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Abstract. Dynamic memory management is an important and essential part of computer
systems design. E�cient memory allocation, garbage collection, and compaction are
becoming critical in parallel and distributed applications using object oriented languages
like C++ and Java. In addition to achieving fast allocation/de-allocation of memory objects
and fragmentation, memory management techniques should strive to improve the overall
execution performance of object oriented applications. In this paper, we introduce Address
Ordered and Segregated Binary Trees, two memory management techniques particularly
e�cient for object oriented applications. Our empirical results manifest that both ABT
and SBT, when accompanied by coalescing, outperform the existing allocators such as
Segregated free lists in terms of storage utilization and execution performance. We also
show that these new allocators perform well in terms of storage utilization, even without
coalescing. This is in particular suitable for web-applications.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The e�ciency of memory management algorithms,
particularly in object oriented environments, has drawn
the attention of researchers. The need for more e�cient
memory management is currently being driven by the
popularity of object oriented languages in general [1,2],
and Java in particular [3]. A memory manager's task
is to organize and track the free chunks of memory
as well as the current memory used by the running
process. The primary goals of any e�cient memory
manager are high storage utilization and execution
performance [4]. Current implementations, however,
have failed to achieve both aims at the same time. For
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example, Sequential Fit algorithms show high storage
utilization but poor execution performance [5,6]. On
the other hand, Segregated Free lists reveal higher
memory fragmentations, yet their execution perfor-
mances are among the best. Well-known placement
policies, such as Best Fit and First Fit, have been
explored with both Sequential Fit and Segregated free
lists for either speed or storage utilization bene�t.

In this paper, we propose variations to Binary
Tree allocators and Address Ordered and Segregated
Binary Tree memory managers that report reasonable
execution performance while maintaining low fragmen-
tation compared with existing allocators.

We strongly believe that the reason that ABT
and SBT outperform the existing allocators is their
better cache locality behavior. As it is shown by other
researchers, the binary tree con�guration of ABT,
as well as the segregation nature of SBT, behaves
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adjustably well with respect to both temporal and
spatial locality outcomes of the applications [7,8].

In a study by Johnstone and Wilson [5], the
authors thoroughly analyzed the memory fragmenta-
tion (i.e., the excess amount of memory used by an
allocation method beyond what is actually requested
by an application). They identify memory allocation
policies as First Fit, Best Fit, Next Fit, Worst Fit, and
Buddy System and investigate the memory fragmenta-
tion using di�erent implementations of these policies.
Two key conclusions of the paper are:

1. Less fragmentation results from a policy (and
its implementation) immediately coalescing freed
memory;

2. Since objects allocated at the same time tend to
die at the same time, it is better not to allocate
from recently freed chunks of memory. If a memory
allocation policy allocates temporally neighboring
requests in spatially neighboring memory addresses,
it is possible for these blocks to be coalesced when
freed.

Note that coalescence of freed chunks can ad-
versely a�ect the execution e�ciency. Our approaches,
however, using address ordered binary trees, lead to
an e�cient implementation of immediate coalescence
of free blocks [6].

In this paper, �rst, we describe most commonly
used process memory managers (aka allocation tech-
niques) and address their shortcomings, in both execu-
tion performance and storage utilization terms. Then,
we present our implementations of user process mem-
ory manager that address the disadvantages of available
allocation techniques. Last sections of this paper
present empirical results and draw our conclusions.

2. Levels of memory management system

For fully comprehending and appreciating the memory
management system, it is necessary to realize its role
in a typical computer system. Figure 1 shows the two
levels of computer system memory manager: Operating
system and user process memory managers.

Operating System (OS) memory manager allo-
cates large chunks of memory, called OS pages, to

Figure 1. Memory management hierarchy.

process memory management systems. The size of
OS pages, allocated to process memory managers, is
�xed. For example, Linux uses 4 KByte pages whereas
most unix based operating systems use 8-KByte page
sizes. During the entire period of its execution, a
user process acquires no more than 300 OS pages.
In contrast, runtime system memory managers (user-
level processes) are responsible for allocating small
chunks of memory to running processes [9]. A typical
process allocates more than tens of thousands of objects
of di�erent sizes dynamically [6]. The separation
of memory management is needed to eliminate too
frequent kernel calls when the memory space of a
running process grows dynamically.

Usually, runtime system (memory manager of
runtime system is in our interest) uses di�erent prim-
itives to increase and decrease the address space of
\heap" and \stack"; \heap" is the memory space that
houses dynamically allocated objects, whereas \stack"
is the memory space for keeping the local variables of
functions when they are activated. Figure 2 depicts
how the address space of a running process, especially
\heap" and \stack", grows. For example, \gcc",
the gnu c compiler, provides \obstack" (object stack)
routines for resizing the stack space and allocation
libraries for resizing the \heap". When a user program
needs more space, it issues an allocation request.
User process memory manager, in response, returns
the address of the block of memory as large as the
requested size. If the process memory manager cannot
successfully respond to the request, it will acquire
more memory from Operating System (OS) memory
manager via kernel system calls. Unix like OSs provides
two families of system calls for such purposes: \brk,
sbrk" and \mmap, munmap". \brk" returns so-
called break point of the user process address space.
Via \sbrk", user process memory manager is able to
either acquire more memory from OS or release some
of the unused portion of its available memory back
to the OS. One of the main concerns with \sbrk" is
that the caller is responsible for page alignment of
the returned addresses. The functionality of the other

Figure 2. Memory area of a user process.
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family of OS memory manager system calls, \mmap"
and \munmap", is similar to that of \sbrk" and \brk";
but the returned addresses are page aligned and the
caller does not need to maintain the page alignment
afterwards. They are also supported in other Operating
Systems like Windows families.

3. Known allocation techniques

Currently, used memory allocation schemes can be clas-
si�ed into Sequential Fit algorithms, Buddy Systems,
Segregated Free Lists, and Binary Tree techniques.

Sequential Fit approach (including First Fit and
Best Fit) keeps track of available chunks of memory in
a doubly linked list. Known Sequential Fit techniques
di�er in how they track the memory blocks, how they
allocate memory requests from the free blocks, and
how they place newly freed objects back into the free
list. When a process releases memory, these chunks
are added to the free list, either at front or in place,
if the list is sorted by addresses (Address Order [4]).
When an allocation request arrives, the free list is
searched until an appropriate sized chunk is found.
The memory is allocated either by granting the entire
chunk or by splitting the chunk (if it is larger than
the requested size). Best Fit methods try to �nd the
smallest chunk that is at least as large as the request,
whereas First Fit methods �nd the �rst chunk that
is at least as large as the request [10,11]. Best Fit
method may involve delays in allocation while First Fit
method leads to more external fragmentation [5]. If the
free list is in address order, newly freed chunks may be
combined with their surrounding blocks. Such practice,
referred to as coalescing, is made possible by employing
boundary tags in doubly linked list of address ordered
free chunks [10].

In Buddy Systems, the size of any memory chunk
(live, free, or garbage) is 2k for some k [10]. Two
chunks of the same size that are next to each other, in
terms of their memory addresses, are called buddies.
If a newly freed chunk �nds its buddy among free
chunks, two buddies can be combined into a larger
chunk of size 2k+1. During allocation, larger blocks
are split into equal sized buddies until a small chunk
that is at least as large as the request is created. Large
internal fragmentation is the main disadvantage of this
technique. It has been reported that as much as 25%
of memory is wasted due to internal fragmentation
in buddy systems [5]. An alternate implementation,
Double Buddy, which creates buddies of equal size but
does not require the sizes to be 2k, has shown to reduce
the fragmentation by half [5,12].

Segregated free list approaches maintain multiple
linked lists, one for each di�erent sized chunk of avail-
able memory. Allocation and de-allocation requests are
directed to their associated lists based upon the size of

the requests. Segregated Free Lists are further clas-
si�ed into two categories: Simple Segregated Storage
and Segregated Fits [4]. No coalescing or splitting is
performed in Simple Segregated Storage and the size
of chunks remains unaltered. If a request cannot be
satis�ed by its associated sized list, additional memory
from operating system is acquired via sbrk or mmap
system calls. In contrast, Segregated Fit allocator
attempts to satisfy the request from a list containing
larger sized chunks - a larger chunk is split into several
smaller chunks if required. Coalescing is also employed
in Segregated Fit allocators for further improvement
of storage utilization. Simple Segregated Storage
allocators are best known for their high execution
performance while Segregated Fit allocators' edge is
their high storage utilization.

In Binary Tree allocators, free chunks of memory
are kept in a binary search tree whose search key is
the address of the free chunks of memory. Cartesian
Tree, which was proposed almost three decades ago,
is one of the known Binary Tree Allocators [13]. This
allocator is an address ordered binary search tree that
forces its tree of free chunks to form a heap in terms of
chunk sizes. In other words, Cartesian Tree allocator
maintains a binary tree whose nodes are the free chunks
of memory with the following conditions:

a. Address of descendants on left (if any) � address of
parent � address of descendants on right (if any);

b. Size of descendants on left (if any) � size of parent
� size of descendants on right (if any).

The latter that mandates Cartesian Tree to have
its largest node at the root, causes the tree to become
usually unbalanced and possibly degrade into a linearly
linked list.

There exists a variety of ad hoc allocators in
literature that are not included in this work for several
reasons. First and foremost, our study is directed
towards general purpose allocators. Secondly, it is not
our intention to concentrate on allocators, rather we
would like to form a smarter allocator which possesses
reasonable performance, high storage utilization, and
good locality behavior. More thorough taxonomy of
di�erent allocators can be found in the survey written
by Wilson et al. [4].

4. Proposed allocation techniques: Address
ordered and segregated binary trees

In Address Ordered Binary Tree (ABT), the free
chunks of memory are maintained in a binary search
tree like in Cartesian Tree [6]. To overcome the
ine�ciency forced by the size condition of Cartesian
Tree allocator (condition b), we not only remove this
restriction entirely from our implementation, but also
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replace it with a strategy that enhances the allocation
speed of ABT technique. Similar to Segregated Fit
allocator, Segregated Binary Tree keeps several ABTs,
one for each class size.

4.1. Address Ordered Binary Tree (ABT)
In this speci�c implementation of Binary Tree algo-
rithms, each node of the tree contains the sizes of the
largest memory chunks available in its left and right
sub-trees. This information can be utilized to improve
the response time of allocation requests by directing
search for an appropriate sized chunk of memory, thus
implementing Better Fit strategy [6,4]. The Binary
Tree algorithms whose trees are address ordered are
ideally suited for coalescing the free chunks; hence,
storage utilization is further improved. In our Address
Ordered Binary Tree, while inserting a newly freed
chunk of memory, we check if it can be coalesced with
existing nodes in the tree. Inserting a new free chunk
will require searching the tree with O(l) complexity
where l is the tree level bounded by log2(n) and n; n is
the number of nodes in the tree. It is possible that the
tree de-generates into a linear list, leading to a linear
O(n) insertion complexity. To minimize the insertion
complexity, we advocate periodic tree re-balancing,
which can be aided by keeping the information about
the levels and number of nodes of the left and right
sub-trees. Note that coalescing of the chunks described
above already helps in keeping the tree from being
unbalanced. Thus, the number of times a tree should
be re-balanced, although it depends on speci�c appli-
cation, will be relatively infrequent in our approach.

4.1.1. Algorithm for inserting a newly freed memory
chunk

The following algorithm shows how a newly freed chunk
can be added to Address Ordered Binary Tree of
available chunks. The data structure of each node
representing the free chunk of memory contains chunk's
size, pointers to its left and right children, a pointer to
its parent, and the sizes of largest chunks in its right
and left sub-trees. The structure used for each node of
the tree:

struct nodef
size t Size;
size t MaxLeft;
size t MaxRight;
struct node *Left;
struct node *Right;
struct node *Parent;

g;
Insertion and Coalescing algorithms.

void INSERT(void *ChunkAddress, size t

ChunkSize, node *Travel)f
if(((void *)Travel+ Travel->size ==
ChunkAddress) jj

(ChunkAddress + ChunkSize == (void *)Travel))
COALESCE(ChunkAddress,ChunkSize,Travel);

elsef
if (ChunkAddress < (void *)Travel)f

if (Travel->Left == NULL)f
Travel->Left=CREATE(ChunkAdress,
ChunkSize);
Travel->MaxLeft=ChunkSize;
ADJUSTSIZE (Travel);

g
else

INSERT (ChunkAddress,ChunkSize,Travel-
>Left);

g
elsef

if (Travel->Right == NULL)f
Travel->Right=CREATE

(ChunkAddress, Chunksize);
Travel->MaxRight=ChunkSize;
ADJUSTSIZE (Travel);

g
else

INSERT (ChunkAddress, ChunkSize,
Travel-

>Right);
g
g

g
void ADJUSTSIZE (node *Travel)f

if (Travel->Parent == NULL)
return NULL;

if (Travel->Parent->Left == Travel)
Travel->Parent->MaxLeft=

MAX (Travel->Size, Travel- >MaxLeft,
Travel->MaxRight);

else
Travel->Parent->MaxRight=

MAX (Travel->Size, Travel->MaxLeft,
Travel->MaxRight);

ADJUSTSIZE (Travel->Parent);
g
void COALESCE (void *ChunkAddress,size t Chunk-
Size, node *Travel)f

if (ChunkAddress > (void *) Travel)
Travel->size+=ChunkSize;

elsef
ChunkAddress=(node *)Travel;
ChunkAddress->size+=ChunkSize;
g
ADJUSTSIZE (Travel);

g
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4.1.2. Complexity analysis
INSERT is very similar to binary tree traversal and
its time complexity depends on l, levels of the tree.
COALESCE's complexity depends on ADJUSTSIZE
function that traverses the tree upwards; therefore,
both COALESCE and ADJUSTSIZE possess O(l) time
complexity. The other functions used in the implemen-
tation of ABT are SEARCH and DELETE. SEARCH
is a search binary tree that is improved with keeping
MaxLeft and MaxRight; hence, its upper bound time
complexity is O(l). DELETE function only visits one
node but it calls ADJUSTSIZE and therefore its time
complexity is also O(l).

4.2. Segregated Binary Tree (SBT)
In a manner similar to Segregated Fit technique,
Segregated Binary Tree keeps several Address Ordered
Binary Trees, one for each chunk size [14]. Each tree
is typically small, thus reducing the search time while
retaining the memory utilization advantage of Address
Ordered Binary Tree. In our implementation, SBT
contains 8 binary trees; Memory chunks less than 64
bytes and greater than 512 bytes are kept in the �rst
and the last binary trees, respectively. Each binary
tree is responsible for keeping chunks of a size range,
and sizes range in 64 byte intervals. For example, the
second binary tree's range is [64,128) (viz., if a chunk's
size is x then 64 � x < 128).

5. Empirical results

In order to evaluate the bene�ts of our approach
to memory management, we developed simulators
that accepted requests for memory allocation and de-
allocation. In this work, four major allocator algo-
rithms were implemented and studied, i.e. Address
Ordered Binary Tree (ABT), Sequential Fit (SqF),
Segregated Binary Tree (SBT), and Segregated Fit
(SgF). We have investigated the impact of di�erent
placement policies such as First Fit, Best Fit, and
Better Fit on the proposed allocators. SqF is a
resemblance of Sequential Fit algorithm mentioned in
the previous sections and SgF resembles Doug Lea's

well known allocator [15]. We have conducted our
experiments with and without coalescing to investigate
its impact on di�erent allocators, especially ABT and
SBT. In this section, we will �rst explain our framework
and then show the data collected while performing our
experiments.

5.1. Experimental framework
For our experiments, we have used Java Spec98 bench-
marks since java programs are allocation-intensive [16].
Applications with large amount of live data (dynami-
cally allocated) are worthy benchmark candidates for
memory management algorithms, because they clearly
expose the memory allocation speed and memory
fragmentation.

Java Spec98 benchmarks are instrumented on
Unix to collect traces indicating memory allocation
and de-allocation requests. Table 1 summarizes the
benchmarks' descriptions while Table 2 reports the
benchmarks' statistics. Table 2 shows that:

� On average, Java applications allocate more than
70,000 objects;

� About ten thousand objects are not de-allocated;
they lead to the memory leaks. Note that Java
run time system uses an automatic memory man-
ager so that programmer is not responsible for de-
allocating the objects. Automatic memory manager
deals with three types of objects: live (application
is currently using them), free (which are in the
free list of the allocator), or garbage (application
is not using them anymore, but they have not
been freed yet). Every so often, when memory is
exhausted, garbage collector, which is a part of the
automatic memory manager, in some way, identi�es
the garbage objects. If any object is marked as
garbage, the garbage collector will then issue a de-
allocation request to move them to the free list;

� Java Virtual Machine (JVM) memory management
system consists of a garbage collector and an allo-
cator. JVM garbage collector issues allocation re-
quests for new objects and decides when an object is
no longer used by the application (garbage object).

Table 1. Benchmark description.

Benchmark Description

check A simple program that tests various features of JVM
compress Modi�ed Lempel-Ziv method (LZW)
db Performs data base functions
jack A Java parser generator
javac Java compiler for JDK 1.0.2
jess Java expert shell system
mpegaudio Decompresses audio �les that conform MPEG3
mtrt A threaded raytracer
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Table 2. Benchmark statistics.

Benchmark
Total no.
allocation
requests

Total no.
de-allocation

requests

Average
request
(bytes)

Average
live

(Mbytes)
check 46,665 40,991 96 0.82
compress 41,239 35,849 94 0.77
db 43,176 37,727 94 0.79
jack 80,814 73,854 86 1.12
javac 132,745 123,222 87 1.68
jess 81,857 74,298 93 1.29
mpegaudio 97,430 91,095 77 1.23
mtrt 54,682 48,662 91 0.92
average 71,148 64,603 89.2 1.05

It then automatically issues de-allocation requests
for garbage objects. Garbage collector directs the
allocation and de-allocation requests to the allocator
that is responsible for managing the heap (allocating
the objects from the heap and returning the freed
objects to the heap);

� The average amount of live memory is 1 MBytes -
128 pages if page size is 8 KBytes. Normally, about
50% of memory is wasted; hence, an allocator needs
260 pages of memory to perform reasonably in terms
of fragmentation;

� Average request size is 90 Bytes, which means there
are 12,000 live objects at any given time during the
application's run.

For comparing di�erent allocators, we collected
statistical data for the following items:

Average number of free chunks measures the
memory overhead of a memory management algorithm.
It is also an indication of how the memory space is
fragmented; the more the number of the free chunks,
the higher the memory fragmentation.

OS pages consumed shows how many pages of
memory are acquired by the allocator. Each page is
8 KBytes; hence, this �gure multiplied by 8 equals
the amount of memory an allocator has consumed in
KBytes. This number also reports how many times the
operating system kernel is called to increase the heap
size. Kernel system calls are expensive and cost a lot
of execution cycles; therefore, OS Pages Consumed is
an indirect indication of execution performance.

Internal fragmentation measures the excess memory
allocated by an allocator as compared to the actual
memory requested by the user program.

Average numbers of nodes searched at allo-
cation and de-allocation measure the execution

complexity for each algorithm while allocating or de-
allocating a chunk of memory. These numbers provide
a measure of the allocator's execution e�ciency.

Maximum numbers of nodes searched at alloca-
tion and de-allocation are the worst-case execution
time for allocation and de-allocation.

Coalescence frequency measures how often a newly
freed chunk of memory can be combined with other
free nodes. \Less fragmentation will result if an
implementation immediately coalesces free chunks" [4].

5.2. Observations
For better illustration, observation, and analysis of the
data garnered based on this work, we use boxplot, a
plot which shows �rst quartile, median, and third quar-
tile along with minimum and maximum on distribution
of statistical data for each metric. The boxes on the
plots illustrate the area in which the central 50% of
distribution lies [17].

In this research, three classes of allocation algo-
rithms were studied, i.e. simple techniques (doubly
linked lists and binary trees - simple data structures
to keep track of free chunks of memory), coalescence-
permitted techniques (doubly link lists and binary trees
of free chunks with the possibility of coalescence and
concatenation of adjacent free chunks), and segregation
(segregated free lists and segregated binary trees of free
chunks). For example, ABT-FFWC stands for Address
Ordered Binary Tree - First Fit With Coalescing -
whereas ABT-FF is simply the same allocator without
coalescing.

Following subsections are devoted to discussions
about our �ndings in two directions, execution perfor-
mance and storage utilization.

5.2.1. Execution performance
The dominant metric in evaluating execution perfor-
mance of allocation algorithms is The Average Number
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of Nodes Searched at Allocation (AN2SA). Figure 3
illustrates a comparison between all of the allocation
techniques with respect to AN2SA. SqF is a LIFO (Last
In First Out) list; newly freed chunks are put at the
front of the list. This means that SqF pays only one
node search for de-allocation. For a fair comparison,
then, one needs to consider both nodes searched at
allocation and de-allocation of ABT (add them up) and
compare the total number with the number of nodes
searched only at allocation of SqF. For the beginning,
we consider the allocation overhead, since with the
advent of multicore and multithreaded architectures,
a thread can be devoted to performing memory man-
agement tasks. If that is the case, then only the library
calls for allocating memory via application thread will
be blocking calls, whereas de-allocation will become a
background activity - we will get back on this issue
later on in this paper.

The �rst glance at Figure 3 indicates that keeping
free chunks in a binary search tree can be well compared
to the existing allocation techniques in terms of speed.
Secondly, but more importantly, both coalescing and
segregation are more pronounced when enforced on SqF
than ABT. Note that the second four boxplots present
the impact of coalescing and the third four show the
in
uence of segregation.

From among twelve allocation algorithms studied
in this work, we selected eight better performed ones
and represented their allocation behavior in Figure 4.
These data show that six out of eight best performed
allocators in this research are from the family of binary
search tree implementation (either ABT or SBT). Sec-
ondly, both Better Fit and First Fit 
avor of Segregated
Binary Tree Allocator behave the best. Therefore, we
suggest both of these allocation techniques for general
purpose environments.

It is worth mentioning that number of times an

Figure 3. Execution performance comparison.

Figure 4. Execution performance comparison of the
selected allocators.

allocator issues a system call also re�ects (indirectly)
the execution performance. Figure 5 illustrates total
number of times each allocation technique uses \sbrk"
or \mmap" system call for using more memory re-
sources. Kernel system calls are expensive and hence
more \sbrk" system calls degrade the performance. Al-
though segregation equalizes the behavior of allocators
in terms of \sbrk" system call, the family of allocation
techniques that we studied in this work tend to behave
almost the same with respect to number of \sbrk"
system calls.

Finally, Figure 6 depicts the allocators' behavior
in terms of allocation speed for the eight selected
techniques when the number of nodes searched at de-
allocation is added to AN2SA for the sake of a fair
comparison. The value of ABT and SBT allocators is

Figure 5. Total number of \sbrk" system calls during the
execution of applications.
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Figure 6. Execution performance comparison of the
selected allocators, with the de-allocation overhead.

due to the property of o�-loading de-allocation portion
of memory management overhead; nevertheless, Fig-
ure 6 convinces us that all 
avors of ABT and SBT
can be well compared to their counterparts in SqF and
SgF.

5.2.2. Storage utilization
Every time an allocator issues an \sbrk" system call,
kernel returns the beginning address of 8 KByte free
space back to the allocator. Therefore, more \sbrk"
system calls during the execution of a program means
more external fragmentation. It is evident from Fig-
ure 5 that two best performed allocators are ABT-FF
and SqF-BF in terms of external fragmentation. It
can also be inferred that segregation tends to equalize
allocators' external fragmentation behaviors.

Furthermore, total number of free chunks in the
lists or binary trees is also an indication of fragmented
memory. Figure 7 depicts the boxplot of total number
of nodes in free lists for the allocation techniques of this
study. It is interesting to note that still ABT-FF and
SqF-BF perform well and segregation impact shows the
consistency with what we concluded from Figure 5 for
external fragmentation.

Internal fragmentation, however, is a di�erent
story. Figure 8 shows internal fragmentation behavior
of the allocation techniques under investigation in this
research. Overall, this �gure simply conveys that
variation of binary tree allocators reveals more internal
fragmentation due to the overhead of more information
kept in each node. Each free chunk in Address Ordered
Binary Tree keeps three sizes and MaxRight and three
addresses in its header. If the computer system is 32
bits, each of these items will be 4 bytes; consequently,
24 bytes is needed for keeping each chunk in the tree
(\3 addresses + 3 sizes" *4 = 24). This means that

Figure 7. Total number of nodes used by allocation
techniques.

Figure 8. Internal fragmentation.

any allocation request smaller than 24 bytes should
be rounded up to 24. If the request sizes are small
(which is the case for Java benchmarks), allocating
bigger chunks for small sized requests causes higher
internal fragmentation. On the other hand, Sequential
Fit allocators need two addresses (previous and next
pointers) and a size (chunk's size), which add up to 12
Bytes overhead.

5.3. Analysis
For the big picture analysis of this work, we catego-
rized the allocators' behavior considering two main
objectives of memory management techniques, i.e.
execution performance and storage utilization. While
examining Figures 4 and 5, one can conclude that ABT-
FFWC, SBT-FF, SBT-BF, and ABT-FF perform the
best in terms of speed. The two �gures that also
represent storage utilization behavior of allocators are
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Figures 8 and 5, which illustrate that SqF-BFWC,
SqF-BF, SBT-FF, and ABT-FFWC perform the best,
respectively. However, the performance of allocators
is more comparable via their execution time. In other
words, allocators perform almost the same in terms of
storage utilization and almost quite di�erently in terms
of speed. Having conveyed this, when we consider
the two above sets and conduct a simple union, it is
indeed inferred that ABT-FFWC and SBT-FF are two
candidates for the memory management techniques in
general purpose environments. It is also worth noting
that the execution overhead of coalescing is negligible
when compared with the search time. Each coales-
cence, at most, needs two comparisons, three pointer
modi�cations, and an addition - a total of six integer
operations. If there is no chance of coalescence, though,
the extra overhead is only a comparison. In our study,
we calculated the frequency of coalescing, too, which
turned out to be 46 to 59% for all allocators. This
means that on average, about four integer operations
((0:59 � 6) + ((1 � 0:59) � 1) = 3:95) are added on
each de-allocation, nonetheless it could all be o�oaded
to an separate thread in multithreaded or multicore
environment.

Consider a set of applications whose memory
objects live a short period of time. This is the
case for web-based applications where memory objects
belong to transactions. Inoue et al. have shown that
allocators which tend to perform coalescing on each
case of freeing an object behave poorly in multicore
environments [18]. The allocation technique that they
suggested eliminates coalescing, which in turn reduces
bus tra�c in multicore processors; it makes 11.4% to
51.5% performance improvement compared to default
allocators which do perform coalescing [18]. Utilizing
this result, we strongly believe that SBT-FF will be a
good candidate for web applications.

We observe a great improvement on Maximum
Number of Nodes Searched at Allocation and De-
Allocation, which can be viewed in Figure 9. These
numbers re
ect the worst-case execution time.

Finally and for parallel and distributed systems,
we should mention that in many OpenMP applications,
memory is allocated by one thread and shared by other
threads. Thus, our technique is useful in managing
memory allocation by the main thread. In case of
MPI, since the same code is run on all processes,
memory allocation and reallocation are replicated in
nodes and our technique can be applied in parallel for
each node.

6. Conclusions

We have proposed new memory management algo-
rithms, ABT and SBT, that maintain the available
chunks of memory in binary search trees. The search

Figure 9. Worst-case execution time.

key in ABT and SBT is the starting address of the free
chunks of memory. In addition, we keep track of the
sizes of largest chunk of memory in the left and right
sub-trees. This information is used to speed up the
search phase of allocation.

We have used Java applications to compare ABT
and SBT with the existing allocators, Sequential and
Segregated Fit algorithms, since Java applications allo-
cate several tens of thousands of objects of varied sizes.
From Java Spec98 Benchmarks, we have collected the
allocation and de-allocation traces and fed them to the
memory management simulators. We have designed
memory management simulators that report data on
memory fragmentation and search time of allocation
and de-allocation requests.

In general, allocators perform the best when they
are allowed to explore coalescing. ABT and SBT are
address ordered; hence, coalescing, speci�cally, helps
these allocators outperform others in allocation time.
In today's multithreaded architecture, one thread can
be scheduled to execute the application's code (ap-
plication thread) while another runs allocator's code
(memory management thread). The application thread
can fully run in parallel with the memory management
thread when processing the de-allocation requests;
therefore, what matters the most is allocation search
time when the execution of the application thread is
blocked. Since the fastest allocation search time among
all allocators studied in this paper has been achieved
by SBT with coalescing, it is the best candidate for the
memory management thread.

Maximum Number of Nodes Searched at
Allocation and De-allocation.
As shown in the tables, SBT with coalescing reports
the worst case search time (Max number of Nodes
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Searched at Allocation is 110 for Better Fit SBT with
coalescing).

Best Fit Sequential Fit with Coalescing behaves
the best among allocators in terms of Storage Utiliza-
tion. It shows about 14% improvement in terms of
fragmentation when compared with Better Fit SBT
with Coalescing. However, the execution performance
improvement of Better Fit SBT compared with Best
Fit SqF is 90% (17 + 12 = 29 compared with
286).

On the whole, the data represented in this paper
shows that Address Ordered and Segregated Binary
Trees' execution performance is far better than Se-
quential and Segregated Fits', while in terms of Stor-
age Utilization all the allocators perform almost the
same.
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