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Abstract. In this paper, we propose a transductive transfer learning framework, referred
to as Transfer Maximum Margin Criterion (T-MMC). This framework is suitable to transfer
the knowledge acquired in one domain, the source domain, to another domain, the target
domain, where no labeled examples are available in the target domain. We introduce
an e�ective feature weighting approach, which proceeds to reduce the domain di�erence
between the source and target domains. Moreover, we exploit maximum margin criterion
to well discriminate various classes in the reduced domains. We simultaneously transfer
knowledge from the source domain to target domain and also discriminate various classes
in the reduced domains. Comprehensive experiments on the synthetic and real datasets
demonstrate that T-MMC outperforms existing transfer learning methods.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In some machine learning problems, in contrast to
�nding a general prediction rule, the predictions are
done only on some constant number of known test
points, which is referred to as transductive setting [1-
3]. In this case, the learning problem is changed to a
particular type of semi-supervised learning where the
learning problem is allowed to exploit the location of
test points. Transductive Support Vector Machines
(TSVMs) exploit the test points in computation of the
margin based on the idea of transductive learning [4].
The obtained margin on the test points provides prior
knowledge for learning. Despite high performance of
TSVM, it su�ers from some issues as follows [5]:

1. Increase in the number of labeled sets has not
signi�cant improvement for the performance of
model accordingly;
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2. With decrease in the size of extremely small unla-
beled samples in target domain, the time complex-
ity goes correspondingly high;

3. TSVM shows some instability in some cases so that
the results of di�erent runs are not the same.

The high dimensionality of input data causes serious
challenges to most of learning tasks, speci�cally the
curse of dimensionality. A prevalent method to tackle
this issue is dimensionality reduction, which has been
exploited in machine learning and data mining since
past decades. The dimensionality reduction approaches
are mainly categorized into two distinct ways, which
are feature extraction and feature selection. In the
former, new features are extracted through algebraic
transformation. In the latter, subsets of features are
selected from original feature space.

Conventional feature selection algorithms for ma-
chine learning and data mining have good performance
under the assumption that the training and testing sets
are from the same distribution, i.e. independent and
identically distributed (i.i.d). However, for most of
the real world applications, this assumption is violated
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through domain di�erence of training and test sets, and
it seriously reduces the performance of conventional
approaches [6,7]. Transductive transfer learning is
an e�ective solution for the problem of domain shift
where the training data from source domain and the
testing data from the target domain follow di�erent
distributions [8,9]. In fact, transductive transfer learn-
ing looks for some common structures and knowledge
across source and target domains to utilize them as a
bridge for transference [10,11].

In general, transfer learning approaches are di-
vided into three settings, i.e. inductive transfer learn-
ing, unsupervised transfer learning, and transductive
transfer learning [12]. In the inductive transfer learning
setting, the source domain labels could be available or
unavailable, whereas target domain labels are certainly
available. In the unsupervised transfer learning setting,
no label is available in the source and target domains.
Our proposed approach belongs to the transductive
transfer learning setting on which source domain labels
are available and there is no label in the target domain.

In this paper, we address the challenging setting
in which the source and target data have di�erent
distributions. We therefore propose a novel ap-
proach, referred to as Transfer Maximum Margin Cri-
terion (T-MMC), to jointly perform transfer learning
and discrimination across source and target domains.
Speci�cally, we implement feature weighting by min-
imizing nonparametric Maximum Mean Discrepancy
(MMD) [13] in a Reproducing Kernel Hilbert Space
(RKHS) and maximizing discrimination parameter, i.e.
Maximum Margin Criterion (MMC) [14]. Therefore,
input feature space is categorized into the variant and
invariant feature sets. The former is the set of variant
features that are violated across the domain. The latter
is a set of features that are invariant between the source
and target domains.

Contributions: The main contributions of this pa-
per include the following:

1. We successfully extend the traditional machine
learning and data mining algorithms, such as MMD
and MMC, to solve the transfer learning problems;

2. To tackle the signi�cant distribution di�erence be-
tween the source and target domains, T-MMC min-
imizes the distribution distance via an important
criterion that is MMD;

3. We formulate an optimization problem that concur-
rently minimizes the domain di�erence and maxi-
mizes margin criterion.

Organization of the paper: The rest of the paper
is organized as follows. In Section 2, the previous
related works are discussed and the preliminaries,

including MMD and MMC, are introduced. We present
our proposed approach for transductive transfer learn-
ing and corresponding solutions in Section 3. The
experimental results of both synthetic and real world
benchmark datasets are discussed in Sections 4 and 5.
Finally, we draw a conclusion and present the future
work.

2. Previous works and preliminaries

2.1. Transfer learning
According to the literature survey [12], existing trans-
fer learning approaches can roughly be organized
into four categories that are instance-based transfer
learning, parameter-based transfer learning, relational-
knowledge transfer learning, and feature-based transfer
learning.

The instance-based transfer learning methods
reweight or select some data in source domain to reduce
the distance between the source and target domains.
TrAdaBoost [15], TrAdaBoost.R2 [16], KLIEP [17],
and TransferBoost [18] are the representative instance-
based transfer learning methods.

In parameter-based transfer learning approaches,
it is assumed that hyper-parameters of the model are
transferred from the source to the target task. Thus,
source and target domains share common knowledge
and priors to bridge across domains. In this category,
MI-IVM [19], GPDRTL [20], and TLVM [21] are the
most representative algorithms.

In relational-knowledge transfer learning ap-
proaches, it is assumed that source and target data
have some similar relationship. MLN [22] is a statistical
relational learning method that is representative in this
area.

In feature-based transfer learning, a shared fea-
ture space is discovered, on which the distribution
di�erence between the source and target domains is
reduced. The shared feature space can be created in
the projected latent space [23-25] or original feature
space [26,27].

Our work belongs to the category of feature-based
transfer learning. Thus, we focus on some previous
known algorithms in this category as follows. Blitzer et
al. [27] proposed Structured Correspondence Learning
(SCL), which �nds pivot features, high frequency, and
similar meaning features in source and target domains.
Pivot features are employed to map non-pivot features
onto each other from the unlabeled data of the source
and target domains. In a follow-up work, Blitzer et
al. [26] exploited Mutual Information (MI) to �nd the
pivot features against employing heuristic criteria. In
this way, the dependency between labels and source
domain samples is considered in �nding pivot features.
Pan et al. [28] proposed Maximum Mean Discrepancy
Embedding (MMDE), which is a transductive transfer
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learning method. MMDE is a dimensionality reduction
approach that reduces the di�erence of distributions
between source and target domains; however, the
computational complexity of MMDE is high. In a
follow-up work, Pan et al. [23] proposed Transfer
Component Analysis (TCA) to resolve the drawback
of MMDE.

From another view [29] and in line with answering
the fundamental question of transfer learning and how
to transfer the knowledge, transfer learning approaches
are categorized into three di�erent styles: adaptive
knowledge transfer, collective knowledge transfer, and
integrative knowledge transfer. The aim of adap-
tive knowledge transfer is to adapt auxiliary domain
knowledge for the target domain. Collective knowl-
edge transfer jointly learns the shared knowledge and
unshared e�ect of source and target data, simulta-
neously. Integrative knowledge transfer is the incor-
poration of raw knowledge of source domains into
the learning task of target domain as the known
knowledge. Thus, it is noteworthy that including raw
data of source domain instead of extracted knowledge
of it makes this method di�erent from the adaptive
knowledge transfer style. Our proposed approach
belongs to the integrative knowledge transfer category
in which the knowledge is transferred in the original
space and does not project domains into a latent
space.

2.2. Maximum Mean Discrepancy (MMD)
In this work, we intend to measure dissimilarity
between two probability distributions of the source
domain s and the target domain t. There are dozens
of methods to measure the distance between two
distributions, e.g. Kullback-LeiblerDivergence (KLD)
which is a widely used method to measure the di�erence
between domains. KLD su�ers from the expensive
density calculation and non-symmetry. MMD is a non-
parametric criterion that compares the distributions of
two domains by mapping the data on a rich Reproduc-
ing Kernel Hilbert Space. Given two distributions s
and t, MMD is de�ned as:

MMD(Xs; Xt; F ) = sup(E[f(xs)]� E[f(xt)]); (1)

where Xs and Xt are the source and target datasets,
respectively, and E[f(xs)] and E[f(xt)] are expecta-
tions under distributions of s and t, in turn. F is
de�ned as a rich class of functions, e.g. unit ball in
the universal RKHS. MMD(Xs; Xt; F ) tends towards
zero if and only if s = t. The main idea is that if
the feature means of domains under RKHS are close to
each other, the distributions of domains will be close
in the original space [30]. Xs = fx1

s; x2
s; � � � ; xns g and

Xt = fx1
t ; x2

t ; � � � ; xmt g are de�ned as the observations
drawn i.i.d. from s and t, respectively. An empirical
estimate of M M D can be calculated as:

D(Xs; Xt) =

 1
n

nX
i=1

�(xis)� 1
m

mX
j=1

�(xjt )


H

; (2)

where n and m are the numbers of source and target
samples, respectively, and �(x) is the feature map
de�ned as �(x) : X ! H, where H is a universal
RKHS [23]. If the universal kernel associated with this
mapping is de�ned as k(zi; zTj ) = �(zi)�(zTj ) according
to Baktashmotlagh et al., 2013, the distance can be
rewritten as:

D(Xs; Xt) =

 
nX
i=1

nX
j=1

k(xis; xjs)
n2 +

mX
i=1

mX
j=1
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j
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m2

� 2
nX
i=1

mX
j=1

kt(xis; x
j
t )

nm

! 1
2

: (3)

In a nutshell, MMD between the distributions of two
sets of observations is equivalent to the distance be-
tween the sample means in a high-dimensional feature
space.

2.3. Maximum Margin Criterion (MMC)
MMC [14] maximizes the average margin between
various classes in the reduced domain. Therefore, the
criterion for feature reduction is de�ned as follows.

J =
1
2

CX
i=1

CX
j=1

pipjd(Ci; Cj); (4)

where pi and pj are the prior probabilities of classes i
and j; C is the number of source and target classes;
and d is the interclass margin and is de�ned as:

d(Ci; Cj) = d(mi;mj)� S(Ci)� S(Cj)S(Ci); (5)

where S(Cj) = tr(Sj), and mi and mj are the mean
vectors of the classes Ci and Cj , respectively. Also, Si
and Sj are the covariance matrices of the classes Ci
and Cj . Following [14], d(Ci; Cj) = tr(Si), and Eq. (4)
could be simpli�ed to the following formula:

J = tr(Sb � Sw); (6)

where Sb is the between-class scatter matrix, and Sw
is the within-class scatter matrix, which are de�ned as
follows:

Sb =
CX
i=1

ni(mi �m)(mi �m)T ;

Sw =
CX
i=1

(Xi �mi)(Xi �mi)T ; (7)

where m is the mean vector of all data and ni indicates
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the number samples in class Ci. Then, MMC is
achieved as the following optimization problem:

arg max
W

F (W ) = arg max
W

tr(WT (Sb � Sw)W ): (8)

F 2 Rn�c is de�ned as the indicator matrix, where c is
the number of prede�ned clusters and F is calculated
as follows:

Fij =

8<: 1p
lj

if xi belong to jth cluster

0 otherwise

where lj indicates the number of samples in the jth
cluster. Following [31], Sb and Sw are achieved as
follows:

Sw = X(I � FFT )XT ; Sb = XFFTXT : (9)

In a nutshell, MMC maximizes the average margin be-
tween domain classes and discriminates various classes
from each other in the reduced domain.

3. The proposed approach

In this section, Transfer Maximum Margin Criterion
(T-MMC) approach for e�ectively tackling the problem
of domain shift is presented in detail.

3.1. Motivation
Unlike most existing methods that project input data
into latent space, our methodology to address the
problem is inspired from joint domain reduction and
maximum margin discrimination (that minimizes the
distribution di�erence between domains and discrim-
inates various classes according to invariant feature
representation). T-MMC tries to �nd domain invari-
ant features that reduce source and target domains
di�erence and also construct maximum margin across
classes. Figure 1 represents the main idea of our
proposed method. In short, in search of the new
representation, we:

1. Obtain an optimization problem that assigns a
weight to each feature of the domain;

2. Reduce the number of domain features according to
the assigned weights; and

3. Classify target data using a trained standard ma-
chine learning classi�cation method on source data.

3.2. Transfer Maximum Margin Criterion
(T-MMC)

In this paper, we propose a joint transfer learning
and discrimination methodology that �nds a low-
dimensional reduced representation so that it concur-
rently minimizes domain di�erence between the source
and target data and discriminates various classes based
on maximum margin criterion. Since some of the source
and target data features have distribution di�erence
with one another (variant features), we aim to �nd
invariant common features which have unique distribu-
tion across domains. In the rest, we will discuss kernel-
based feature weighting and maximum discrimination
in detail.

Feature weighting. Given source data as Xs 2
Rn�d, and target data as Xt 2 Rm�d, where n is
the number of source instances, m is the number
of target instances and d is the number of features.
We aim to predict unknown target label, fytig. Let
W 2 Rd�d be a diagonal weight matrix that assigns
a weight to each feature. The major issue is to
minimize the distribution di�erence between domains
by assigning optimal weight to each feature. Therefore,
optimal weight, W �, is obtained based on the domain
distance, D, minimization between the source and
target domains.

W � = arg min
W

D2(Xs; Xt);

s.t. kdiag(W )k = 1 and W > 0; (10)

where diag(W ) is the diagonal of the weight matrix.
The constraints control the range of W ; the �rst

Figure 1. The owchart of T-MMC. Each feature obtains a weight based on its discrepancy and aligned margin.



J. Tahmoresnezhad and S. Hashemi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1239{1250 1243

constraint restricts the size of weights and the second
one lets W have only positive values. According to
Eq. (3), the objective function can be written as a
Gaussian kernel function due to MMD expression in
terms of a kernel function:

D2(Xs; Xt) =
1
n2

nX
i=1

nX
j=1

e�
(xis�xjs)T (xis�xjs)

�

+
1
m2

mX
i=1

mX
j=1

e�
(xit�xjt )T (xit�xjt )

�

� 2
nm

nX
i=1

mX
j=1

e�
(xis�xjt )T (xis�xjt )

� : (11)

Following Pan et al., 2011, the above equation can be
rewritten in the form below using the kernel trick, i.e.
k(zi; zTj ) = �(zi)�(zTj ) where k is a positive de�nite
kernel:

D2(Xs; Xt) = tr(KL); (12)

where:

K =
�
Ks;s Ks;t
Kt;s Kt;t

�
; (13)

and K 2 R(n+m)�(n+m) is a composite kernel matrix.
Ks;s, Kt;t and Ks;t are kernel matrices that have been
de�ned by k on the source, target, and cross domains,
respectively. L 2 R(n+m)�(n+m) is the coe�cient
matrix with Ls;s = 1

n2 , Lt;t = 1
m2 and Ls;t = �1

nm . Each
element in K is computed using the kernel function;
thus, they depend on W . The polynomial kernel Ks;s
with the degree p is calculated by Ks;s = (xWx+ 1)p.

Maximum discrimination. In this paper, an e�-
cient and stable method is proposed to �nd the most
discriminant features based on maximum margin crite-
rion. Our proposed approach shows better separability
in reduced domain. Moreover, the selected features
based on MMC maximize the between-class scatter in
the input space instead of null space of Sw.

Here, we want to predict the label of target data.
For this purpose, some measures need to be exploited to
evaluate the similarity or dissimilarity of samples. We
need to preserve similarity or dissimilarity information
in the reduced domain as much as possible. We hope
that a sample would be close to those in the same
class but far from those in other classes. Therefore,
we need to maximize the distance between classes after
reduction. In this way, we de�ne our optimization
criterion as:

J = tr(Sb � Sw): (14)

A large J means that patterns are close to each other
if they are from the same class and small J indicates
that patterns are far from each other if they are from
di�erent classes. Therefore, our method preserves more
discriminative information in the reduced domain.

When performing transfer learning, we want to
�nd a feature space such that J is maximized after
reduction. In this section, we discuss how to �nd an
optimal weight matrix that transfers knowledge from
source to target domain and simultaneously discrim-
inates various classes from each other. By merging
Eqs. (12) and (14), we achieve an optimization problem
that bridges across source and target domains and has
maximum separability.

W �=arg min
W

tr(KL)+�arg max
W

(WT (Sb�Sw)W );

s.t. kdiag(W )k = 1 and W > 0; (15)

where � is the regularization parameter to guarantee
the optimization problem to be well-de�ned. Eq. (15)
is converted to the minimization optimization problem
as follows:

W �=arg min
W

tr(KL)��arg min
W

(WT (Sw�Sb)W );

s.t. kdiag(W )k = 1 and W > 0: (16)

Thus, W is achieved in a way that the samples from
the same class have lower distance from class mean.
This can be obtained through minimizing the distance
between the samples and the mean of each class. In
this way, every instance falls into a prede�ned compact
cluster, hence, considerably increasing the classi�cation
performance.

Since Eq. (16) is a Quadratically Constrained
Quadratic Program (QCQP), it should be solved us-
ing a QCQP solver such as CVX (abbreviation for
ConVeX). CVX is a strong tool for convex function
optimization. Algorithm 1 shows T-MMC, where
W � contains the optimized weights. Because the
weight values in matrix W are very small, W is
normalized before feature discrimination. The weight
of each feature classi�es it as either variant or invari-
ant.

4. Experimental setup

In this section, we present the setup of our experiments
on various datasets for our proposed approach.

4.1. Data description
We evaluate T-MMC on two types of real world
datasets that are benchmark in domain shift problem
and four synthetic datasets. Table 1 presents a short
view of synthetic datasets.
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1. Input: Source data Xs 2 Rn�d; target data Xt 2 Rm�d;
number of classes C; regularization parameter �;
polynomial kernel degree p

2. Output: Optimal weight matrix W �

3. cvx begin
4. variable W (d; d) diagonal

5. Kij =

8>>>>><>>>>>:
(1 + xsWxs)p if xi; xj 2 Xs
(1 + xtWxt)p if xi; xj 2 Xt
(1 + xsWxt)p if xi 2 Xs; xj 2 Xt
(1 + xtWxs)p if xi 2 Xt; xj 2 Xs

5. Lij =

8>><>>:
1
nm if xi; xj 2 Xs

1
mm if xi; xj 2 Xt
�1
nm otherwise

6. Sb = Xs(I � FFT )XT
s ;

7. Sw = XsFFTXT
s ;

8. W � = min(trace(KL)� � � trace(W 0(Sw � Sb)W ));
9. subject to
10. W > 0
11. kdiag(W )k = 1
12. cvx end

Algorithm 1. The optimization problem of T-MMC.

Table 1. The list and properties of the synthetic datasets. N is the number of invariant features and V denotes the
number of variant features.

Dataset N V Number of
instances

Distribution of
source domain

Distributions of
target domain

GAU-GAU 10 40 300 Gaussian Gaussian-Gaussian
GAU-EXP 20 30 300 Gaussian Gaussian-exponential
WEI-GEO 30 20 600 Weibull Weibull-geometric
POI-UNI 40 10 600 Poison Poison-uniform

4.1.1. Synthetic datasets
Synthetic datasets are randomly generated to evalu-
ate the performance of T-MMC in di�erent di�culty
situations. Each dataset is composed of the source
and target domains, which contains N invariant and
V variant features. According to Table 1, GAU-GAU
is a shifted dataset, which has been composed of 50
features. For both source and target domains, N
invariant features are sampled from N randomly picked
distributions with zero mean and unit variance. For the
source domain, V variant features are sampled from V
randomly picked distributions with zero mean and unit
variance. For the target domain, V variant features
are sampled from V randomly picked distributions with
shifted mean and unit variance.

GAU-EXP dataset is generated in the same way,
except that V variant features generated in the target
domain are sampled from randomly picked exponential
distributions. Datasets are sampled from six standard

distributions: Gaussian, exponential, Weibull, geomet-
ric, uniform, and poison.

The labels for synthetic datasets are generated
using standard sign function. At �rst, number of r
features are randomly selected from the total number
of features, d. Next, vector g 2 Rd�1 is drawn from
uniform distribution. Then, the elements of vector g
are set to zero if they are not included in the feature set
r. Finally, the label set l is generated via l = sign(g�x),
where x is the input data.

4.1.2. Real datasets
Indoor WiFi localization is a benchmark dataset in
domain shift problem. For the �rst time, WiFi dataset
was published in 2007 IEEE ICDM Contest for transfer
learning. WiFi contains the labels of 247 locations
and Received Signal Strength (RSS) by di�erent access
points. Since the value of RSS is a function of time,
device, and space, the collected data in time period A
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(source domain) and B (target domain) has signi�cant
distribution di�erence. WiFi dataset contains 621
labeled source samples and 3,128 unlabeled target sam-
ples. In our experiments, we choose 1020 WiFi samples
and compose WiFi1 and WiFi2 datasets with 510 items
as source and target domains. Next, we switch source
and target data to form another experiment.

Digit dataset contains USPS and MNIST hand-
written digits. USPS dataset refers to the handwritten
digits scanned from envelops of U.S. Postal Service.
The numbers of training and test samples are 7291
and 2007, respectively, and the objects have been
normalized in 16 � 16 gray-scale images. MNIST is
a large dataset of handwritten digits that was taken
from mixed American Census Bureau employees and
American high school students. The images were
normalized to �t into 20� 20 pixel bounding box with
gray-scale level. MNIST has a training set of 60,000
samples and a test set with 10,000 samples. USPS and
MNIST share 10 classes of digits, but they have been
drawn from very di�erent distributions. We uniformly
rescale all images in USPS and MNIST to size 16� 16,
and �t them into gray-scale pixel feature vectors. Thus,
the feature space of the source and target data is
uni�ed. Also, we randomly select 500 images from
USPS as source data and 500 images from MNIST as
target data. Next, we switch source and target data to
form another dataset.

4.2. Method evaluation
We compare T-MMC with two other state-of-the-art
transfer learning approaches (TCA [23], f-MMD [32]).
Since ROWA and other domain adaptation meth-
ods are dimensionality reduction approaches, Nearest
Neighbor (NN) is used for classi�cation and regression
on the labeled source data and unlabeled target data.
We compared our approach with f-MMD and TCA
keeping the dimension size equal for all three methods.
All methods are evaluated by their reported best
results. The parameters of TCA and f-MMD are
adjusted to 1 and 0.1, respectively, and they are �xed
during the tests.

5. Empirical results and discussion

In this section, the performance of T-MMC on syn-
thetic and real world benchmark datasets is evaluated.
Figure 2 shows the weight of each feature assigned
by T-MMC. The horizontal axis shows the domain
dimensions and the vertical axis indicates the weight
of each feature. As is clear from the plots, variant
and invariant features have been separated from each
other and T-MMC has assigned higher weights to
invariant features. Therefore, the feature spaces of the
variant and invariant features are distinguishable using
a margin which has various widths according to the
type of domain distributions. Moreover, we are able

Figure 2. Weight assignment of the proposed approach. T-MMC assigns higher weights to invariant features and weights
close to zero to variant features (best viewed in color).
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to determine a threshold weight that could be general
across di�erent datasets. In the next section, we will
discuss how to determine the threshold value.

5.1. Synthetic datasets
In this section, we discuss the performance of T-MMC
on synthetic datasets. Since T-MMC discovers and
removes the variant features from the feature space,
it only contains the invariant features of the domain.
Moreover, T-MMC preserves the original properties of
the input data and incorporates all samples for target
domain label prediction.

Figure 3 shows the performances of T-MMC
against NN on four synthetic datasets. In fact, we
examine the performance of T-MMC with only invari-
ant features with a case that all features are available
in learning process. The horizontal axis denotes the
number of samples that varies from 50 to 300 for GAU-
GAU and GAU-EXP datasets, and it varies from 100 to
600 for WEI-GEO and POI-UNI datasets. The vertical
axis is the classi�cation accuracy of T-MMC and NN.

Figure 3(a) shows the accuracy of T-MMC against
NN on GAU-GAU dataset. According to the reported
results, T-MMC shows better performance in all cases.
Moreover, with increasing the number of samples, T-
MMC could generate accurate margins between various
classes. In this way, according to Eq. (7), the within-
class scatter is determined by employing a large number

of samples and the width of margin increases based on
class di�erences.

The amounts of improvement in Figure 3(a),
(b), (c), and (d) are di�erent. In fact, some factors
determine the performance of classi�cation algorithms,
including number of features, number of samples,
distribution of domain, and so on. It is worth not-
ing that increasing the number of samples in most
cases enhances the accuracy of T-MMC in reduced
domain.

As the second synthetic experiment, we design
a dataset with di�erent numbers of instances and 30
features, where the numbers of variant and invariant
features are equal. Also, half of the features are
randomly selected to generate the class label using
the procedure previously mentioned. The distributions
of variant and invariant features are Gaussian with
di�erent means and the same variance.

Figure 4 shows the performance of T-MMC where
the number of samples raises from 100 to 350. T-
MMC outperforms other feature-based transfer learn-
ing approaches, i.e. TCA and f-MMD, in all cases.
With increasing the number of samples, the accuracy
of f-MMD and T-MMC increases while TCA shows
instability in results in some situations. TCA and f-
MMD are fully unsupervised and could not exploit the
labels of samples to �nd the su�cient results; thus,
their performances unexpectedly degrade.

Figure 3. Performance evaluation. T-MMC is compared with NN with total features. Employing only invariant features
by T-MMC enhances its performance.
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Figure 4. Performance evaluation. Comparison between the performance of T-MMC and that of other transfer learning
methods on synthetic datasets. � indicates the mean parameter of Gaussian distribution.

Figure 5. Performance evaluation. Comparison between T-MMC and other transfer learning methods on real datasets.

The performance of T-MMC has almost a growing
trend; but in some cases, its accuracy degrades with
respect to the number of samples. For example, in
Figure 4(a), when the number of instances increases
from 200 to 250, accuracy decreases to 89.1; because in
some cases, class labels have strong relations to variant
features and removing them decreases the performance
of the model.

5.2. Real datasets
The real world transfer learning datasets naturally have
domain shift, e.g. in indoor WiFi localization dataset
the WiFi signal strength may be a function of device,
space, time, or other dynamic factors. Thereupon, we
need to adapt the shifted data of source and target

domains. Figure 5 shows the performance of T-MMC
compared to those of other feature-based transfer
learning methods.

Figure 5(a) illustrates the experiments on the
indoor WiFi localization dataset. The task is to
identify the labels of the WiFi data collected during
time period B according to the data collected during
time period A. Each experiment is repeated 10 times
and the Average Error Distance (AED) is calculated
according to the following relation:

AED =

P
(xi;yi)2D

jf(xi)� yij
N

;

where xi, f(xi), and yi are vectors of RSS values,
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Figure 6. Impact of parameter setting. Parameter evaluation with respect to the classi�cation accuracy based on
threshold parameter �.

predicted location, and corresponding true location,
respectively. The number of samples is increased from
110 to 510 and the performance of methods is evaluated
based on the AED.

In Figure 5(a), WiFi1 is considered as the source
domain and WiFi2 denotes the target domain. Fig-
ure 5(b) shows the contrary situation on which WiFi2
is considered as the source domain and WiFi1 denotes
the target domain. As is clear from the plots, T-MMC
generalizes more samples in the target domain. In fact,
T-MMC has a decreasing error trend on datasets with
more samples to predict target label.

TCA has the worst performance, because it
projects the data into the latent space without consid-
ering the relation between the features and class labels.
In fact, TCA only determines the transfer components
based on the variance of data. However, f-MMD has
better performance than TCA where it transfers the
knowledge in the original space and does not project
the domains into a latent space.

Figure 5(c) and (d) show the performance of T-
MMC and other transfer learning approaches on digit
dataset. We �rst set USPS as the source and MNIST
as the target domain (Figure 5(c)), and next repeat
our experiment by exchanging the source and target
domains. T-MMC in all cases outperforms TCA and
f-MMD as it distinguishes the target digits based on
source samples with high accuracy. In fact, T-MMC
only preserves the features that are common across
domains and also could discriminate between classes
via achieving a trustworthy margin. On the other hand,
T-MMC could bridge across domains and it transfers
knowledge from labeled source domain to unlabeled
target domain.

Since TCA projects input data into a shared
latent space in a fully unsupervised manner, it fails
to classify target domain samples. This is reected
obviously in Figure 5(c) and (d). With increasing the
number of samples, negative transfer happens and the
performance of TCA dramatically degrades. f-MMD
has reasonable performance, but it is also unsupervised

and does not exploit source domain labels to transfer
knowledge from source to target domain.

5.3. Impact of parameter settings
T-MMC is evaluated with respect to di�erent values
of parameter to analyze its performance in various
conditions. In general, we should tune the threshold
parameter, �, for T-MMC on di�erent datasets. Due
to the page limitation, we only report the results of
T-MMC on GAU-GAU and Digit datasets.

Figure 6 illustrates the experiments on GAU-GAU
and Digit datasets. We run T-MMC with varying
values of �. We report the classi�cation accuracy of T-
MMC with � 2 [0:010:9] on both datasets. The value
of � determines the margin between the variant and in-
variant features. The plot indicates that in most cases,
increasing the value of � decreases the performance of
T-MMC while the accuracy has negative slope. Indeed,
T-MMC shows better performance with low values of �.
In this way, � 2 [0:05 0:25] is chosen as the acceptable
interval. We select � = 0:1 for our experiments.

6. Conclusion and future work

In this paper, we presented a Transfer Maximum
Margin Criterion (T-MMC) approach for cross do-
main classi�cation. T-MMC exploits transfer learning
strategies to cope with domain shift problem. More-
over, T-MMC employs domain invariant clustering to
enhance the adaptation performance in the reduced
subspace. The reduced subspaces for source and
target domains are most e�ective and robust for cross
domain problems. Performance of T-MMC is evaluated
from di�erent perspectives and its yields are compared
with other state-of-the-art baseline methods. Our
comprehensive experiments on a variety of synthetic
and real datasets with di�erent di�culties show that
T-MMC signi�cantly outperforms other adaptation
methods. For future work, we plan to advance in this
direction, i.e. proposing T-MMC for multi domain
setting.
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