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Abstract. This paper presents eight Improved Particle Swarm Optimization (IPSO)
algorithms for solving Combined Heat and Power Economic Dispatch (CHPED) problem
with valve point loading e�ects on fuel cost function and transmission losses. The main
objective of the problem is to �nd the power output and the heat output of available units
so that the total fuel cost is minimized while satisfying power and heat demands and power
and heat limits. The proposed IPSO algorithms are based on some modi�cations on the
parameters and the use of Cauchy distribution. The e�ectiveness of the IPSO methods has
been validated through six di�erent test systems including three systems with quadratic
fuel cost function of pure power units neglecting transmission losses, two systems with
nonconvex fuel cost function of pure power units considering transmission losses, and one
large-scale system with nonconvex fuel cost function of pure units and without transmission
losses. The result comparisons between the IPSO methods and other methods in the
literature have indicated that the proposed methods can obtain higher solution quality
with faster computational time than many other methods. Therefore, the proposed IPSO
methods would be very e�cient methods for solving the nonconvex CHPED problem.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Economic load dispatch has become one of the most
important problems in electrical power system opera-
tion as it can enable the system consisting of thermal
units to produce electricity possibly with the minimum
fuel cost of generation. However, there is a fact that
the bene�t can be higher as heat from the electrical
generation process released into the air is utilized to
supply to industrial zones or manufacturers [1]. The
best way to minimize the operating cost of the thermal
units is to use both heat and electricity under working
condition. Consequently, the optimal operation of
combined heat and power units has played a very
important role in enhancement of the e�ciency of
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power system operation. The generation process of
both electricity and heat, known as combined heat and
power generation, can reduce the emission release into
the air, avoiding greenhouse e�ect [2].

Several methods have been applied for solv-
ing the Combined Heat and Power Economic (CH-
PED) problem, including conventional methods and
meta-heuristic methods such as Newton Method [3],
Lagrange Relaxation (LR) [4], Genetic Algorithm
(GA) [5], Improved Ant Colony Search (IACSA) [6],
Evolutionary Programming (EP) [7], Improved Genetic
Algorithm with Multiplier Updating (IGA-MU) [8],
Lagrange Relaxation and Sequential Quadratic Pro-
gramming (LR-SQP) method [9], Self-Adaptive
Real-coded Genetic Algorithm (SARGA) [10], Bee
Colony Optimization (BCO) [11], Harmony Search
(HS) [1,12-13], Mesh Adaptive Direct Search Algorithm
(MADSA) [14], Novel Direct Search (NDS) [15], Arti�-
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cial Immune System (AIS) [16], Lagrangian Relaxation
with Surrogate Subgradient Multiplier Updates (LR-
SSMU) [17], Selective Particle Swarm Optimization
(SPSO) [18], Particle Swarm Optimization with Time
Varying Acceleration Coe�cients (TVAC-PSO) [19],
Improved Group Search Optimization (IGSO) [20],
and Oppositional Teaching Learning Based Method
(OTLBO) [2]. Generally, the conventional methods
such as Newton Method [3] and LR [4] su�er di�-
culty when dealing with the problems with nonconvex
functions. To overcome the disadvantage, the meta-
heuristic algorithms have been proposed based on
random search for properly dealing with nonconvex
problem with near optimal solution. In [5], the pro-
posed GA method can enhance the quality of optimal
solution; however, the GA may su�er from local opti-
mal solution although the penalty factors are set from
small to large values. This drawback is tackled by a
combination of the augmented Lagrange function with
the Lagrange function and penalty terms to update
the multiplier (IGA-MU) [8]. As a result, the solution
has been signi�cantly improved compared to that from
GA in [5]. Nevertheless, the IGA-MU method is still
slow for obtaining the optimal solution. IACSA is a
quick search algorithm; however, it tends to obtain near
optimal solution for small-scale and simple problems
and su�ers the same drawback as that of the IGA-MU
method. Similar to conventional EP, the EP in [7] may
still cope with slow convergence and local optimum. On
the contrary to LR, the LR-SQP can solve nonlinear
and more complicated problems. In SARGA, the
combination of tournament selection and simulated
binary crossover performed on real-coded GA enables
this method to quickly obtain optimal solution with
low computational burden. Moreover, there also has
been a penalty approach without parameters used to
properly handle equality and inequality constraints.
BCO and AIS have shown to be superior to EP, PSO,
and Real Coded GA (RCGA) in terms of high solution
quality and execution time. However, e�ectiveness of
the two methods has not been validated in large-scale
systems. In addition, AIS can su�er the premature
convergence if the application of the aging operator
to eliminate the bad antibodies is not successful. The
HSA has been considered as a strong search algorithm
since it can deal with several discrete optimization
problems [21]. In [14], the combination of each of
the three search techniques including Latin Hypercube
Sampling (LHS), PSO, and Design and Analysis of
Computer Experiments (DACE) with MADS algo-
rithm forms MADS-LHS, MADS-PSO, and MADS-
DACE methods, where MADS-DACE is superior to
the others. The NDS along with successive re�nement
search techniques have been employed to speed up the
computation with low number of iterations and short
computational time. In [17], the two proposed rules, i.e.

Constant Step Size (CSS) rule and Square Summable
But not Summable (SSBS) rule, have successfully been
applied to update Lagrange multiplier. The obtained
results from LR-SSMU-CSS and LR-SSMU-SSBS in
terms of cost and characteristic rate have indicated
that there is no method superior to another. SPSO
and TVAC-PSO are two improved versions and have
obtained promising results. In [20], Conventional
GSO (CGSO) and its improved version have been
implemented for a large system with 48 units. As
stated in the study, the GSO methods have been
superior to the PSO method; however, the actual value
of cost and the veri�cation of the operating zone of
combined heat and power units based on the reported
solution have shown that the evaluation is not reliable.
Teaching Learning Based Optimization (TLBO) is also
a population-based simple search algorithm with less
control parameters [22], high convergence rate, and less
execution time [23].

PSO is a population-based optimal search algo-
rithm developed by Kennedy and Eberhart in 1995 [24].
Each individual particle searches in space by adjusting
its velocity based on both its own previous best lo-
cation and its neighbors' best location at each time
step. The e�ectiveness and robustness of the PSO
have been demonstrated through several optimization
problems in power systems such as reactive power and
voltage control [25], power system stabilizer design [26],
optimal power 
ow [27], and short-term hydrothermal
scheduling [28,29].

In this paper, eight di�erent improvements in
the PSO method are proposed to solve the CHPED
problem with valve point loading e�ects on pure power
units and power losses in transmission lines. The
proposed improved PSO (IPSO) methods are tested
on six systems and the obtained results are compared
with those from other methods such as LR [4], GA
[5], IACSA [6], EP [7], IGA-MU [8], LR-SQP [9],
SARGA [10], BCO [11], HSA [1,12-13], MADS-LHS
[14], MADS-PSO [14], MADS-DACE [14], NDS [15],
AIS [16], LR-SSMU-CSS [17], LR-SSMU-SSBS [17],
TVAC-PSO [19], CGSO [20], and IGSO [20] in terms
of cost and execution time.

2. Problem formulation

The main task of the problem is to determine the heat
and power generations for each unit so that the total
cost of the heat and power generations is minimized
while the heat demand, power demand, and capacity
of each unit are satis�ed. In the CHPED, there is
a mutual dependency between the power and heat
production of combined heat and power units. A
typical heat-power feasible region for a combined heat
and power unit is given in Figure 1.

The objective of the problem is to minimize
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Figure 1. Typical heat-power feasible region for
combined heat and power units.

the total fuel cost for heat and power production
formulated as follows:

Min
�NPPX
i=1

Fpi(Ppi) +
NcX
j=1

Fcj(Pcj ; Hcj)

+
NphX
k=1

Fhk(Hhk)
�
; (1)

where:
Fpi(Ppi) = api + bpiPpi + cpiP 2

pi; (2)

or:

Fpi(Ppi) =api + bpiPpi + cpiP 2
pi +

����epi
� sin(fpi � (Ppi;min � Ppi))

����; (3)

and:
Fcj(Pcj ;Hcj) =acj + bcjPcj + ccjP 2

cj + kcjHcj

+ lcjH2
cj +mcjHcjPcj ; (4)

Fhk(Hhk) = ahk + bhkHhk + chkH2
hk; (5)

subject to:

(a) Power balance constraint: The total power output
generated by pure power and combined heat and
power units must satisfy the power demand:

PD + PL �
NPPX
i=1

Ppi �
NcX
j=1

Pcj = 0; (6)

where the power losses in transmission line are
calculated by:

PL=
Npp+NcX
i=1

Npp+NcX
j=1

PiBijPj+
Npp+NcX
i=1

B0iPi+B00:
(7)

(b) Heat balance constraint: The total heat produced

by pure heat and combined heat and power units
must satisfy the heat demand neglecting heat loss:

HD �
NcX
j=1

Hcj �
NphX
k=1

Hhk = 0: (8)

(c) Generation and heat limits constraints: Each unit
must operate within their upper and lower bounds:

Ppi;min � Ppi � Ppi;max; (9)

Pcj;min(Hcj) � Pcj � Pcj;max(Hcj) (10)

Hcj;min(Pcj) � Hcj � Hcj;max(Pcj); (11)

Hhk;min � Hhk � Hhk;max: (12)

Based on Figure 1, the dependent upper and lower
power outputs and upper and lower heat outputs of
the combined heat and power units are determined as
follows:

Pmax
cj (Hcj) = minfPcj(Hcj)jAB ; Pcj(Hcj)jBCg; (13)

Pmin
cj (Hcj) = maxfPcj(Hcj)jCD; Pcj(Hcj)jDE ;

Pcj(Hcj)jEF g; (14)

Hmax
cj (Pcj) = minfHcj(Pcj)jBC ;Hcj(Pcj)jCDg; (15)

Hmin
cj (Pcj) = 0: (16)

3. Improved particle swam optimization
methods for CHPED problem

3.1. The proposed improved PSO algorithms
Similar to other meta-heuristic algorithms, PSO algo-
rithm consists of Np particles with their position Xd
and velocity Vd, d = 1; :::; Np, where each particle
d contains a solution for the problem. The velocity
of each particle d is updated by using the exchange
information among its current position and its best
previous position as well as its neighbor's best previous
position. The best previous position of particle d and
the best previous position of the dth particle's neighbor
are respectively represented by Pbestd and Nbestd,
d = 1; :::; Np. The new velocity and position of the
particle d are updated as follows:

V new
d =Vd + c1:rand:(Pbestd �Xd)

+ c2:rand:(Nbestd �Xd); (17)

Xnew
d = Xd + Vd; (18)

where c1 and c2 are acceleration constants; rand is
random number with uniform distribution between 0
and 1.
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The conventional PSO is simple for application
on optimization problems. However, the conventional
PSO still su�ers from some disadvantages such as
local optimum and slow convergence for large-scale
problems with complex constraints. Therefore, we
propose eight di�erent PSO algorithms to improve the
solution quality and convergence speed. The improved
PSO algorithms are described in details as follow.

3.1.1. Global vision of PSO with inertia weight
(GWPSO)

By inserting an inertia weight factor into the original
PSO, an improved version of PSO is developed by Shi
and Eberhart [30]. The suggestion aims to improve
the new velocity of each particle meanwhile the way to
obtain the new position is retained as in (18). In the
paper, the improvement is named global vision of PSO
with inertia weight (GWPSO) and the velocity for the
GWPSO is as follows [30]:

V new
i =!Vi + c1:rand:(Pbestd �Xd)

+ c2:rand:(Gbest�Xd); (19)

where weight factor, !, is determined as follows [31]:

! = !max:
!max � !min

Itermax
:Iter: (20)

Obviously, the value of ! becomes smaller as the
number of iterations increases. This manner enables
the IPSO to �nd out better solution by searching in a
smaller local zone.

3.1.2. Local vision of PSO with inertia weight
(LWPSO)

In this improvement, the velocity of the dth particle's
current iteration is obtained as in Eq. (21). There is
a di�erence between LWPSO and GWPSO as LWPSO
uses the best previous position between its two other
neighbors Lbestd�1 and Lbestd+1, and itself Lbestd.
Lbest is the best one among Lbestd�1, Lbestd, and
Lbestd+1 of the (d � 1)th particle, dth particle, and
(d+ 1)th particle.

V new
i =!Vi + c1:rand: (Pbestd �Xd)

+ c2:rand: (Lbestd �Xd) : (21)

3.1.3. Global vision of PSO with constriction factor
(GCPSO)

Clerc [32] indicates the usefulness of constriction factor
for improving the convergence characteristic of PSO;
Eberhart and Shi have applied this parameter to PSO
to improve the velocity of particles as follows [31]:

V new
i =K

�
Vi + c1:rand:(Pbestd �Xd)

+ c2:rand:(Gbest�Xd)
�
; (22)

K = 2=
���2� '�p'2 � 4'

��� ; (23)

' = c1 + c2: (24)

This improvement with the constriction factor is called
global vision of PSO with constriction factor (GCPSO).

3.1.4. Local vision of PSO with constriction factor
(LCPSO)

By using the information from the best previous posi-
tion of the two other neighbors and constriction factor,
the velocity of the LCPSO is updated as follows:

V new
i =K

�
Vi + c1:rand:(Pbestd �Xd)

+ c2:rand:(Lbestd �Xd)
�
: (25)

3.1.5. Global vision of PSO with inertia weight and
Cauchy distribution (GWPSO CD)

In this version, the new IPSO is proposed by modifying
a random number of the above GWPSOs. The random
number is replaced with another number ranging in
[0,1] generated by Cauchy distribution as follows:

dc = jtan((�=4� (rand� 0:5)j ; (26)

and the velocity is updated by:

V new
i =!Vi + c1:cd:(Pbestd �Xd)

+ c2:rand:(Gbest�Xd): (27)

3.1.6. Local vision of PSO with inertia weight and
Cauchy distribution (LWPSO CD)

By combining LWPSO and Cauchy distribution, the
velocity of this version is updated by:

V new
i =!Vi + c1:cd:(Pbestd �Xd)

+ c2:rand:(Lbestd �Xd): (28)

3.1.7. Global vision of PSO with constriction factor
and Cauchy distribution (GCPSO CD)

This version also uses Cauchy distribution to generate
random number for GCPSO. The velocity is updated
as follows:

V new
i =K

�
Vi + c1:cd:(Pbestd �Xd)

+ c2:rand:(Gbest�Xd)
�
: (29)

3.1.8. Local vision of PSO with constriction factor
and Cauchy distribution (LCPSO CD)

Similar to GCPSO CD, the Cauchy distribution is also
used and the velocity is updated as follows:

V new
i =K

�
Vi + c1:cd:(Pbestd �Xd)

+ c2:rand:(Lbestd �Xd)
�
: (30)
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3.2. Calculation of slack variables
In this research, two slack variables are used to satisfy
the power balance constraint (6) and heat balance
constraint (8), including the slack pure power unit 1,
Pp1, and the slack pure heat unit 1, Hh1.

3.2.1. Calculation of the slack pure power unit
Suppose that the power output of all units is known
excluding Pp1; therefore, the power output of the unit
is calculated using Eq. (6) as follows:

Pp1 = PD + PL �
NPPX
i=2

Ppi �
NcX
j=1

Pcj : (31)

3.2.2. Calculation of the slack pure heat unit
By using Eq. (8), the slack pure heat unit 1 is obtained
as follows:

Hh1 = HD �
NcX
j=1

Hcj �
NphX
k=2

Hhk: (32)

3.3. Implementation of the proposed IPSO
algorithms

3.3.1. Initialization
Similar to other meta-heuristic algorithms, the pro-
posed IPSO methods have NP particles, where each
particle consists of velocity and position. The position
of the dth particle Xd (d = 1; :::; Np) contains the
power outputs of (Npp � 1) pure power units and Nc
combined heat and power units and the heat outputs
of Nc combined heat and power units and (Nph � 1)
pure heat units. The details of the initialization are as
follows:

Ppi;d = Ppi;min + rand� (Ppi;max � Ppi;min) ;

i = 2; :::; Npp; (33)

Pcj;d = Pcj;min + rand� (Pcj;max � Pcj;min) ;

j = 1; :::; Nc; (34)

Hcj;d = Hcj;min + rand� (Hcj;max �Hcj;min) ;

j = 1; :::; Nc; (35)

Hhk;d = Hhk;min + rand� (Hhk;max �Hhk;min) ;

k = 2; :::; Nph: (36)

The velocity of each particle is also initialized as
follows:

Vd = Vdmin + rand�(Vdmax � Vdmin);

d = 1; :::; Np; (37)

where the maximum and minimum velocities are se-

lected by:

Vdmax = 0:15�(Xdmax �Xdmin); (38)

Vdmin = �Vdmax: (39)

Based on the initialized population of the particles, the
�tness function to be minimized corresponding to each
nest for the considered problem is calculated:

FT (Xd) =
NppX
i=1

FPi(Ppi;d) +
NcX
j=1

Fcj(Pcj;d; Hcj;d)

+
NphX
k=1

Fhk(Hhk;d) +KP (Pp1;d � P lim
p1 )2

+Kh(Hh1;d �H lim
h1 )2; (40)

where KP and Kh are penalty factors; Pp1;d and Hh1;d
are the power output and heat output of the slack pure
power unit and the slack pure heat unit, respectively.

The limitations in Eq. (40) need to be determined
as follows:

P lim
p1 =

8><>:Pp1;max if Pp1;d > Pp1;max

Pp1;min if Pp1;d < Pp1;min

Pp1;d otherwise
(41)

Hmin
h1 =

8><>:Hh1;max if Hh1;d > Hh1;max

Hh1;min if Hh1;d < Hh1;min

Hh1;d otherwise
(42)

Each initialized position of particles is set to the best
particle Pbestd(d = 1; :::; NP ) while the particle with
the lowest value of �tness function is set to the best
global particle Gbest. In addition, each particle d with
the best local particle Lbestd needs to be found as
described in Section 3.1.2.

3.3.2. Updating new velocity and new position for
each particle d

In the IPSO, the velocity is �rst updated by eight ways
as described in Section 3.1 and the new position is
then determined using Eq. (18). During the process,
each new velocity and position cannot always satisfy
their limits and the following de�nitions are useful to
�x them:

Vd =

8><>:Vdmax if Vd > Vdmax

Vdmin if Vd < Vdmin; d = 1; :::; Np
Vd otherwise

(43)

Ppi;d =

8><>:Ppi;max if Ppi;d > Ppi;max

Ppi;min if Ppi;d < Ppi;min; i = 2; :::; Npp
Ppi;d otherwise (44)
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Pcj;d(Hcj;d) =

8>>>>>>>><>>>>>>>>:

Pcj;max(Hcj;d) if
Pcj;d(Hcj;d) > Pcj;max(Hcj;d)

Pcj;min(Hcj;d) if
Pcj;d(Hcj;d) < Pcj;min(Hcj;d);
j = 1; :::; Nc

Pcj;d(Hcj;d) otherwise

(45)

Hcj;d(Pcj;d) =

8>>>>>>>><>>>>>>>>:

Hcj;max(Pcj;d) if
Hcj;d(Pcj;d) > Hcj;max(Pcj;d)

Hcj;min(Pcj;d) if
Hcj;d(Pcj;d) < Hcj;min(Pcj;d);
j = 1; :::; Nc

Hcj;d(Pcj;d) otherwise

(46)

Hhk;d =

8>>><>>>:
Hhk;max if Hhk;d > Hhk;max

Hhk;min if Hhk;d < Hhk;min;
k = 2; :::; Nph

Hhk;d otherwise

(47)

The power output of the slack pure power unit and heat
output of the slack pure heat unit are then obtained as
in Section 3.2.

3.3.3. Overall Procedure of IPSO for CHPED problem
The overall procedure of IPSO for solving the CHPED
problem is described as follows:

Step 1: Select parameters for IPSO, including the
number of particle, NP , the maximum number of
iterations, Itermax, and other ones such as !min,
!max, c1, and c2 for each version of IPSO;
Step 2: Initialize NP particles randomly for power
output and heat output by using Eqs. (33)-(36);
Step 3: Calculate the slack pure power unit and the
slack pure heat unit using Eqs. (31) and (32). Set the
current iteration Iter = 1;
Step 4: Evaluate �tness function for each particle
using Eq. (40) to determine Pbestd, Gbest, and Lbest;
Step 5: Update new velocity and new position for
each particle as in Section 3.1;
Step 6:
� De�ne the new velocity and position for each

particle in case of violating their limits using
Eqs. (43)-(47);

� Calculate the slack pure power unit and the slack
pure heat unit;

Step 7: If Iter < Itermax, set Iter = Iter + 1 and
return to Step 4;
Step 8: Calculate the �tness function for each
particle using Eq. (40) to determine the best particle,
Gbest, and stop.

4. Numerical results

The proposed IPSO algorithms have been tested on
six systems consisting of three systems with quadratic
fuel cost function of pure power units and three
systems with valve point e�ects on pure power units.
Each proposed IPSO algorithm is coded in MATLAB
platform and twenty independent trials for each case
of convex systems and �fty independent trials for each
case of nonconvex systems are run on a 1.8 GHz PC
with 4GB of RAM.

4.1. Selection of control parameters
Each meta-heuristic algorithm possesses a set of control
parameters which can be classi�ed into two control
parameter groups including basic control parameter
group and advanced control parameter group. The
former often includes the number of population and
the maximum number of iterations. These parameters
can easily be found based on the fact that the higher
is set the number, the better solution and the longer
simulation time are obtained and vice versa. The latter
depends on each individual algorithm and section of
these parameters is di�cult since there is no rule to
choose them.

In the eight proposed IPSO algorithms, there are
two parameters in the basic group consisting of the
number of particles and the maximum number of iter-
ations and other ones in the advanced group comprising
inertia weight and constriction factor. The �rst group
has a signi�cant impact on the solution quality and
execution time. Obviously, a large maximum number
of iterations will certainly lead to time consuming and
better optimal solution whereas the lower value will
achieve fast simulation time and worse solution. On
the other hand, the population is also dependent on
the scale of considered systems, such as the complexity
of constraints and objective function. Therefore, the
number of individuals in population is selected based on
experience. In order to implement the IPSO methods
for the CHPED problem, each particle contains pure
power units and pure heat units except pure power
unit 1 and pure heat unit 1, and all combined heat
and power units. For initialization, each particle is
randomly generated within its limitations and then the
slack pure power unit 1 and slack pure heat unit 1 are
determined based on the power balance equation and
heat balance equation. If the power losses and heat
losses are neglected, the power slack unit and heat
slack unit of the population are determined at once.
On the contrary, the two slack units of each particle
are calculated one by one since the power losses and
heat losses are taken into account. This manner leads
to time consumption for systems with power losses.
Consequently, the population should be set to high
value for systems neglecting power losses meanwhile
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fewer particles of population should be chosen for
systems considering power losses. By experiment, the
population is set to 50 for all test systems neglecting
transmission losses in Section 4.3, 10 for other systems
in Section 4.4, and 20 for 48-unit system 6.

In contrast to the former, the latter in
uences
optimal solution quality, but not the execution time.
Furthermore, the section of these parameters is di�cult
since there is no rule to choose them. By experiment,
the inertia weight and constriction factor are deter-
mined based on !max = 0:9, !min = 0:1, c1 = 2:05,
and c2 = 2:05 for all test systems except system 6.

4.2. Benchmark optimization function
In this section, the proposed IPSO methods are tested
on several benchmark functions [33] and given in
Table 1. For implementation of the IPSO methods,
NP is set to 20 whereas Itermax is set to 2,000 for

all functions, except function 1 with 150,000. Note
that all methods in [34] including GA, PSO, and GSO
have set the population and the maximum iterations
to 48 individuals and 150,000 iterations, respectively,
for all functions. There is no information about the
population and iteration reported in [33]. For each
case, each IPSO method is run in 100 independent

trials. The comparisons between IPSO methods and
others including RCGA-RTVM (RCGA with random
transfer vectors-based mutation) [33], GA, PSO, and
GSO [34] are shown in Tables 2 to 6.

As observed from Tables 4-6, the IPSO meth-
ods obtain better minimum and average values than
RCGA-RTVM [33] for functions F3, F4, and F5 except
for the average value of function F5. As compared
to GA, PSO, and GSO, the IPSO methods are more
e�ective and robust since the average values and
standard deviation values from the IPSO methods are
less than those from these methods for functions F1
and F2. Furthermore, like the functions F1 and F2,
the IPSO methods are also more e�cient than RCGA-
RTVM [33] due to less average and standard deviation
values. Consequently, it can be concluded that the
IPSO methods are very e�cient for the benchmark
functions as compared to other methods.

4.3. Systems with quadratic fuel cost function
of pure power units

In this section, three systems with quadratic fuel cost
function of pure power units neglecting power losses in
transmission lines are considered, including one system
with four units and two other systems with �ve units.

Table 1. Five benchmark functions.

Function De�nition Domain

F1 (Rosenbrock)
PN
i=1

�
(100(xi+1 � x2

i ))2 + (xi � 1)2� xi 2 [�30; 30]; N = 30

F2 4x2
1 � 2:1x4

1 + 1
3x

6
1 + x1x2 � 4x2

2 + 4x4
2 xi 2 [�5; 5]; N = 2

F3 (Sphere)
Pn
i=1 x

2
i xi 2 [�5:12; 5:12]; N = 25

F4 (Rosenbrock)
PN�1
i=1

�
(100(xi+1 � x2

i ))2 + (xi � 1)2� xi 2 [�5:12; 5:12]; N = 25

F5 (Griewangk) 1 + 1
4000

PN
i=1 x

2
i ��N

i=1 cos( xip
i
) xi 2 [�600; 600];N = 25

Table 2. Comparisons for benchmark function F1.

Method Min. Average Max. Std. dev. CPU time (s)

RCGA-RTVM [33] - 34.4281 - 24.5366 -
GA [34] - 338.5516 - 361.497 11.3
PSO [34] - 37.3582 - 32.1436 37.6
GSO [34] - 49.8359 - 30.1771 27.8
LCPSO 0.5674 22.0832 28.9418 6.8405 13.93
LCPSO-CD 9.8838 22.4809 28.4788 5.1825 13.56
LWPSO 6.4779 20.8742 28.8812 6.322 14.13
LWPSO-CD 13.4237 21.5025 28.2256 4.6819 13.07
GCPSO 4.8124 21.3941 28.0665 5.9035 13.04
GCPSO-CD 0.8947 21.2693 24.9435 5.2577 13.19
GWPSO 2.8233 21.9946 28.4215 6.9495 13.69
GWPSO-CD 0.8113 23.3905 29.391 6.0809 13.00
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Table 3. Comparisons for benchmark function F2.

Method Min. Average Max. Std. dev. CPU time (s)

RCGA-RTVM [33] - -1.03162845 - 2.8796 E-11 -
GA [34] - -1.0298 - 3.1314E-3 0.5
PSO [34] - -1.0160 - 1.2786 E-2 0.3
GSO [34] - -1.031628 - 0 0.2
LCPSO -1.031628453 -1.03162845 -1.03162845 0 0.15
LCPSO-CD -1.031628453 -1.03162845 -1.03162845 0 0.16
LWPSO -1.031628453 -1.03162845 -1.03162845 0 0.16
LWPSO-CD -1.031628453 -1.03162845 -1.03162845 0 0.17
GCPSO -1.031628453 -1.03162845 -1.03162845 0 0.15
GCPSO-CD -1.031628453 -1.03162845 -1.03162845 0 0.15
GWPSO -1.031628453 -1.03162845 -1.03162845 0 0.16
GWPSO-CD -1.031628453 -1.03162845 -1.03162845 0 0.15

Table 4. Comparisons for benchmark function F3.

Method Min. Average Max. Std. dev. CPU time (s)

RCGA-RTVM [33] 1.4038E-24 4.0738E-22 - 1.1958 E-21 -
LCPSO 2.76005E-32 1.444E-29 1.58113E-28 3.48271E-29 0.27
LCPSO-CD 1.65718E-32 2.896E-28 5.65971E-27 1.23E-27 0.31
LWPSO 7.53991E-28 1.511E-25 1.72898E-24 3.83299E-25 0.28
LWPSO-CD 1.57528E-36 1.985E-33 1.15549E-32 3.24783E-33 0.32
GCPSO 3.09053E-37 5.683E-30 8.36926E-29 1.82112E-29 0.13
GCPSO-CD 6.14382E-35 7.052E-25 1.4097E-23 3.0723E-24 0.16
GWPSO 1.78587E-33 3.545E-24 6.1817E-23 1.34102E-23 0.13
GWPSO-CD 3.45608E-33 1.478E-19 1.15129E-18 3.4534E-19 0.17

Table 5. Comparisons for benchmark function F4.

Method Min. Average Max. Std. dev. CPU time (s)

RCGA-RTVM [33] 22.504 24.094 - 0.6804 -
LCPSO 7.9294 22.1923 24.6959 2.4808 0.29
LCPSO-CD 4.0231 22.2021 24.6947 3.065 0.32
LWPSO 7.3 46.8 1237.9 170.2 0.3
LWPSO-CD 6.4955 22.1 24.6957 3.3924 0.29
GCPSO 9.7564 21.7 24.7 2.66 0.13
GCPSO-CD 5.8902 22 24.69 2.89 0.16
GWPSO 6.4 17.187 27.988 6.233 0.17
GWPSO-CD 9.695 17.902 26.496 4.932 0.18

4.3.1. System 1 with 4 units
The test system from [4] includes one pure power unit,
two combined heat and power units, and one pure heat
unit. There are three load demands for this system
including: 1) power demand of 200 MW and heat
demand of 115 MWth, 2) power demand of 175 MW
and heat demand of 110 MWth, and 3) power demand
of 225 MW and heat demand of 125 MWth.

For implementation, the maximum number of

iterations is set to 300 and the others are mentioned
in Section 4.1. The obtained results are compared to
those of other methods in Tables 7-9. For load demand
1 in Table 7, the proposed IPSO algorithms can obtain
better total cost than LR [4], GA [5], IACSA [6],
MADS-LHS and MADS-PSO [14], EP [7], and IGA-
MU [8] and the same total cost with other methods
except HSA [12,13] and SPSO [18]. Note that the
solution obtained by HSA in [12-13] is infeasible since
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Table 6. Comparisons for benchmark function F5.

Method Min. Average Max. Std. dev. CPU time (s)

RCGA-RTVM [33] 1.4353E-8 1.91 E-8 - 3.92E-9 -
LCPSO 0 0.011 0.066 0.016 0.27
LCPSO-CD 0 0.008 0.029 0.009 0.31
LWPSO 0 0.013 0.09 0.018 0.28
LWPSO-CD 0 0.011 0.049 0.013 0.32
GCPSO 0 0.037 0.191 0.045 0.13
GCPSO-CD 0 0.039 0.337 0.059 0.16
GWPSO 0 0.014 0.093 0.021 0.13
GWPSO-CD 0 0.014 0.079 0.019 0.17

Table 7. Result comparison for load demand 1 of system 1.

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

HSA [1] 9,257.07 - - - -
LR [4] 9,257.10 - - - -
GA [5] 9,267.20 - - - -
IACSA [6] 9,452.20 - - - -
EP [7] 9,257.10 - - - -
IGA-MU [8] 9,257.08 - - - -
HSA [12] 8606.07� - - - -
HSA [13] 8606.07� - - - -
MADS-LHS [14] 9277.1311 9547.9151 10005.381 213.3516 7.0422
MADS-PSO [14] 9301.3567 9551.277 9997.6576 251.1569 7.5594
MADS-DACE [14] 9257.0754 9257.5148 9260.4317 1.0743 2.3078
NDS[15] 9,257.07 9,257.07 9,257.07 - -
LRSS [17] 9,257.07 - - - -
SPSO [18] 9,248.17�� - - - -
TVAC-PSO [19] 9257.075 - - - 1.33
LCPSO 9257.075 9257.095 9257.236 0.038373 0.14
LCPSO-CD 9257.075 9257.075 9257.076 0.000169 0.14
LWPSO 9257.075 9257.09 9257.141 0.019792 0.15
LWPSO-CD 9257.075 9257.077 9257.103 0.005975 0.14
GCPSO 9257.075 9257.075 9257.077 0.000718 0.14
GCPSO-CD 9257.075 9257.075 9257.078 0.000396 0.16
GWPSO 9257.075 9257.079 9257.128 0.011484 0.15
GWPSO-CD 9257.075 9257.077 9257.093 0.004995 0.15
� The solution violated the feasible operating zone of cogeneration unit 3.
�� The power generation is less than power load demand.

the power output of combined heat and power unit 3 is
outside the feasible operating zone and the total power
generation of the SPSO is less than power load. For
computational time, the proposed algorithms are faster
than the MADS-LHS, MADS-PSO, MADS-DACE, and
TVAC-PSO. There is no execution time reported for
other methods.

For the result comparison of load demands 2 and
3 in Tables 8 and 9, the proposed IPSO methods can
obtain better total cost than MADS-LHS and MADS-
PSO in [14] and the same total cost as that obtained
from MADS-DACE [14], LR-SSMU-CSS [17], and LR-
SSMU-SSBS [17]. For the computational time, the
proposed methods are also vastly faster than other
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Table 8. Result comparison for load demand 2 of system 1.

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

MADS-LHS [14] 8622.0748 8921.7626 9442.1843 252.3315 63.6
MADS-PSO [14] 8629.4156 8799.8773 9046.634 136.8504 56.5656
MADS-DACE [14] 8555.9625 8555.9625 8555.9652 0.0009 3.7094
LR-SSMU-CSS [17] 8555.9625 - - - -
LR-SSMU- SSBS [17] 8555.9625 - - - -
LCPSO 8555.9625 8555.96263 8555.9632 0.000173 0.16
LCPSO-CD 8555.9625 8555.962525 8555.9626 0.000043 0.15
LWPSO 8555.9626 8555.98514 8556.1231 0.040325 0.15
LWPSO-CD 8555.9625 8555.962605 8555.9635 0.000237 0.14
GCPSO 8555.9625 8555.962535 8555.9631 0.000131 0.15
GCPSO-CD 8555.9625 8555.9625 8555.9625 0 0.16
GWPSO 8555.9625 8555.96549 8556.0167 0.011761 0.14
GWPSO-CD 8555.9625 8555.962695 8555.9652 0.000583 0.15

Table 9. Result comparison for load demand 3 of system 1

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

MADS-LHS [14] 10101.4753 10295.4723 10833.7313 236.1302 8.1516
MADS-PSO [14] 10101.8942 10455.1238 11393.4252 478.2026 7.0563
MADS-DACE [14] 10074.4875 10074.4907 10074.4883 0.0011 5.5281
LR-SSMU-CSS [17] 10,074.49 - - - -
LR-SSMU- SSBS [17] 10,074.49 - - - -
LCPSO 10074.4875 10074.69812 10077.6977 0.69742 0.15
LCPSO-CD 10074.4875 10074.5736 10075.5805 0.23412 0.15
LWPSO 10074.4875 10074.49246 10074.5308 0.01053 0.14
LWPSO-CD 10074.4875 10074.49595 10074.525 0.01261 0.15
GCPSO 10074.4875 10075.73304 10096.1908 4.70334 0.14
GCPSO-CD 10074.4875 10075.03631 10082.3371 1.71600 0.15
GWPSO 10074.4875 10074.58515 10075.7021 0.27089 0.15
GWPSO-CD 10074.4875 10074.57905 10075.2045 0.21077816 0.15

methods. There is no computational time reported for
LR-SSMU-CSS and LR-SSMU-SSBS methods.

Comparing the obtained results by the proposed
IPSO methods, LCPSO-CD and GCPSO-CD are the
best two versions for load demand 1 with standard
deviation values of 0.000169 and 0.000396 and load
demand 2 with the values of 0.000043 and 0, respec-
tively, whereas the best two ones for load demand 3 are
LWPSO and LWPSO-CD with the values of 0.01053
and 0.01261, respectively. In addition, as observed
from the two di�erent method groups using Cauchy
distribution and random distribution, the methods
with Cauchy distribution can obtain better standard
deviation than those with random distribution, ex-
cept LWPSO and LWPSO-CD for load demand 2.
In terms of convergence speed, the proposed IPSO

can obtain the optimal solution with similar CPU
time.

On the other hand, the convergence characteris-
tics of the proposed IPSO methods for test systems
have been given for comparison of their performance.
Moreover, the proposed IPSO methods are the methods
for random search; thus, their convergence characteris-
tic cannot be expressed in mathematics. Therefore,
it is useful to include these convergence character-
istics with respect to number of iterations. Based
on the convergence characteristics of the proposed
IPSO methods for each case, the convergence speed
of the proposed methods is discussed. For the system,
the convergence characteristics of the proposed IPSO
methods for three load demands of system 1 are shown
in Figures 2-4. As observed from the �gures, the



1328 T.T. Nguyen and D.N. Vo/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1318{1334

Figure 2. Convergence characteristic of the proposed
IPSO methods for load demand 1 of system 1.

Figure 3. Convergence characteristic of the proposed
IPSO methods for load demand 2 of system 1.

Figure 4. Convergence characteristic of the proposed
IPSO methods for load demand 3 of system 1.

LWPSO and LWPSO-CD own the worst robustness
since the �tness values of them are higher than others
at almost all iterations when the search process passes
about one fourth of the maximum iterations. On the
contrary, the GCPSO and GCPSO-CD are the two
best algorithms due to their lowest �tness values at
nearly all iterations. In addition, as compared in one
algorithm with Cauchy distribution and one algorithm
with random distribution, it can be stated that the
Cauchy distribution is more useful for the IPSO than
random distribution. In fact, almost methods with
Cauchy distribution are respectively better than those
with random distribution, except for Figure 2 where
only GWPSO-CD is worse than GWPSO and Figure 4
where only LWPSO-CD possesses worse convergence
characteristic than LWPSO.

4.3.2. Systems 2 and 3 with 5 units
System 2 consists of 4 units of the system 1 in Section
4.3.1 and one additional steam turbine generating
unit [9]. The power output of the additional unit is
�xed at 80 MW while it always consumes 120 MWth
of heat. The power and heat demands are 250 MW and
115 MWth, respectively. For system 3, there are three
di�erent load demands including: 1) 160 MW and 220
MWth, 2) 250 MW and 175 MWth, and 3) 300 MW
and 150 MWth [1].

For implementation, NP is �xed at 30 for system
2, 500 for load demands 1 and 3, and 300 for load
demand 2 of system 3. The comparison between the
IPSO methods and other methods are reported in
Tables 10 and 11. Obviously, the proposed methods
can obtain less total cost than LR-SQP for system
2, and GA and HSA for three load demands of
system 3. There is no execution time reported for
the compared methods in [1,9]. Figure 5 has shown
the convergence characteristic by the proposed IPSO

Figure 5. Fitness function convergence characteristic of
system 2 with 5 units.
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Table 10. Cost comparison for system 2.

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

LR-SQP [9] 10623.4 - - - -
LCPSO 10369.6435 10369.8213 10372.2049 0.556975 0.037
LCPSO-CD 10369.6435 10369.8186 10371.0434 0.332948 0.037
LWPSO 10369.6435 10369.6501 10369.7686 0.027196 0.038
LWPSO-CD 10369.6435 10369.6487 10369.7475 0.022659 0.036
GCPSO 10369.6435 10371.9331 10387.1100 4.639012 0.039
GCPSO-CD 10369.6435 10371.5256 10388.3594 4.712559 0.041
GWPSO 10369.6435 10369.9931 10373.5569 0.901681 0.038
GWPSO-CD 10369.6435 10369.6768 10369.9011 0.067864 0.038

Table 11. Cost comparison for system 3.

Method
Load demand 1 Load demand 2 Load demand 3
Min.

cost ($/h)
CPU

time (s)
Min.

cost ($/h)
CPU

time (s)
Min.

cost ($/h)
CPU

time (s)
GA [1] 11,837.40 - 12,327.37 - 13,779.50 -
HSA [1] 11,810.88 - 12,284.45 - 13,723.20 -
LCPSO 11758.0692 0.26 12116.6009 0.16 13672.8342 0.25
LCPSO-CD 11758.0629 0.26 12116.6009 0.17 13672.8341 0.26
LWPSO 11758.0717 0.27 12116.6009 0.16 13672.8341 0.26
LWPSO-CD 11758.0672 0.26 12116.6008 0.16 13672.8342 0.26
GCPSO 11758.0702 0.27 12116.6008 0.17 13672.8342 0.25
GCPSO-CD 11758.0702 0.26 12116.6008 0.17 13672.837 0.25
GWPSO 11758.0844 0.27 12116.6008 0.16 13672.8342 0.26
GWPSO-CD 11758.0844 0.28 12116.6008 0.16 13672.8341 0.26

methods for system 2. Clearly, the IPSO method
with constriction factor, global vision, and Cauchy
distribution is the fastest method obtaining the optimal
solution and the IPSO methods with Cauchy distribu-
tion are faster than the IPSO methods with random
distribution.

4.4. Systems with nonconvex fuel cost
function of pure power units

4.4.1. System 4 with 7 units
The test system consisting of four pure power units,
two combined heat and power units, and one pure heat
unit with nonconvex fuel cost function of pure power
units and power losses in transmission lines is consid-
ered. The power and heat demands of the system are
600 MW and 150 MWth, respectively. The data for the
test system is from [11,16]. For implementation of the
proposed IPSO methods for the system, the maximum
number of iterations is set to 2000. The minimum
total cost and average execution time of the proposed
methods are compared with those of BCO and RCGA
in [11]; AIS, EP, and PSO in [16]; and TVAC-PSO
in [19] as given in Table 12. As seen from the table,

the TVAC-PSO [19] has reported the lowest fuel cost;
but the power loss from the method, 0.73922 MW, is
much less than the exact value, 7.3922 MW, which is
recalculated. Therefore, the TVAC-PSO is not valid to
compare the performance of the case. As compared
to other valid methods [11,16], the proposed IPSO
methods are more e�cient and faster due to obtaining
less total cost with shorter computational time. Note
that all methods in [11,16] were run on a P-IV, 80
GB, and 3.0 GHz personal computer. Therefore, the
proposed IPSO methods are very favourable for solving
CHPED problem with nonconvex fuel cost function of
pure power units.

Comparing the minimum cost and standard devi-
ation of methods with Cauchy distribution and those
of methods with random distribution has indicated
that the methods which use random distribution can
obtain better solution than those which use Cauchy
distribution.

4.4.2. System 5 with 11 units
For demonstration of the practical applicability of
the proposed IPSO methods, a larger-scale system
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Table 12. Result comparison for system 4

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

AIS [16] 10,355 - - - 5.2956
EP [16] 10,390 - - - 5.3274
PSO [16] 10,613 - - - 5.3944
BCO [11] 10,317 - - - 5.1563
RCGA[11] 10,667 - - - 6.4723
TVAC-PSO [19] 10,100.32� - - - 3.25
LCPSO 10199.5458 11104.52 13564.26 921.2788 1.02
LCPSO-CD 10279.1023 11366.53 15327.00 1196.669 1.02
LWPSO 10194.0217 11077.21 14304.68 815.3887 1.03
LWPSO-CD 10265.6716 11199.34 15394.56 1219.225 1.02
GCPSO 10143.7898 11605.07 14329.09 1162.164 1.01
GCPSO-CD 10294.2369 11678.77 14808.76 1172.982 1.02
GWPSO 10243.0249 11235.88 15265.87 887.0105 1.03
GWPSO-CD 10281.6835 11476.73 15318.27 1045.916 1.03
� The reported power loss is much less than the calculated value.

Table 13. Result summary of system 5 with nonconvex fuel cost function of pure power units.

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

LCPSO 39150.602 45112.8588 53277.5633 3101.651 1.6
LCPSO-CD 39095.767 44333.4244 52017.7678 3582.438 1.7
LWPSO 38800.942 44079.3646 53197.1563 3350.124 1.6
LWPSO-CD 39003.38 44016.9921 49711.6398 2923.853 1.8
GCPSO 39145.78 45069.8953 51697.5972 3115.485 1.8
GCPSO-CD 38924.238 44838.2489 54764.3813 3243.684 1.7
GWPSO 39292.533 44791.2589 53106.0312 3004.722 1.7
GWPSO-CD 39800.802 44367.8227 52079.8046 2786.386 1.8

including eight pure power units with nonconvex fuel
cost function, two combined heat and power units, and
one pure heat unit where the �rst four pure power
units, two combined heat and power units, and one
pure heat unit are from system 4 is considered in this
case. The load and heat demands for this system are
800 MW and 1000 MWth, respectively. The data of
pure power units 5 to 8 and power loss coe�cients
for this system are given in Appendix. The obtained
result by the proposed methods given in Table 13 has
shown that LWPSO obtained the best minimum cost of
$38800.942, whereas GWPSO-CD obtained the highest
minimum cost of $39800.802. Among the methods
using random distribution and Cauchy distribution,
there is no obvious distinction for which group is
more e�ective, because LCPSO-CD and GCPSO-CD
respectively obtain better minimum total costs than
those of LCPSO and GCPSO, but LWPSO-CD and
GWPSO-CD respectively obtain higher minimum costs
than those of LWPSO and GWPSO. On the contrary to

the obtained minimum costs, LCPSO-CD and GCPSO-
CD respectively obtain higher standard deviation costs
than those of LCPSO and GCPSO, but LWPSO-
CD and GWPSO-CD respectively obtain less standard
deviation costs than those of LWPSO and GWPSO.
Obviously, in the comparison of the proposed methods
using random distribution and Cauchy distribution,
there is a con
ict between minimum cost and standard
deviation cost.

4.4.3. System 6 with 48 units
In this section, the proposed PSO methods have also
been tested on a large-scale system with 48 units in 20]
consisting of 26 pure power units, 12 combined heat
and power units, and 10 pure heat units.

For implementation of the proposed methods,
the number of particles and the maximum number
of iterations are respectively set to 20 and 80,000.
In addition, other control parameters for each of the
proposed improved PSO methods are listed below:
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Table 14. The result obtained by the proposed IPSO methods for system 6 with 48 units.

Method Min. cost
($/h)

Avg. cost
($/h)

Max. cost
($/h)

Std. dev.
($/h)

CPU time
(s)

TVAC-PSO [19] 117824.896� - - - 89.63
CGSO [20] 113131.83�� - - - 70.65
IGSO [20] 112320.4159� - - - 70.65
LCPSO 117248.7934 120141.2284 123113.8461 1833.3854 72.4
LCPSO-CD 117164.1170 120461.7189 127241.9529 2951.5578 69.8
LWPSO 117088.3912 118259.5065 119937.0786 592.4360 71.6
LWPSO-CD 116859.8498 118042.9320 120121.4666 897.2295 73.7
GCPSO 117374.0338 121309.6538 127653.3057 2653.4103 74.5
GCPSO-CD 117537.4750 120717.7308 125337.1095 1832.3725 68.7
GWPSO 116572.7024 119151.3075 126173.5174 1961.0783 65.7
GWPSO-CD 116768.1356 120171.6064 122708.8358 1579.9217 73.4
� The exact cost is much higher than the reported one.
�� Combined heat and power unit 36 is outside the feasible operating zone.

- LCPSO, LCPSO-CD, GCPSO, GCPSO-CD:
c1 = 2:05, c2 = 2:05

- LWPSO: !max = 0:8, !min = 0:2
- LWPSO-CD: !max = 0:9, !min = 0:2
- GWPSO: !max = 0:9, !min = 0:1
- GWPSO-CD: !max = 0:8, !min = 0:3

The detailed results obtained by the improved
PSO methods are compared to those from other meth-
ods in Table 14. Clearly, the total cost from CGSO
and IGSO in [20] is better than that from the other
methods. However, the actual total costs calculated
based on the provided solutions from TVAC-PSO [19]
and IGSO [20] are respectively 118962.5402 $/h and
117377.8159 $/h, which are worse than the reported
total costs in these papers. The reported cost and
recalculated cost from CGSO [20] are identical, but
the combined heat and power unit 36 is outside the
feasible operating zone. Therefore, the CGSO is not
valid for comparison. In terms of the computation
time comparison, the proposed IPSO algorithms are
faster than TVAC-PSO and approximate to CGSO and
IGSO. Note that TVAC-PSO, and GSO and IGSO have
been run on computers with 2.0 GHz and 2.5 GHz,
respectively.

5. Conclusions

In this paper, eight IPSO methods have been proposed
for solving the CHPED problem considering nonconvex
fuel cost function and power losses in transmission
lines. The proposed IPSO methods have been devel-
oped based on several factors such as inertia weight and
constriction factor and distributions such as random
distribution and Cauchy distribution to improve the

search ability and speed up the computation of PSO.
The proposed IPSO methods have been tested on three
systems with quadratic objective function and three
systems with nonconvex objective function of pure
power generation units, and the obtained results have
indicated that the proposed IPSO methods are more
e�ective and robust than many other methods in the
literature. Moreover, the IPSO methods using Cauchy
distribution are more e�cient than the ones using
random distribution for the systems with quadratic
function, whereas the proposed IPSO methods with
random distribution are more e�cient than the ones
using Cauchy distribution for the systems with noncon-
vex fuel cost function. Therefore, the proposed IPSO
methods are very favourable for solving the nonconvex
CHPED problem.

Nomenclature

Fpi; Fhk Cost function of pure power unit i and
pure heat unit k

Fcj Cost function of combined heat and
power unit j

api; bpi; cpi Cost function coe�cients of pure power
unit i

epi; fpi Nonconvex cost function coe�cients of
pure power unit i

acj ; bcj ; ccj ; Cost function coe�cients of combined
kcj ; lcj ;mcj heat and power unit j
ahk; bhk; chk Cost function coe�cients of pure heat

unit k
Npp; Nc; Nph Number of pure power units, combined

heat and power units, and pure heat
units



1332 T.T. Nguyen and D.N. Vo/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1318{1334

Ppi;d; Pcj;d Power output of pure power unit i
and combined heat and power unit j
corresponding to particle d

Hhk;d;Hcj;d Heat output of pure heat unit k and
combined heat and power unit j
corresponding to particle d

Ppi;min; Ppi;max Lower and upper limits of power
output for pure power unit i

Pcj;min; Pcj;max Lower and upper limits of power
output for combined heat and power
unit j

Hhk;min;Hhk;maxLower and upper limits of heat output
for pure heat unit k

Hcj;min;Hcj;max Lower and upper limits of heat output
for combined heat and power unit j

PL Power loss on the transmission line
Bij ; B0i; B00 Power loss coe�cients
PD;HD Power and heat load demands.
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Appendix

Data for test system 5
Pure power units from 5 to 8:

Fp5(Pp5) =25 + 2Pp5 + 0:008P 2
p5 +

����100

� sin(0:042� (Pp5;min � Pp5))
����

10 � Pp5 � 75

Fp6(Pp6) =60 + 1:8Pp6 + 0:003P 2
p6 +

����140

� sin(0:04� (Pp6;min � Pp6))
����

20 � Pp6 � 125

Fp7(Pp7) =100 + 2:1Pp7 + 0:0012P 2
p7 +

����160

� sin(0:038� (Pp7;min � Pp7))
����

30 � Pp7 � 175

Fp8(Pp8) =120 + 2Pp8 + 0:001P 2
p8 +

����180

� sin(0:037� (Pp8;min � Pp8))
����

40 � Pp8 � 250

Power losses coe�cient:

B = 10�6

�

26666666666666666664

39 10 12 15 15 16 14 13 15 15
10 40 14 11 15 20 16 18 19 20
12 14 35 17 20 18 15 15 14 13
15 11 17 39 25 19 12 18 16 16
15 15 20 25 49 14 14 15 16 17
16 20 18 19 14 45 28 30 30 28
14 16 15 12 14 28 19 20 22 20
13 18 15 18 15 30 20 24 24 25
15 19 14 16 16 30 22 24 30 30
15 20 13 16 17 28 20 25 30 31
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