

= ��1
�

�((s2; 0:1))�((s0; 0:2)) + �((s0; 0:1))�((s2;�0:2)) + �((s1; 0:3))�((s3; 0))
� ((ŝ; �̂))

+
�((s3;�0:1))�((s4; 0:3)) + �((s2; 0))�((s5; 0))

� ((ŝ; �̂))

�
= ��1(0:543) = SNS�1(0:411) = (s3; 0:411);

GE2T�OWA((s0; 0:2); (s2;�0:2); (s3; 0); (s4; 0:3); (s5; 0))

= ��1
�

�((s2; 0:1))�((s5; 0)) + �((s0; 0:1))�((s4; 0:3)) + �((s1; 0:3))�((s3; 0))
� ((ŝ; �̂))

+
�((s3;�0:1))�((s2;�0:2)) + �((s2; 0))�((s0; 0:2))

� ((ŝ; �̂))

�
= ��1(0:372) = SNS�1(�1:099) = (s2;�0:099);

GE2T�WG((s0; 0:2); (s2;�0:2); (s3; 0); (s4; 0:3); (s5; 0)) = ��1
�

(�((s0; 0:2)))
�((s2;0:1))

�((ŝ;�̂))

�(�((s2;�0:2)))
�((s0;0:1))

�((ŝ;�̂)) � (�((s3; 0)))
�((s1;0:3))

�((ŝ;�̂)) � (�((s4; 0:3)))
�((s3;�0:1))

�((ŝ;�̂)) � (�((s5; 0)))
�((s2;0))
�((ŝ;�̂))

�
= ��1(0:376) = SNS�1(�1:065) = (s2;�0:065);

GE2T�OWG((s0; 0:2); (s2;�0:2); (s3; 0); (s4; 0:3); (s5; 0)) = ��1
�

(�((s5; 0)))
�((s2;0:1))

�((ŝ;�̂))

�(�((s4; 0:3)))
�((s0;0:1))

�((ŝ;�̂)) � (�((s3; 0)))
�((s1;0:3))

�((ŝ;�̂)) � (�((s2;�0:2)))
�((s3;�0:1))

�((ŝ;�̂)) � (�((s0; 0:2)))
�((s2;0))
�((ŝ;�̂))

�
= ��1(0:233) = SNS�1(�1:958) = (s1; 0:042):

Box I

[�0:5; 0:5)) or (~hki ; ~�ki )(~hki 2 ~S; ~�ki 2 [�0:5; 0:5))
can be obtained by using the GE2T-WA or GE2T-
WG operator to aggregate all the values of each
alternative on each criterion as follows:

(hki ;�
k
i )=GE2T-WA

��
~hki1; 0

�
;
�

~hki2; 0
�
;� � �;�~hkin;0

��
= ��1

0BBB@
0BB@ nX
j=1

�((wj ; 0))��
��

~hkij ; 0
��

nP
j=1

�((wj ; 0))

1CCA
1=�
1CCCA :

or�
~hki ; ~�ki

�
=GE2T-WG

��
~hki1;0

�
;
�
~hki2;0

�
;� � �;�~hkin;0��

= ��1

0B@ nY
j=1

�
�
��

~hkij ; 0
��� �((wj;0))

nP
j=1

�((wj;0))

1CA :

Subsequently, the collective preference matrix P =
((hki ; �ki ))p�m or ~P = ((~hki ; ~�ki ))p�m can be obtained;

Step 4. Aggregate the decisions in the matrix P or
~P to derive the overall values of alternative Ai.

Based on De�nition 9 or De�nition 11, the
overall values (hi; �i)(hi 2 ~S; �i 2 [�0:5; 0:5)) or
(~hi; ~�i)(~hi 2 ~S; ~�i 2 [�0:5; 0:5)) of the alternative Ai
can be obtained by using the GE2T-OWA or GE2T-
OWG operators:

(hi;�i)=GE2T-OWA((h1
i ; �

1
i );(h

2
i ; �

2
i ); � � � ;(hpi ; �pi ))

=��1

0BBB@
0BB@ pX
k=1

�((�k; 0))��((hk�(j); �
k
�(j)))

pP
k=1

�((�k; 0))

1CCA
1=�
1CCCA ;

or:�~hi;~�i�=GE2T-OWG
��

~h1
i;~�

1
i

�
;
�
~h2
i;~�

2
i

�
;� � � ;�~hpi;~�pi��

=��1

0@ pY
k=1

�
�
��

~hk�(j); ~�k�(j)

��� �((�k;0))
pP
k=1

�((�k;0))

1A ;
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where (hk�(j); �
k
�(j)) is the jth biggest 2 tuple in

((~hk1 ; ~�k1); (~hk2 ; ~�k2); � � � ; (~hkm; ~�km)) and (~hk�(j); ~�k�(j))
is the jth biggest 2-tuple in ((~hk1 ; ~�k1); (~hk2 ; ~�k2);
� � � ; (~hkm; ~�km));
Step 5. Rank the alternatives and select the best
one.

The ranking of the alternative Ai can be ob-
tained according to De�nition 3, and thus the best
one can be determined.

5. An illustrative example

In this section, an investment problem (adapted
from [17]) is used to illustrate the proposed method.

A practical use of this method is demonstrated by
choosing the best investment project for an investment
company, which has a sum of money available for
such a purpose. Five possible alternatives are Ai(i =
1; 2; � � � ; 5) whose criteria are Cj(j = 1; 2; 3; 4), i.e. the
risk, growth, social-political impact, and environmental
impact factors. The linguistic term set is S1 = fs0 =
Extremely Poor (EP); s1 = Very Poor (VP); s2 =
Poor (P); s3 = Medium (M); s4 = Good (G); s5 =
Very Good (VG); s6 = Extremely Good (EG)g the ex-
tended linguistic term set is ~S = fsiji = 0; 1; � � � ; tg,
with si > sj (i > j; i; j 2 f0; 1; 2; � � � ; tgt � 7)
and the linguistic term si(i � 7) has no practical
semantics. The weight vector of criterion Cj is w =
(s4; s2; s1; s3). The assessment information of the �ve
alternatives is to be evaluated using the linguistic
term set S1 by three decision-makers Dk(k = 1; 2; 3)
whose associated weight vector is � = (s4; s3; s2). The
subjective distances of the adjacent linguistic terms are
dist(sm�1; sm) = 1 and the parameter a = 1:4. The lin-
guistic decision matrices are shown in R1, R2, and R3:

R1 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
s3
s3
s4
s5
s6

s4
s1
s3
s2
s0

s2
s3
s4
s2
s1

s2
s2
s0
s4
s3

1CCCCA ;

R2 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
s2
s1
s3
s6
s2

s3
s0
s4
s1
s1

s1
s4
s2
s1
s3

s1
s4
s6
s3
s1

1CCCCA ;

R3 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
s4
s1
s5
s4
s3

s2
s4
s4
s5
s1

s1
s2
s4
s6
s3

s5
s4
s2
s1
s4

1CCCCA :

5.1. The procedure for the 2-tuple linguistic
MCGDM method

To get the best alternative, the following steps are
involved:

Step 1. Normalize the decision matrices.
The four criteria of the alternatives are regarded

as the bene�t-type criteria and the decision-makers
provide the assessment information in the form of
linguistic terms; therefore, the decision matrices
Rk = (hkij)5�4(hkij 2 S1; k = 1; 2; 3) change nothing.
The normalized decision matrices are denoted as
�Rk = Rk;
Step 2. Convert the linguistic information into 2-
tuples.

Convert the matrix �Rk = (hkij)5�4 to get the ma-
trices ~R1, ~R2, and ~R3 in form of 2-tuples. Similarly,
convert the weight vector of decision-makers � =
(s4; s3; s2) to ~� = ((s4; 0); (s3; 0); (s2; 0)) and convert
the weight vector of criteria w = (s4; s0; s1; s3) to
~w = ((s4; 0); (s0; 0); (s1; 0); (s3; 0)).

~R1 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
(s3; 0)
(s3; 0)
(s4; 0)
(s5; 0)
(s6; 0)

(s4; 0)
(s1; 0)
(s3; 0)
(s2; 0)
(s0; 0)

(s2; 0)
(s3; 0)
(s4; 0)
(s2; 0)
(s1; 0)

(s2; 0)
(s2; 0)
(s0; 0)
(s4; 0)
(s3; 0)

1CCCCA ;

~R2 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
(s2; 0)
(s1; 0)
(s3; 0)
(s6; 0)
(s2; 0)

(s3; 0)
(s0; 0)
(s4; 0)
(s1; 0)
(s1; 0)

(s1; 0)
(s4; 0)
(s2; 0)
(s1; 0)
(s3; 0)

(s1; 0)
(s4; 0)
(s6; 0)
(s3; 0)
(s1; 0)

1CCCCA ;

~R3 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
(s4; 0)
(s1; 0)
(s5; 0)
(s4; 0)
(s3; 0)

(s2; 0)
(s4; 0)
(s4; 0)
(s5; 0)
(s1; 0)

(s1; 0)
(s2; 0)
(s4; 0)
(s6; 0)
(s3; 0)

(s5; 0)
(s4; 0)
(s2; 0)
(s1; 0)
(s4; 0)

1CCCCA :

Step 3. Aggregate all the values of each alternative
on each criterion to get the collective 2-tuple values.

Based on De�nition 8 or De�nition 10, the
collective preference matrices can be obtained as the
decision matrix P by using the GE2T-WA operator
and setting � = 1. Similarly, the decision matrix ~P
can be obtained by using the GE2T-WG operator as
shown in Box II.
Step 4. Aggregate the collective preference matrices
P1 or ~P to derive the overall values of the alternative
Ai.

Based on De�nition 9 or De�nition 11, the
overall preference value matrix can be obtained as
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P =

A1 A2 A3 A4 A5
D1
D2
D3

0@(s3;�0:225)
(s2;�0:295)
(s4;�0:442)

(s2; 0:152)
(s2;�0:329)
(s2; 0:486)

(s2; 0:195)
(s4; 0:289)

(s4;�0:070)

(s4; 0:183)
(s4;�0:262)
(s4;�0:201)

(s3; 0:302)
(s2;�0:462)
(s3;�0:279)

1A ;

~P =

A1 A2 A3 A4 A5
D1
D2
D3

0@ (s7; 0:082)
(s7;�0:198)
(s7; 0:158)

(s7;�0:066)
(s6; 0:031)
(s7; 0:001)

(s6; 0:343)
(s7; 0:304)
(s7; 0:256)

(s7; 0:225)
(s7; 0:118)
(s7; 0:189)

(s6; 0:349)
(s7;�0:251)
(s7; 0:043)

1A :

Box II

the decision matrices T1, T2, and T3 by using the
GE2T-OWA operator and setting � = 1. Similarly,
the decision matrix ~T can be obtained by using the
GE2T-OWG operator:

T = A1 A2 A3
((s3;�0:234) (s2; 0:147) (s4;�0:301)

A4 A5
(s4;�0:211) (s3;�0:421));

~T = A1 A2 A3
((s8; 0:021) (s8;�0:075) (s8; 0:028)

A4 A5
(s8; 0:066) (s8;�0:066)):

Step 5. Rank the alternatives and select the best
one.

According to De�nition 3, the ranking of the
alternatives Ai can be obtained, as shown in Table 2.

The best alternative is A4 that is obtained by
using the GE2T-WA and GE2T-OWA operators and
setting � = 1, or by using the GE2T-WG and GE2T-
OWG operators; however, the positions of A1 and A3
may swap.

The best alternative is always alternative A4 that
is obtained by using the GE2T-WG and GE2T-OWG
operators and setting di�erent values of �; however,
the ranking of the alternatives may be di�erent, which
is illustrated in Figure 1. Therefore, it is necessary
for the decision-makers to set the values of � before
aggregating the linguistic information. In general,
a larger value of � may be set by more pessimistic
decision-makers, which makes each alternative be as-
sociated with a higher objective numerical scale. By

Figure 1. The ranking of the alternatives by setting
di�erent values of �.

contrast, a smaller value of � may be set by more
optimistic decision-makers. If the decision-makers do
not give their preferences, the most commonly used
value, � = 1, can be used.

5.2. A comparison analysis and discussion
In order to validate the feasibility of the proposed 2-
tuple linguistic MCGDM method, a comparative study
is conducted with two other linguistic methods. The
analysis is based on the same illustrative example and
the methods used for comparison have been introduced
in [17-18].

1. When conducting the above illustrative example
using the approach in [17], which is based on the Ex-
tended 2-Tuple Weighted Geometric (ET-WG) and
the Extended 2-Tuple Ordered Weighted Geometric
(ET-OWG) operators with 2-tuple linguistic infor-
mation, the group of collective evaluation values for

Table 2. The ranking of the alternatives and the best alternative by using di�erent operators and values of �.

Operators Ranking results The best alternative
GE2T-WA and GE2T-OWA, � = 1 A4 � A3 � A1 � A5 � A2 A4

GE2T-WG and GE2T-OWG A4 � A1 � A3 � A5 � A2 A4
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P1 =

A1 A2 A3 A4 A5
D1
D2
D3

0@ (s5; 0:174)
(s5;�0:435)
(s6;�0:490)

(s5;�0:101)
(s4;�0:336)
(s5; 0:093)

(s4; 0:136)
(s6; 0:345)

(s6;�0:397)

(s6;�0:360)
(s5; 0:438)
(s5; 0:317)

(s4; 0:436)
(s4; 0:438)
(s5; 0:184)

1A ;

T1 = A1 A2 A3 A4 A5
(s5; 0:266) (s5; 0:061) (s5; 0:307) (s5; 0:365) (s5; 0:114):

Box III

each alternative could be obtained and shown as
matrix P1 and the overall preference values matrix
T1 which is given in Box III.

The ranking of alternatives is A4 � A3 �
A1 � A5 � A2 and the best alternative is A4;

2. By applying the Generalized 2-Tuple Weighted Av-
erage (G-2TWA) and Generalized 2-Tuple Ordered
Weighted Average (G-2TOWA) operators intro-
duced in [18] to the same example, the aggregating
result of the performance values of all decision-
makers is represented as the matrix R0 and the
overall preference values matrix T2 as shown in
Box IV. The ranking result is A4 � A3 � A1 �
A5 � A2 and the best alternative is A4.

Finally, the ranking results of the di�erent methods can
be shown in Table 3.

From Table 3, it can be seen that the best alterna-
tive obtained by applying the proposed approach is the
same as the methods introduced in [17,18]. However,
the criteria and experts' weights take the form of real
numbers in the method proposed in [18]; thus, they

cannot solve problems where the actual weights of
the criteria and experts are di�cult to provide using
speci�c numbers. Alternatively, linguistic 2-tuples can
accurately and easily deal with such a case. The
method introduced in [17] only suits a situation where
the linguistic terms are symmetrically distributed and
distances of adjacent evaluation values are equal. This
would degrade the feasibility of this method, espe-
cially when the linguistic terms are not uniformly and
symmetrically distributed. Furthermore, it may also
lose and/or distort the original information and make
the �nal results be at odds with the actual decision-
making.

Due to the fact that di�erent kinds of operators
were used, the ranking of the alternatives is not
identical. When compared with the methods in [17,18],
the advantages of the proposed operators and approach
are summarized as follows:

1. They can e�ectively deal with the evaluation in-
formation expressed by the linguistic variables and
avoid losing and distorting the assessment infor-

R0 =

C1 C2 C3 C4
A1
A2
A3
A4
A5

0BBBB@
(s4;�0:111)
(s4;�0:444)
(s5;�0:111)
(s6; 0:444)

(s4;�0:444)

(s3;�0:111)
(s4;�0:444)

(s4; 0)
(s4;�0:111)
(s3;�0:333)

(s2;�0:333)
(s2;�0:333)
(s3; 0:222)
(s2; 0:111)
(s1; 0:444)

(s1; 0:444)
(s1;�0:333)
(s1; 0:111)
(s1; 0:444)

(s1;�0:444)

1CCCCA ;

T2 = A1 A2 A3 A4 A5
((s3;�0:267) (s3; 0:500) (s3; 0:411) (s4;�0:356) (s3;�0:333))

Box IV

Table 3. The ranking results of the di�erent methods.

Methods Operators Ranking results

The method in Reference [18] G-2TWA and IG-2TOWA, � = 1 A4 � A3 � A1 � A5 � A2

The method in Reference [17] ET-WG and ET-OWG A4 � A3 � A1 � A5 � A2

The proposed method GE2T-WA and GE2T-OWA, � = 1 A4 � A3 � A1 � A5 � A2

GE2T-WG and GE2T-OWG A4 � A1 � A3 � A5 � A2
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mation by using the subjective sensation scale and
objective numerical scale functions;

2. They remain feasible if the linguistic terms are not
uniformly and symmetrically distributed;

3. They are suitable in situations where the semantics
of linguistic terms and distances of adjacent lin-
guistic terms are di�erent and where the decision-
makers' sensations are changed.

6. Conclusion

The 2-tuple linguistic models for computing with words
have made great progress in improving the accuracy
and understanding of the processed results in decision-
making. As they are a useful tool in processing
linguistic information, many 2-tuple linguistic aggre-
gation operators have been proposed. In order to
improve the feasibility of 2-tuple linguistic models and
overcome the existing limitations in 2-tuple linguistic
aggregation operators, some new versions of 2-tuple
linguistic aggregation operators have been developed in
this paper. Firstly, the subjective sensation scale and
objective numerical scale functions based on 2-tuple
were proposed to resolve linguistic translation issues
under di�erent semantic and perceptual situations.
Four new operators were proposed based on the scales:
GE2T-WA operator, GE2T-OWA operator, GE2T-
WG operator, and GE2T-OWG operator. Further-
more, a new MCGDM method based on these operators
under a linguistic environment was developed, which
can avoid the information distortion caused by the
transformation from non-equidistant distances of adja-
cent linguistic terms to linear equidistant numerical dis-
tances, reect the di�erences between decision-makers'
sensations, and remain feasible when the linguistic
terms are not symmetrically distributed. Finally, the
method was applied to a real case of choosing the best
investment project in order to illustrate its potential
applications; moreover, it was compared with other 2-
tuple linguistic methods to demonstrate its feasibility
and e�ectiveness in solving linguistic MCGDM prob-
lems.

However, the method proposed in this paper only
suits situations where the weights of the criterion and
decision-makers are independent. In future research,
the application of the developed operators will be
extended to other domains and some 2-tuple linguistic
methods will be proposed for situations where the
weights of the criterion and decision-makers are not
completely independent.
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