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Abstract. Estimation of an optimal controller is a fundamental problem in control
engineering and is widely known as Optimization. Numerous computation and numerical
techniques have been evolved during the past years for the estimation of the optimal
solution. Optimal control of a discrete-time system is concerned with optimizing a given
objective function using \Homogenous Polynomial Lyapunov Function (HPLF)". This
research focuses upon the design of optimal Guaranteed Cost Controller (GCC) for discrete-
time uncertain system using HPLF. The uncertainties are assumed to be norm-bounded
uncertainties. The e�ect of actuator saturation is also incorporated in the system. Su�cient
conditions for the existence of HPLF are derived in terms of Linear Matrix Inequalities
(LMI). The LMI approach has the advantage that it can be solved e�ciently using Convex
Optimization. LMI's combined with HPLF helps to design the guaranteed cost controller
which minimizes the cost by minimizing cost function. Furthermore, the state trajectories
and the invariant set are also shown for the observation of the overall performance.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Virtually, all control actuation devices are subjected
to magnitude or rate limits, i.e. current, torque, ow,
force, voltage, etc. This nonlinearity causes the control
system to operate under constraints on the magnitude
of the control input. For this reason, the formulation
of many fundamental control problems, including opti-
mal control and controllability, reects the constraint
imposed by actuator saturation [1,2]. Performance
degradation takes place when actuator saturates. In
extreme cases, stability can be jeopardizing.
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In control system literature, robust controller for
linear systems with parameter uncertainty has drawn
much considerable attention [3,4]. A lot of research
has been carried out to promise not only robustness
but also stability of the system. In this research,
asymptotic stability is discussed for the solutions of
a discrete time system [2,5].

In the theory of optimal control, Lyapunov func-
tions [6-8] are the scalar functions that are used
widely to prove the stability of a dynamical system.
For instance, quadratic Lyapunov function, which has
drawn valuable attention, serves for the systems with
state variables involving the existence of linear matrix
inequalities [9,10]. More general classes of Lyapunov
functions have been considered, i.e. polyhedral Lya-
punov function [11], piecewise quadratic Lyapunov
function [12], and saturation dependent Lyapunov
functions [13]. However, HPLF as a viable alternative
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to the above classes of Lyapunov functions in a way
that it uses a nonlinear Lyapunov function to optimize
the control sequence by keeping the system less conser-
vative and providing the enlargement/enhancement to
the invariant set [14,15].

Optimization and control problems are highly
intertwined. If a control sequence, also known as
control law, has to be chosen, control parameters
and control input signal are interpreted as decision
variables of an optimization problem. In recent years,
linear matrix inequalities have been considered to be a
powerful tool for approaching the control problem that
appears di�cult to solve in analytical fashion [3,16].

When controlling a plant, it requires not only
making the system asymptotically stable but also
promising an adequate level of performance. One
approach to this problem is called the Guaranteed
Cost Controller (GCC) [5]. Guaranteed cost con-
troller formulates optimal control law using quadratic
Lyapunov function which gives an upper bound to
the closed loop values of the performance index and
thus the system degradation incurred by the model
parameter uncertainties is guaranteed to be less than
a bound. The implementation of guaranteed cost
control using quadratic Lyapunov function has drawn
much attention of research community and many ap-
proaches have been proposed and developed [12,17,18].
Yu et al. [19] proposed LMI approach for the GCC
design and the design problem of optimal guaran-
teed cost controller which minimizes the correspond-
ing guaranteed cost. This approach [1] was for-
mulated as convex optimization problem with LMI
constraints.

This research focuses on guaranteed cost con-
troller problem for uncertain discrete-time system sub-
ject to actuator saturation via HPLF. It is widely
known that quadratic functions lead to conservative
estimates of the robust stability margin [20]. Hence,
non-quadratic homogenous Lyapunov functions are
addressed. The problem of constructing homogenous
Lyapunov function is dealt by means of recently devel-
oped convex optimization technique using linear matrix
inequalities. Actuator saturation and uncertainties are
also taken into account while considering the linear
constraints. The system matrices and the state vectors
are transformed using power transformation introduced
in [3,21,22]. The proposed research transforms the
saturation non-linearity into a convex polytope of
linear system and then formulates a convex optimiza-
tion problem with the constraint given by a set of
LMIs.

This research paper is divided into 5 Sections,
beginning with an Introduction. Detailed views of
the preliminaries are presented in Section 2 and the
problem statement is presented in Section 3. The
novelty of the research and the proposed idea are

presented in Section 4. Section 5 deals with the
examples, results, and conclusion.

2. Preliminaries

This section provides the preliminaries required for the
development of the proposed scheme.

2.1. Power transformation of state vector
De�nition 1: [3] Consider a vector x 2 Rn. Power
transformation of the degree p is a nonlinear change
of coordinates that creates a vector xfpg of all the
monomials of degree p and can be produced from the
original x vector:

xfpgl := xpl11 xpl22 � � � ::xplnn l = 1; � � � :;m; (1)

with:

m =
�
n+ p� 1

p

�
;

ordered by the degree of the leftmost variable.
Note that with this de�nition xf0g = 1, and

xf1g = x.
The followings are examples to illustrate the

above concept:

1. The most basic form is n = p = 2) m = 3

x =
�
x1
x2

�
) xf2g =

24 x2
1

x1x2
x2

2

35 :
2. n = 3, p = 3) m = 10

x =

24x1
x2
x3

35) xf3g =

26666666666666666664

x3
1

x2
1x2

x3
1x3

x1x2
2

x1x2x3

x1x2
3

x3
2

x3
2x3

x2x2
3

x3
3

37777777777777777775
:

2.2. Power transformation of system matrices
For a generic system _x = A(t)x(t), let us introduce the
extended matrix A[m](t) 2 Rnm�nm , de�ned as:

d
dt
xfmg =

@xfmg
@x

Ax = A[m]xfmg: (2)

An expression of the extended matrix is provided in
terms of knocker product as:
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Theorem 1: [1,23] Let xfmg = x
x
� � �
x, where
the number of Kronecker products is denoted bym, and
Km 2 Rnm � d be the matrix satisfying:

x[m] = Kmxfmg: (3)

Then, the extended matrixA[m] ofA 2 Rnm�nm is given
by:

A[m] =
�
KT
mKm

��1KT
m

 
m�1X
i=0

Inm�1�i
A
Ini
!
Km:

(4)

Moreover, the dimension of d is given by:

d =
(n+m� 1)!
(n� 1)!m!

: (5)

Proof: Let A[m] 2 Rnm�nm be the matrix satisfying:

@xfmg
@t

Ax = A[m]xfmg: (6)

From the properties of Kronecker product, it turns out
that:

@xfmg
@t

=
m�1X
i=0

xfm�1�ig 
 In 
 xfig;

and:�
xfm�1�ig
In
xfig

!
Ax=xfm�1�ig
Ax
xfig

= (Inm�1�i
A
Ini)xfmg:
Therefore, matrix A[m] admits the following expression:

A[m] =
m�1X
i=0

Inm�1�i 
A
 Ini :

Now, from Eqs. (3) and (6), we have:

Km
@xfmg
@t

Ax = A[m]Kmxfmg:

Given A 2 Rn�n with x(k+ 1) = Ax(k), there exists a
matrix:

A[m] 2 R
0@n+m� 1

m

1A�0@n+m� 1
m

1A
;

and the operator that maps A into A[m] is linear.
To clarify the meaning of A[m], consider the following
example where n = m = 2:

A=
�
a11 a12
a21 a22

�
)A[2] =

242a11 2a12 0
a21 a11 + a22 a12
0 2a21 2a22

35 :
(7)

3. Problem statement

3.1. Guaranteed cost controller
Consider a discrete time system:

x(k + 1) = Ax(k) +Bu(k); (8)

with the initial condition:

x(0) = x0:

The system states vector is represented by x(k) 2 Rn
and the control input vector is given by u(k) 2 Rm.

Characterization of the set of all stabilizing con-
trollers is central in practice because stability is the
minimal requirement for a closed loop system. Gen-
erally, to satisfy some performance requirements, it is
necessary to de�ne a performance criterion and to pick,
among all the stabilizing controllers, a controller which
leads to a satisfactory closed loop system behavior.
Thus, the required performance can be achieved by
associating System (8) with the following cost func-
tion [1].

J =
1X
k=0

�
xT (k)Qx(k) + uT (k)Ru(k)

�
; (9)

where Q 2 Rn�n and R 2 Rn�n are given positive
semi-de�nite symmetric matrices and J is called the
Guaranteed Cost.

Lemma 1: [19] A state feedback control law u = Kx
is said to be quadratically guaranteed cost controller
of System (8) with Cost Function (9) if there exists
a symmetric positive de�nite matrix P 2 Rn�n such
that:

[A+BK]TP [A+BK]� P +Q+KTRK < 0; (10)

where P is called the guaranteed cost matrix.
Now, consider the discrete time system with norm

bounded uncertainty and saturation:

x(k + 1) = (A+ �A)x(k) + (B + �B)u(k): (11)

The system states vector is represented by x(k) 2 Rn
and the control input vector is given by u(k) 2 Rm.
A and B are known as constant real matrices of the
appropriate dimension. The considered parametric
uncertainties are of the form:�

�A �B
�

= D
�
E1 E2

�
; (12)

where D, E1 and E2 are matrices of the uncertainty
with compatible dimension.

The control input u in System (8) is subjected to
the following constraint:

�~ui � ui � ~ui; (13)
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where ui is the ith element in the control input u. ~ui,
i = 1; 2; � � � ;m, is the saturating magnitude. Thus,
u(k) can be described by diagf~uig�(u) without loss of
generality [19]. The function � : Rm ! Rm is the
standard saturation function de�ned as follows:

�(u) = [�(u1)�(u2) � � ��(um)]T :

For saturation levels i = 1; 2; � � � ;m:

�(ui) = sign(ui) minf1; juijg:
Let � be the set of diagonal matrices of m �m whose
diagonal elements are either 1 or 0. There exist 2m
elements in �. Suppose that each element of � is labeled
as Di, i = 1; 2; � � � ; 2m. Then, D = fDi : i 2 [1; 2m]g.
Denotes �Di = I �Di. Clearly, �Di is also an element of
� if Di 2 �.

Lemma 2: [2] Let K, H 2 Rm�n be the known
matrices. For x(k) 2 Rn, if kHxk1 � 1, then:

�(Kx) 2 cofDiKx+ �DiHx : i 2 [1; 2; � � � ; 2m]g;
where cof:g represents the set of a convex hulls. System
(11) now becomes:

x(k + 1) =
�
(A+ �A)

+ (B + �B)diag f~uig �DiK + �DiH
��
x(k): (14)

For simplicity, we have assumed (A + �A) = A0 and
(B + �B) = B0.

Lemma 3: A state feedback law u = Kx is said to
be quadratically guaranteed cost controller of System
(14) with Cost Function (9), if there exists a symmetric
positive de�ne matrix P 2 Rn�n such that:�

A0 +B0diag f~uig �DiK + �DiH
��T

P
�
A0 +B0)diag f~uig �DiK + �DiH

��
� P +Q+KTRK < 0: (15)

Lemma 4: If u = Kx is quadratically guaranteed
cost controller of System (14) with Cost Function (9),
then the closed loop system:

x(k + 1)=
�
A0+B0diag f~uig �DiK+ �DiH

��
x(k);

(16)

is quadratically stable, and the cost function value of
the closed loop system is not more than:

J� = xfpg
T

0 Pxfpg0 : (17)

The objective of this research is to develop a procedure
for the development of optimal guaranteed cost con-
troller for System (14) subjected to Input Constraint
(13) via HPLF.

4. Main result

In this section, development of the homogenous poly-
nomial Lyapunov function is presented.

4.1. Homogeneous polynomial Lyapunov
function

V (x(k)) = xT (k)Px(k); (18)

where P is positive de�nite real symmetric matrix.
The Lyapunov stability of the discrete time Sys-

tem (14) is given by:

rV (x(k)) = xT (k)
�
ATPA� P �x(k);

sincerV (x(k)) is chosen to be positive de�nite. There-
fore:

Q = �(ATPA� P ) = positive de�nite: (19)

Hence, for the asymptotic stability of the discrete time
System (8), it is su�cient that Q be positive de�nite.

Now, consider the case where Lyapunov function
is a form of homogenous polynomial. The construction
of Lyapunov function providing stability of System (14)
is restricted to a special class of Lyapunov functions:
the homogenous polynomial form of degree 2m denoted
by v2m(x). More specially, the aim is to �nd v2m(x)
such that:

(i) v2m(x) > 0 for all x 6= 0,
(ii) _v2m(x) < 0 for all x 6= 0,

where v2m(x) has the form:

v2m(x) = xfpgTPxfpg;

where 2m represents the degree of polynomial and
xfpg 2 Rd represents the base vector of homogenous
form of degree m. The number of state variables are
given by n and the dimension d of xfpg can be checked
by Eq. (5).

For the case m = 2, the HPLF is given by:

v2m(x) = xf2gTPxf2g; (20)

v2m(x) =

24 x2
1

x1x2
x2

2

35T 24p11 p12 p13
p21 p22 p23
p31 p32 p33

3524 x2
1

x1x2
x2

2

35 : (21)

For the computation of the HPLF, there exists a
transformation matrix that satis�es Theorem 1. For a
system having two states variables, the transformation
matrix is given by Eq. (7). After the computation of
the extended base vector xf2g and the transformation
matrix A[p], an optimal guaranteed cost controller can
be developed.
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4.2. Problem formulation using linear matrix
inequalities

The constraints which were developed in the earlier
section can now be posed in the form of linear matrix
inequalities. These LMIs are then posed as a convex
optimization problem and solved using cvx Matlab®
Toolbox.

Theorem 2: For a symmetric positive de�nite ma-
trix P 2 Rn�n and a scalar � 2 R+, consider the
ellipsoid "(P; �) := fx 2 Rn : xfmgTPxfmg � �g. If
there exists a positive de�nite extended matrix G[m] 2
Rn�n and V[m], W[m] 2 Rm�n. For simplicity, G, V
and W are used instead of G[m], V[m] and W[m] [23,24].2664�G G WT XT

G ��Q�1 0 0
W 0 ��R�1 0
X 0 0 �G

3775 < 0; (22)

�
1 vi
vTi G

�
� 0; (23)�

1 xT0
x0 G

�
� 0; (24)

where:
X = AG+Bdiagf�uig(DiW +D�i V );

and vi is the ith row of matrix V . Then u(k) =
WG�1x(k) is the guaranteed cost controller of system
(14) satisfying cost function J � � and "(P; �) is a
positive invariant set. Furthermore, the HPLF is given
by Eq. (20).

Proof: Consider the discrete time system whose
guaranteed cost controller is to be developed. Mul-
tiplying Eq. (15) by �1=2P�1 on the right and left,
respectively, gives:

�P�1 �A+Bdiag f~uig �DiK + �DiH
��T

P
�
A+Bdiag f~uig �DiK + �DiH

��
P�1 � �P�1

+ �P�1QP�1 + �P�1KTRKP�1 < 0: (25)

Let G = �P�1, W = �KP�1, V = �HP�1; using the
Schur compliment, the above inequality can be written
as:��G+ ��1GQG+ ��1WTRW XT

X �G
�
< 0: (26)

Applying Schur compliment on the above inequality, it
can be written as:2664�G G WT XT

G ��Q�1 0 0
W 0 ��R�1 0
X 0 0 �G

3775 < 0; (27)

which is equal to the inequality given by Eq. (22).
The saturating non-linearity can be substituted

by a convex polytope which is:

�hiP�1hTi � 1; (28)

where hi is the ith row of matrix H. Utilizing Schur
compliment on Eq. (28), it can be written as:2664 1 hi

�
P
�

��1

�
P
�

��1
hTi

�
P
�

��1

3775 � 0: (29)

Substituting V = �HP�1 in the above equation, it can
be written as:�

1 vi
vTi G

�
� 0; (30)

which is equal to the inequality given by Eq. (23). The
invariant set ellipsoid is given by:

xTPx � �: (31)

Taking Schur compliment of the above inequality and
substituting G = �P�1, it can be written as:�

1 xT0
x0 G

�
� 0; (32)

which is equivalent to the inequality given by Eq. (24).
So far the LMIs are derived without integration

of the Norm-bounded uncertainties. The discrete time
system with Norm-bounded uncertainties is:

x(k + 1) =
�
A+ �A+ (B + �B)diagf�uig

(DiK + �DiH)
�
x(k): (33)

Theorem 3: For a symmetric positive de�nite ex-
tended matrix P[m] 2 Rn�n and a scalar � 2 R+, con-
sider the ellipsoid "(P; �) := fx 2 Rn : xfmgTPxT � �g
if there exists a scalar " > 0, then a positive de�nite
extended matrix is given by G[m] 2 Rn�n and V[m],
W[m] 2 Rm�n such that:266664
�G XT ET G WT

X �G+"DDT 0 0 0
E 0 �"I 0 0
G 0 0 ��Q�1 0
W 0 0 0 ��R�1

377775<0;
(34)

�
1 vi
vTi G

�
� 0; (35)�

1 xT0
x0 G

�
� 0; (36)
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where:

X = AG+Bdiagf�uig(DiW +D�i V );

E = E1G+ E2diagf�uig(DiW +D�i V );

and vi is the ith row of the matrix V . Then, u(t) =
WG�1x(t) is the guaranteed cost control law of the
discrete time System (33) satisfying performance index
and J � �. Furthermore, "(P; �) is a positive invariant
set.

Proof of Theorem 3 is carried out in the same
manner as that of Theorem 2 with only the corporation
of the uncertainty matrix de�ned by Eq. (12).

Theorems 2 and 3 give the su�cient conditions
for the existence of guaranteed cost controller via
homogenous polynomial Lyapunov function with the
guaranteed cost index J � �. The Convex optimization
toolbox helps to choose from all the "(P; �) that satis�es
these conditions such that the guaranteed cost is
minimized. Now, this problem can be formulated as:

min � s.t Relations (22)� (24);

or Relations (34)� (36): (37)

If the above optimization problem has an optimal solu-
tion, then u = WG�1x(k) is the optimal guaranteed
cost control law of System (33), which satis�es the
performance index J � ��.

It is clear that System (37) is a convex optimiza-
tion problem with LMI constraints.

5. Results and conclusion

Example 1: [17] A Discrete time model is given by:

x(k + 1) = (A+BK +D(E1 + E2K))x(k);

x(0) = x0:

D, E1 and E2 are constant matrices with compatible
dimensions. The system Matrices are given as:

A =
�
1 0
0 �1:5

�
; B =

�
0:3
0:5

�
;

x0 =
�
1
1

�
; D =

�
0:1 0
0 0:1

�
;

E1 =
�
0:2 0:3
0:1 0:4

�
; E2 =

�
0:3 0
0:1 1

�
;

�3 � ui � 3; i = 1; 2:

The associated performance index of the system is:

J =
1X
k=0

[xT (k)Qx(k) + uT (k)Ru(k)]:

Using the approach suggested in [9], we obtain the
optimal guaranteed cost of the closed-loop system and
that is J� = 4:8066; also, the control law is:

K =
��0:4260 1:7915

�
:

And the positive de�nite symmetric matrix P is given
by:

P =
�
3:0716 1:0980
1:0980 7:620

�
:

While, by applying the proposed method and solving
the corresponding optimization problem, we get the
optimal guaranteed cost of the system by Eq. (9) and
that is J� = 2:3350; the corresponding control law is:

K =

24 2:4937 �0:0126 0:0279
�0:0021 0:0011 �2:6764

0 0 0

35 ;
and the associated homogeneous polynomial Lyapunov
is:

v2m =1:2480x4
1 + 0:0630x3

1x2 � 0:1085x2
1x

2
2

+ 0:0630x3
1x2 + 0:1280x2

1x
2
2 � 0:0626x1x3

2

� 0:1085x2
1x

2
2 � 0:0626x1x2

2 + 1:1752x4
2:

The positive de�nite symmetric matrix P is given by:

v2m =

24 x2
1

x1x2
x2

2

35T 24 1:2480 0:0630 �0:1085
0:0630 0:1280 �0:0626
�0:1085 �0:0626 1:1752

35
24 x2

1
x1x2
x2

2

35 :
It can be observed that our method gives a lower bound
of the guaranteed cost. Furthermore, the invariant set
also shows an increase in the radius of convergence of
the system.

Example 2: Consider a discrete time system:

x(k + 1) = Ax(k) +Bu(k);

x(0) = x0;

with the system matrix:

A =
��0:5572 �0:7814

0:7814 0

�
B =

�
1 �1
0 2

�
;
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x0 =
�
1
1

�
; Q =

�
0:5 0
0 0:5

�
; R =

�
1 0
0 1

�
;

�4 � ui � 4; i = 1; 2:

The associated performance index of the system is:

J =
1X
k=0

[xT (k)Qx(k) + uT (k)Ru(k)];

where Q = diagf0:5; 0:5g, and R = diagf1; 1g.
Using the traditional quadratic approach [17], the

optimal guaranteed cost of the closed-loop system is
J� = 1:4164, while by applying the proposed method
(Theorem 2) and solving the corresponding optimiza-
tion problem, the calculated optimal guaranteed cost
of the system by Eq. (9) is J� = 0:4345. It can be seen
from Figure 1 that our approach proves to be more
stable for the given set of initial conditions.

It is obvious that our method gives a lower bound
of the guaranteed cost. Furthermore, Figure 1 shows
a signi�cant increase in the radius of convergence of
the system. The associated homogeneous Lyapunov
polynomial is:

v2m =0:1772x4
1 � 0:0393x3

1x2 � 0:0381x2
1x

2
2

� 0:0393x3
1x2 + 0:1778x2

1x
2
2 � 0:0385x1x3

2

� 0:0381x2
1x

2
2 � 0:0385x1x2

2 + 0:1766x4
2;

and the associated positive de�nite symmetric matrix
P is given by:

P =

24 0:1772 �0:0393 �0:0381
�0:0393 0:1778 �0:0385
�0:0381 �0:0385 0:1766

35 :
Consider a case in which a problem has uncertainty and
saturation. A discrete time system with uncertainty

Figure 1. Invariant sets of quadratic and HPLF
approaches.

and saturation is given by:

x(k + 1) = (A+BK +D(E1 + E2K))x(k);

x(0) = x0;

where D, E1 and E2 are constant matrices with
compatible dimensions. With the system matrix:

A =
��0:5572 �0:7814

0:7814 0

�
; B =

�
1 �1
0 2

�
;

x0 =
�
1
1

�
; D =

�
0:7 0
0 0:4

�
;

E1 =
�
0:8 0:1
0:4 0:7

�
; E2 =

�
0:1 0:3
0:4 1

�
;

�3 � ui � 3; i = 1; 2;

the associated performance index of the system is:

J =
1X
k=0

[xT (k)Qx(k) + uT (k)Ru(k)];

where Q = diagf0:5; 0:5g, and R = diagf1; 1g.
Using the same quadratic approach [9,24-26], the

optimal guaranteed cost of the uncertain closed-loop
system is J� = 0:8033. By applying Theorem 3 and
solving the corresponding optimization problem, the
optimal guaranteed cost of the uncertain closed loop
system is J� = 0:4688. Figure 2 shows the invariant
set of both approaches.

It is clear from the results that the proposed
approaches prove to be less conservative even in
the presence of actuator saturation and uncertainties.
However, the presence of uncertainties and actuator
saturation does not show a remarkable increase in the
radius of convergence as shown in Figure 3.

The signi�cant change in the control input, which
is computed by the proposed method and is known as
an optimized guaranteed cost control law, is illustrated
by Figure 4.

Figure 2. Invariant set of quadratic and HPLF.
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Figure 3. Invariant set of state(s).

Figure 4. Control law of both approaches.

Nomenclature

In n� n identity matrix
AT Transpose of matrix A
A > 0 Symmetric positive de�nite matrix A
� Kronecker product
kxk Euclidean norm of a vector

(_) Time derivative of a matrix or vector
()� Optimal solution
Rn Rn n-dimensional real space
cof:g Convex hull;
P Matrix P used in Lyapunov function
� Saturation
V Lyapunov function
u Control input
()� Hermitian matrix
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