
Scientia Iranica D (2016) 23(3), 1195{1216

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

SCW+: A service-oriented framework for cloud
workow systems

M. Torkashvan and H. Haghighi�

Department of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran, P.O. Box 1983963113, Iran.

Received 22 October 2014; received in revised form 16 August 2015; accepted 14 December 2015

KEYWORDS
Cloud workow;
Cloud computing;
Cloud framework.

Abstract. Cloud workow is a special type of cloud computing systems which mainly
concentrates on workow management. One of the major issues with cloud workow
systems is automatic multi-cloud workow management. This paper proposes a service
oriented framework for cloud workow management which integrates heterogeneous multi-
cloud platforms to provide integrated applications for users by minimizing the human
intervention as far as possible. The proposed framework involves a language to de�ne
some basic entities for environments and uses these de�nitions to integrate applications and
services in a cloud workow. This framework has already been implemented. In addition,
its main operations have been evaluated by a case study and the results show that the
framework works properly as a cloud integrator and main activities of the framework are
done automatically with a reasonable performance.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

There are some types of service platforms which facili-
tate the execution of distributed applications like work-
ow management systems. A workow management
system de�nes, manages, and executes workows on
computing resources [1]. According to this de�nition,
there can be many platforms as computing resources,
such as grid computing [2] and cloud computing, to
run workow management systems. Cloud workow
systems are those workow management systems which
are executed based on cloud computing as their un-
derlying infrastructure. When the underlying layer
consists of more than one cloud provider, the notion
of multi-cloud workow management emerges.

Although some cloud workow platforms have
been introduced, one of the main issues in this �eld is
still heterogeneous multi-cloud workow management.

*. Corresponding author. Tel.: +98 21 29904190;
E-mail addresses: Milad.Torkashvan@gmail.com (M.
Torkashvan); h haghighi@sbu.ac.ir (H. Haghighi)

Heterogeneity in this context refers to di�erent cloud
platforms serving as a uni�ed platform from di�erent
cloud providers, that is, each of these cloud platforms
can advertise di�erent services, and thus, a particular
user may need a workow whose atomic services are
spread across various cloud platforms. Another issue in
workow management systems is to reduce the human
intervention. While some existing systems do not need
human intervention in their managerial operations,
they are not practicable enough to be used by end
users (i.e., they need skilled users to de�ne ontologies,
entities, and some other parts related to the workow
management). In order to conquer the aforementioned
issues and, in other words, to provide an easy-working
and heterogeneous multi-cloud workow management
with the least possible human intervention, this paper
proposes a service-oriented framework for cloud work-
ows. This framework is named SCW+ that stands
for Service-oriented Cloud Workow + Ontology and
Semantic web.

SCW+ is a framework with �ve essential layers
each having access to the provided services from its

1196 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

lower layer. To achieve the goals of SCW+, this paper
de�nes one environment for each customer of SCW+
(although some customers may share their environ-
ments). Each environment has four major entities:
Event, Task, Abstract service, and Concrete service
operation. SCW+ utilizes an ontology language, which
is called ETAS (Event, Task, and Abstract Service), for
de�ning these entities and their relationships. ETAS
provides a uni�ed language and ontology for SCW+
which helps SCW+ to step toward unifying heteroge-
neous service provider as its underlying layer.

The rest of this paper is organized as follows:
Section 2 discusses the related work; Section 3 shows
an abstract view of SCW+; Section 4 gets deep
into the most signi�cant layer of SCW+; Section 5
provides some descriptions about the implementation
of SCW+; Section 6 evaluates SCW+; Section 7 gives
a comparison of SCW+ with other similar platforms;
and �nally Section 8 concludes the paper.

2. Related work

A lot of works have been done in the context of
workow management and its related areas, such as
service composition and semantic web services. On
the other hand, there are some cloud platforms which
support workow management. In this section, some
backgrounds on service composition and workow
management are introduced, and then some cloud
platforms, which support workow management, are
reviewed.

With the emergence of SOA (Service Oriented
Architecture) [3], many workow applications have
been implemented using web services. One of the main
bene�ts of SOA is reusing services; semantic web [4,5]
has improved reusability by accessing the content of
web services. Some languages, such as WSDL-S [6]
and SA-WSDL [7], have enriched WSDL through
semantic concepts; also, some descriptive languages,
such as OWL-S [8], WSMO [9], and SWSO [10], have
provided a semantic description based on IOPE (Input,
Output, Precondition, and E�ect). Since web service
composition is needed to execute business processes
and workows, various languages have been designed
to support service composition, such as BPMN [11],
WFF [12,13], BPEL [14], XLANG [15], WSFC [12,13],
and YAWL [16]; they are used by various workow
management systems and service composition frame-
works.

SODIUM [17] and OPUCE [18] introduce two
frameworks including a set of languages and tools
needed for creating and executing business processes
based on heterogeneous services. Unfortunately, using
these frameworks, business process modeling is done
manually. There are some other frameworks, such
as SOA4ALL [19], MashArt [20], CRUISe [21], and

MacroFlow [22], for service orchestration and workow
execution. The main problem with SOA4ALL is that
input/output is de�ned manually through data ow
models; MashArt, CRUISe, and MacroFlow all support
dynamic service composition, but none of them support
multi-provider service composition.

In this section, we have compared SCW+ with �ve
other cloud platforms: SwinDew-C [23], WTE+ [24],
Everything-as-a-service platform [25], Aneka [26-28],
and SOCCA [29]. There are other known cloud
platforms which support workow management, such
as Microsoft Azure and WSO2 Stratos. Tables 1
and 2 show the main strengths and weaknesses of
the mentioned platforms, respectively. The meanings
behind the given items or criteria (from both tables)
are explained here:

� Market orientation and providing services
according to cost and time: Cost and time are
the most important parameters for selecting services
which make a platform market-oriented. For ex-
ample, according to the user request, a platform
may select a composition of services with the lowest
possible price;

� Considering both types of workow and non-
workow applications: Some applications have
one or more speci�ed workows which can be per-
formed by the composition of web services; on the
other hand, some other applications do not have
speci�c service-based workows and they perform
some duties in a functional manner;

� Utilizing more than one algorithm for
scheduling: There are many options for selection
of the underlying web services so as to compose and
execute the �nal workow. This item refers to the
platforms which do not rely on only one algorithm
for service selections;

� Supporting run-time software production and
con�guration: This item addresses the platforms
which give users the ability to de�ne workows
dynamically and add new functionality (or con�gure
an existing functionality) in their systems during
runtime;

� Possibility for manually manipulating the
created mashups: Since a mashup consists of
some services in a proper manner to perform a
speci�c job, in some platforms there is a facility for
users to change these mashed-up services or the way
the services are related to each other;

� Proposing a programming model: Does the
platform prefer a new programming model or it just
needs the developers use the platform APIs and
deploy their applications?

� Providing a common environment for hetero-
geneous service providers: This item speci�es if

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1197

Table 1. Cloud platform strengths.

Criterion SwinDew-C WTE+ Everything-
as-a-service

Aneka SOCCA Azure WSO2

Market orientation and providing
services according to cost and time X X

Considering both types of workow
and non-workow applications X

Utilizing more than one algorithm
for scheduling X

Supporting run-time software
production and con�guration X

Using semantic web and ontology for
facilitating service composition X

Possibility for manually manipulating
created mashups X

Proposing a programming model X X X X
Providing a common environment for
heterogeneous service providers Weakly

Supporting multi-service provider in
the infrastructure layer X X

Supporting software life-cycle X X
Supporting MapReduce model X X
Supporting automatic service
composition X X

Supporting ontology based service
description Weakly

Supporting multi-tenancy X X
Simplicity of producing applications X
Supporting complex event processing X
Supporting enterprise policies X X

a platform provides a common (shared) environment
for some service providers so as to integrate them;

� Supporting multi-service provider in the in-
frastructure layer: It speci�es whether a cloud
framework uses other clouds to provide the service
composition or not. Then, it shows that the cloud
framework can act as a cloud integrator;

� Supporting software lifecycle: This parameter
speci�es if a cloud framework can support the entire
software development lifecycle (analysis, architec-
ture, design, implementation, test, and deploy-
ment);

� Supporting map-reduce model: This item refers
to a platform that provides users with a built-in

map-reduce infrastructure (such as Hadoop) such
that the users can develop applications interacting
with this infrastructure;

� Supporting automatic service composition:
Does the platform compose services automatically
or it needs the user to select them?

� Supporting ontology-based service descrip-
tion: This parameter usually appears in cloud
frameworks, which provide service composition au-
tomatically, and speci�es whether the cloud frame-
work regards some semantic data in web service de-
scription. This data, which can appear as ontologies,
facilitates the process of service composition;

� Supporting multi-tenancy: Refers to using com-

1198 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Table 2. Cloud platform weaknesses.

Criterion SwinDew-C WTE+ Everything-
as-a-service

Aneka SOCCA Azure WSO2

No consideration on service
selection algorithm and its
e�ects on task scheduling

X

Depending on manually workow
de�nition in design time X X X X

No support for run-time con�guration X X X X X X
Service description inexibility X
Cumbersome request creation X
Depending on specialist users X
Not using ontology for describing
heterogeneous resources and services X X

Single cloud provider X X

mon resources by di�erent users and providing
isolation for these users;

� Supporting complex event processing: Event
processing is the analysis of information streams [30]
and concluding from them. CEP (Complex Event
Processing) is an event processing that combines
data from multiple sources [31] to infer patterns
that suggest more complicated situations to identify
meaningful events [32] and respond to them as
quickly as possible. This characteristic speci�es
whether the cloud framework supports CEP or not;

� Supporting enterprise policies: Does the plat-
form consider (and have the ability to de�ne) user
(or enterprise) policies so as to a�ect the service
selection process?

� No consideration for service selection algo-
rithm and its e�ects on task scheduling: This
item refers to the platforms that do not have any
speci�c strategy for service selection and the user
marshals services, together, manually;

� Dependence on manual workow de�nition in
design time: In service-oriented software develop-
ment processes (like SOMA), service composition is
usually addressed in design time and, in most of
the cases, this is done manually. Many platforms
strongly depend on this type of service composition;

� No support for run-time con�guration: This
item addresses the platforms which do not give users
the ability to add new functionality (or con�gure
an existing functionality) in their systems during
runtime (in opposite to the \Supporting run-time
software production and con�guration" item);

� Service description inexibility: Many of the
platforms rely only on one or some speci�c service
description languages (like WSDL); this item refers
to platforms that are not exible in service descrip-
tions and can just accept some speci�c languages;

� Cumbersome request creation: In some plat-
forms, the user (or the client-side application) needs
to generate a request in a complex manner (like
SOAP protocol) so as to trigger a workow, whereas
there are other platforms by which the user can
trigger a workow only through a simple message;

� Dependence on specialist users: Normally,
service composition is not a common job for anyone
to do and it should be performed by a software
engineer with a great background and experience;
after that, the process of system maintenance (like
service/workow con�guration) must be done by
these engineers. In this way, many platforms need
system engineers to interact with each other, which
are addressed by this item. It is not a weakness per
se; yet, in comparison to the platforms that attempt
to automatize most parts of the service composition
(in design-time and even run-time), such as service
selection and work ow generation, it can be referred
to as a weakness;

� Not using ontology for describing heteroge-
neous resources and services: This item is in
opposition to the mentioned \Supporting ontology-
based service description" item in the strength
criteria;

� Single cloud provider: In opposite to the men-
tioned \Supporting multi-service provider in the
infrastructure layer" item in the strength criteria;

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1199

� Simplicity of producing applications: This
item refers to platforms that provide a simple
programming model for the developers. In these
platforms, developers can focus on the main con-
cerns and they are not supposed to be worried about
messaging, communicating with services, triggering
the workows, and so forth.

Remarks:

1. \Providing a common environment for heteroge-
neous service providers" is considered \weak" for
\Everything-as-a-service" because it has not men-
tioned any details about service level and task level
scheduling algorithm;

2. \Supporting ontology-based service description" is
considered \weak" for \SOCCA" because it has not
mentioned its utilized ontology language;

3. \Service description inexibility" is considered for
\WTE+" because it merely depends on OWL-
S. In addition, \Depending on specialist users" is
considered for \WTE+" because describing services
through OWL-S needs special skills;

4. \Cumbersome request creation" is considered for
\WTE+" because its messages should be in the
XML format.

Considering strengths and weaknesses of the related
work, the main goal of SCW+ is to integrate het-
erogeneous cloud platforms while diminishing the
need for skilled users and human agent involvement
(through providing automatic workow management).
So, SCW+ is aimed as a framework for cloud workow
with the following strength points:

� Multi-cloud support;
� Automatic service composition (with considering

QoS) through a special service-level scheduling al-
gorithm;

� Automatic task workow design;
� Supporting enterprise policies;
� Complex event processing support;
� Ontology-based entity description;
� No mere dependency on a particular service descrip-

tion;
� Ease of work in user-side.

SCW+ has also some weaknesses which are as follows
(we try to overcome them in our future work):

� No support for map-reduce programming;
� Proposing a special task-level scheduling algorithm;
� No support for multi-tenancy in the resource level.

3. SCW+

Since SOA is an appropriate approach to develop cloud-
based software applications [30], this paper proposes
SCW+ as a service-oriented framework for cloud work-
ow management systems. Inputs for SCW+ are
de�ned as events: Every occurrence in the environment
will be sent to SCW+ as an event and will be pro-
cessed according to event processing de�nitions [31,32].
SCW+ proposes four essential entities (Figure 1) for
each enterprise or environment on which the cloud is
deployed: Event, Task, Abstract service, and Concrete
service operation. These entities are de�ned for the
system through ontology; they help the system to �nd
what tasks can meet the goals of an event and what
abstract services can meet the goals of a task. Finally,
a concrete service composition will be generated to
provide actual results. An abstract service is the
container of concrete service operations which realize
the functionality of that abstract service. We propose
an ontology and XML-based language to describe all of
the mentioned entities. This language is named ETAS
(stands for Event, Task, and Abstract Service) and is
described in [33].

3.1. SCW+ layers
This section discusses di�erent layers of SCW+. In ad-
dition to three conventional layers, i.e. Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS), SCW+ proposes two
novel layers, named INtelligence-as-a-Service (INaaS)
layer and Environment layer.

3.1.1. Environment layer
This is the topmost layer in SCW+ which provides an
abstract environment for the users of its underlying
layers. Each customer has at least one environment,
but more than one customer may have a common
environment. An environment may be an enterprise, a
cloud, or any external application. The only matter is
that the administrator must de�ne connection channels
between environments. The only communication path
among di�erent clouds and costumers is via environ-
ments; each environment can access the entities of
another cloud (such as services, tasks, etc.) through
the environment of that cloud if permitted.

The data which can be interchanged between two
environments depends on the type of environments.
For instance, if both environments are clouds which
have been built based on SCW+, all entities can
be interchanged between environments (if permitted);
however, if one of them is based on some other
cloud platform (such as Azure), or it is an external
application or enterprise, it is possible to access its
service repository and extract its web services (service
extraction is the responsibility of the Service Monitor
component that will be described later).

1200 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Figure 1. SCW+ architecture.

3.1.2. SaaS layer

In this layer, environments can access web services and
data services. Every application such as ERP, CRM,
and SCM can be utilized by the user through this layer.
The abstraction level which is provided through the
environment layer along with this layer realizes multi-
tenancy characteristic for SCW+ in the application
(service) level (since more than one costumer can have
common environments and utilize the software and re-
sources in those environments), but not in the resource
level (because we do not focus on resource sharing and
isolation). Software systems in this layer are web-
based and can be implemented by any programming
language. The only requirement is that the developer
must use a user development kit which proposes an
event-driven programming model to connect to the
cloud and invoke events. Events occur through this
layer and are sent to the lower layer (INaaS) to be
processed.

3.1.3. INaaS layer
This layer is the heart of SCW+ and performs the main
functionality of SCW+ described before. Therefore,
INaaS is in charge of automatizing the procedure of
mapping goals to the composed services. The main
portion of this paper is to describe how INaaS does
this job.

3.1.4. PaaS layer
This layer provides services and tools which are re-
quired to develop software systems. PaaS provides
users with a graphical interface to connect to their
environments and de�ne events, event relationships
and transformations, tasks, goals, policies, SLAs, and
so forth. Signi�cant components in PaaS are as
follows: To refuse repetitive operations, Pattern Base
is a repository which helps Event Control and Service
Selection Agents (in INaaS) to remember the last
task or service composition which has been selected
for a particular event. Service base stores a list

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1201

of existing concrete web services and their related
properties supposed to be extracted by Service Monitor
(in INaaS). Ontology base is the place where goals,
categories, events, tasks, abstract services, and their
relationships are maintained. SLA Manager works
based on CSLA (Cloud Service Level Agreement)
framework described in [34]; SLA base stores the agreed
documents between consumers and providers about
service level agreements. There are also two types of
buses: service bus and data bus. The data bus is used
by internal components when they need to access some
data from the existing bases; the service bus can be
used by both internal components and external users
to utilize the existing services. Access Portal interacts
with privileged users directly; it provides abilities to
develop services, con�gure SLAs, de�ne events and
tasks, and provide monitoring information and SLA
de�nitions.

3.1.5. Interface broker
This layer stands on virtual machines and infrastruc-
ture resources to provide a virtual access to resources.
Requests to access low-level resources, such as web
services, �les, and databases, are sent to this layer.
A request will be compiled according to the target
infrastructure type (e.g., IBM cloud and Amazon EC2)
and the result will be sent to the requester (i.e., the
layer component which has triggered the request).
Requests are sent to the broker from PaaS which
itself receives requests from INaaS; INaaS requests
are triggered by events from SaaS. There is not an
IaaS layer in SCW+, because instead of dedicating a
particular layer SCW+, along with its infrastructure
broker, is designed in a way that it can use any other
clouds or infrastructures as the physical layer.

3.2. XML-based languages
Two XML-based languages, i.e. ETAS and BEF, used
in INaaS layer, are introduced. The main purpose of
ETAS is to de�ne business entities from the highest
level to the lowest one; and BEF (Business Entity Flow)
is an XML-based language whose main purpose is to
describe a composition of business entities (generated
automatically). The entire INaaS layer acts as a
knowledge management system (including an ontolog-
ical model and an inference mechanism) in a way that
ETAS and BEF are the ontological descriptions of the
environment, and the main operational components
of INaaS (Section 4) form the inference part of the
system. We have used an ontological model because
the main job of the system is to �nd out which services
can make a \good" �t for the intended goal of the
user. The \goodness" can be decided based on the
price, time, or any other user's objective of the selected
services; ETAS and BEF both provide the INaaS layer
components with the required data so as to make a

proper decision. In [33] we have elaborated on ETAS
and BEF in more depth.

3.3. Dynamic view on SCW+
SCW+ has a general view on everything that can pro-
vide services, such as other cloud services, applications,
enterprises, and so forth. Therefore, Infrastructure
Broker provides the communication with these di�erent
environments. There are many managerial operations
such as workow de�nition, service de�nition, SLA
de�nition, event de�nition, monitoring the operations,
and so forth which are provided for cloud users with
di�erent access limitations in the PaaS layer. SCW+
is event-driven, that is events which are de�ned in
the PaaS layer may occur in the user-side, and served
by SCW+ in the server-side. Responding to events
starts from the INaaS layer to construct proper work-
ows for the occurred events by Event Control Agent;
then, SCW+ selects appropriate services to execute
the constructed workows by Service Selection Agent.
INaaS continuously searches for new services in the
de�ned environments by Service Monitor component
and attempts to convert descriptions of the found
services into the uni�ed service description languages
of SCW+ by matchmaker component. These uni�ed
languages provide the ability for SCW+ to manage
services from di�erent cloud providers. SaaS layer
is the most concrete layer in SCW+ which contains
the applications that are using services from SCW+
provider. These applications are typically workow-
based and trigger events which are served by the INaaS
layer. The topmost layer is called Environment layer
which provides a logical view for each di�erent de�ned
environment to have its own view on SCW+ and its
applications. Figure 2 shows the main activities in
SCW+ such as event de�nition, service monitoring,
matchmaking, event detection, service selection, and
execution.

Note that in Figure 2, AS-ow refers to abstract
service ow and CS-ow refers to concrete service ow.
Figure 2 depicts three main scenarios in SCW+, which
are numbered from 1 to 3, on the point where they start
(The numbered circles refer to the number of di�erent
scenarios at the start point.) Scenario 1 refers to entity
de�nition by the user (mainly, administrator users);
to do so, the user works with utilities provided in
PaaS layer to de�ne the entities and PaaS stores them
on ontology base. Scenario 2 refers to environment
de�nition and what happens after that. It shows that
SCW+ connects to the de�ned environments through
its infrastructure broker, then the service monitor
component tries to �nd new service descriptions from
those environments to store them in service repository
(in PaaS) and convert them into ETAS description and
store them on ontology base. Scenario 3 shows what
happens when an event occurs in SaaS layer from behalf

1202 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Figure 2. SCW+ activity diagram.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1203

Figure 3. A sample of e-touring company.

Figure 4. E-tour company workow.

of an application. It shows that when INaaS detects
an event, it tries to extract ETAS description of the
event and, according to its goals, SCW+ �nds the
required tasks, abstract service ow, concrete service
ow, and so forth to provide the appropriate results
for the occurred event.

3.4. Running example
In the remaining of the paper, we get deep into INaaS
layer and follow its di�erent components and concepts
along with a real world case to elucidate them. The
case is an e-touring company with so many customers.
This company is connected to many other touring
companies to coordinate tours in di�erent places; it,
also, is in connection with many hotel and restau-
rant services. This company uses various banking
services to do �nancial operations. In addition, it
is in relation with many road traveling companies,
airlines, shipment companies, and rail road companies
to transfer passengers. If it is required to post any
document, the company communicates with di�erent

post companies. Finally, the company may need
some insurance services. Obviously, there are many
connections and services from many service providers
to plan a tour for customers (Figure 3). The tour
planning workow is depicted in Figure 4.

4. Elaborating on INaaS layer

Figure 5 shows the components of INaaS and the
relationships among them. INaaS consists of four main
components: Event Control Agent, Service Selection
Agent, Service Monitor, and matchmaker. Table 3
represents the operations of INaaS.

The input for INaaS is provided through Event
Detector (from Event Control Agent). Steps 1 and
2 are done by Task Speci�er. Step 3 is done by
Entry Agent (from Service Selection Agent) and Sched-
uler Agent. Entry Agent performs Step 4. In the
proceeding, Service Monitor will be discussed �rst.
Then, matchmaker, Event Control Agent, and Service
Selection Agent will be elaborated; however, an overall

1204 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Figure 5. INaaS architecture.

Table 3. INaaS operations.

INaaS operation

Input: Event occurrence from the user side, ontology base
Output: BPEL �le with the most suitable composition of services to gain the �nal result

INaaS operations

Step 1: A list of tasks is gathered that have the same goals
and categories in comparison to the occurred event
(the ontology base is searched for).

Step 2: A BEF �le is made for each of the above tasks according
to its preconditions and e�ects.

Step 3: Regarding all tasks, the most suitable abstract service
composition is selected and described by a BEF.

Step 4: The BEF description of the selected abstract service
composition is converted to a BPEL �le.

overview of INaaS components can be found in the
following:

� INaaS: Generating a BPEL with the most suitable
composition of services for an occurred event;

{ Service monitor: Extracting web services (and
their operations) from connected environments;

{ Matchmaker: Finding or creating an abstract
service for each extracted web service operation;

{ Event Control Agent: Generating task level
BEFs which ful�ll an occurred event;

* Event detector: Receiving an event, search-
ing in pattern base if there is a BEF for that

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1205

event or not, and executing event precondi-
tions;

* Task speci�er: Finding tasks that ful�ll an
occurred event and generating task level BEFs
for them;

* Preprocessor: Executing preprocesses of an
occurred event.

{ Service Selection Agent: Mapping the found
task level BEFs into abstract service composi-
tions (described via abstract service level BEFs),
selecting the most suitable service composition,
and generating its corresponding BPEL �le;
* Entry agent: Selecting the most suitable

abstract service composition and mapping it
into a BPEL �le;

* Scheduler agent: Mapping a task level BEF
into an abstract service composition.

4.1. Service monitor
The Service Monitor and matchmaker components
facilitate the integration of heterogeneous service
providers. The main purpose of Service Monitor is
to extract web services which are de�ned in other
connected environments. These services along with

their needed information (input, output, service goal,
service category, service precondition, service e�ect,
QoS information, and price) will be sent to matchmaker
to be assigned to an appropriate abstract service. Op-
erations of the Service Monitor component are shown
in Table 4.

There is no constraint for the service description
language (it can be WSDL, WSDL-S, SA-WSDL,
OWL-S, and WSMO) and Service Monitor extracts the
needed information according to the type of descrip-
tion. Table 5 shows what information can be extracted
from a service description.

After extracting the required information, it will
be sent to the matchmaker component which is de-
scribed in the next subsection.

4.2. matchmaker component
This component bene�ts from an algorithm that is
used for generating abstract services. As mentioned
before, an abstract service contains a group of web
service operations with the same functionality; �nd-
ing or creating suitable abstract services for concrete
web service operations is the main purpose of the
matchmaker algorithm. matchmaker does its duty by

Table 4. Service monitor operations.

Service monitor operations

Input: Web service description
Output: Set of (input, output, goal, category, precondition, e�ect, QoS, price)

As a service is found (from
the connected environments)
by service monitor

Step 1: Required information finput, output, goal, category,
precondition, e�ect, QoS, priceg is extracted
according to the type of service description.

Step 2: The extracted information is sent to matchmaker

Table 5. Extractable information from web service descriptions.

Required information Web service description parts

Input Web service data contract
Output Web service data contract

Goal
When there is not enough annotation (such as WSDL): name of the service
operation in the web service operation contact
It is particularly speci�ed when there is enough annotation (such as OWL-S)

Category
When there is not enough annotation (such as WSDL): name of the web service
It is particularly speci�ed when there is enough annotation (such as OWL-S)

Precondition It is speci�ed if the language is IOPE-based (such as OWL-S and WSDL-S)
E�ect It is speci�ed if the language is IOPE-based (such as OWL-S and WSDL-S)
QoS QoS data �elds are addressed either directly in the description or its annotation
Price Price is addressed either in the description or in the annotation

1206 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Table 6. Matchmaking algorithm operations.

matchmaker algorithm

Input: Service operation (input, output, goal, category, precondition, e�ect, QoS, price)
Output: An abstract service

As the input is received

Step 1: A list of existing abstract services is gathered.
Step 2: An abstract service with the same or similar goal,

category, precondition and e�ect as input values is
found; if not found, a new abstract service is created.

Step 3: Service operation name is appended to the set of concrete
services of the found/created abstract service.

Step 4: Service operation input parameters are added to the abstract
service input set, and service operation output parameters
are added to the abstract service output set.

Step 5: The Min SLA parameter �eld of the abstract service is
modi�ed (if needed).

receiving input, output, goal, category, precondition,
e�ect, QoS, and price information related to a service
operation. Table 6 shows the main operation of the
matchmaker algorithm.

A summary of the matchmaker algorithm is de-
picted in Figure 6. Suppose that AS is an Abstract
Service and I is the received concrete service operation.
AS will be selected as a matched abstract service if:

SimilarityOf(I:Category;AS:Category)

= 1:0 ^ SimilarityOf(ToString(I:Effect);

T oString(AS:Effect))

=1:0 ^ SimilarityOf(ToString(I:PreCondition);

T oString(AS:PreCondition))

= 1:0 ^ SimilarityOf(I:Goal; AS:Goal) = 1:0:

SimilarityOf() is a function which has two input ar-
guments and checks whether these two arguments are
lexically similar or not (in our implementation, we have
used WordNet.Net project which measures the similar-
ity according to the WordNet lexical database [35]).
The result of this function is an integer number showing
how similar are two inputs (in the range of 0.0 to 1.0
where 1.0 means two inputs are the same). ToString()
is used to convert PreCondition and E�ect into a text
string (Step 1 and 2).

If the above condition is not met, a new abstract
service must be generated and then the following steps
will go on. In Step 3, I.OperationName is appended

Figure 6. Matchmaking a concrete service operation with a typical abstract service.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1207

Table 7. BEF �les which meet event goal, category, input, and output are generated.

Event control agent

Input: Event, ontology base, pattern base
Output: A set of task level BEF �les

As an event
is received
by the agent

Step 1: Event ETAS description is extracted.
Step 2: Event precondition is executed: going to the next

step if the precondition is met; otherwise, replying
an error message.

Step 3: Pattern base is investigated to �nd a pattern for the
event; jumping to the Service Selection Agent, if the
pattern exists (pattern base keeps found task level
BEFs for events in past).

Step 4: Event preprocesses are executed if exists.
Step 5: Existing tasks are extracted from ontology base.
Step 6: BEF �les which meet event goal, category, input

and output are generated.

Table 8. Task speci�er operations.

Task speci�er

Input: Event input, event output, event goal, event category, and ontology base.
Output: A set of task level BEFs.

As an input is
received from
event detector

Step 1: A list of existing tasks is gathered from ontology base.
Step 2: Tasks that have the same or similar goal and category

in comparison to the input event, and their inputs cover
the event inputs are selected.

Step 3: A ow of tasks is constructed for each of the selected
tasks from Step 2, according to their preconditions and
e�ects.

Step 4: A BEF �le is generated for each task selected in Step 2
according to its ow constructed in Step 3.

to AS.ConcreteServiceOperations. In Step 4, I.Input
parameters are added to AS.Input parameter. I.Output
parameters are also added to AS.Output parameters.

AS:Input = AS:Input [I:Input;
AS:Output = AS:Output [I:Output:

In Step 5, AS.MinSLA is modi�ed (if needed);
�rst, I.QoS is normalized; then, the normalized value
is compared with normalized AS.MinSLA. A conven-
tional normalization function is the following one:

Normalized value =
X

(1�i�m)

Qi �Wi:

Qi indicates the value of the ith quality parameter
in the SLA, Wi corresponds to the weight of this
parameter, and m is the number of these parameters.

4.3. Event control agent
The main purpose of this agent is to detect events and
�nd appropriate tasks to handle the detected events.

Event Control Agent contains three components:
Event Detector, Preprocessor, and Task Speci�er.
Event Detector detects events occurring through SDK
described later. In addition, Steps 1, 2, and 3 in Table 7
are performed by this component; the Preprocessor
component is in charge of Step 4; �nally, Steps 5 and 6
are done by Task Speci�er which constructs task ows
for the detected events. At the end, Event Control
Agent prepares one or more than one task-level BEF
and sends them to Service Selection Agent to �nd the
most suitable service composition. Table 8 shows the
main operations of Task Speci�er.

In Step 2 of Table 8, we select those tasks that
are consistent with the input event. Suppose (I, O, G,
C, L) is an input for Task Speci�er in which I, O, G,

1208 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

C, L are event input, event output, event goal, event
category, and ontology base, respectively. Task T can
be selected in Step 2 under the following condition.

SimilarityOf(T:Goal;G)

= 1:0 ^ SimilarityOf(T:Category; C)

= 1:0 ^ InputSetOf(T)supportsI;

P1 Supports P2 , 8p2 : P2:9p1 : P1:(TypeOf(p1)

= TypeOf(p2)) ^ (SimilarityOf(NameOf(p1);

NameOf(p2)) = 1:0):

For two sets P1 and P2, P1 Supports P2 if for each
parameter in P2 there is at least one parameter in P1
with similar name and type.

Step 3 must construct the ow structure for the
task found in Step 2 considering both task precondition
and task e�ect sections. These two sections are
investigated in two opposite directions and according
to the needed invocations in them, the ow structure
is constructed; this bidirectional investigation is shown
in Figure 7.

As shown in Figure 7, there is a set of tasks that
should be connected to the found task so as to construct
the task ow. The following relation is needed to be
met so that two tasks t1 and t2 get connected to each
other:

(t1 ! t2)

, (t1 isinvokeddirectlyinPreconditionOf(t2)

_ 9i : OutputSetOf(t1):

i iscalledinPreconditionOf(t2))

_ (t2 isinvokeddirectlyinEffectOf(t1)

_ 9i : InputSetOf(t2):

i iscalledinEffectOf(t1)):

At �rst, this relation must be checked for the initially
found task t. When some tasks are determined to be
connected to t, the above relation will be applied to
these tasks as well; this process will keep on iteratively
until every remaining task has no tasks to be connected
to. Now, the issue is how to generate the workow plan.
There are some main ow structures in a workow
plan, such as Sequence, Parallel, Join, Switch Case,
and Loop. Also it is possible to invoke another task
or assign a value to a variable. The proper workow
structure is generated according to the connected tasks.
A parallel structure is made when an OR operator
exists in the e�ect section of the considered task. A
Loop structure is required when the precondition of
task t invokes another task whose e�ect section invokes
t, too. Switch Case structure will be required when one
or more comparisons are needed in the precondition
and/or e�ect of a task. If more than one task invoke a
particular task in their e�ect section, Join structure
is considered. At last, based on the selected ow
structures, the workow plan will be generated. Since
it is possible that more than one plan are generated for
each event, after plans are ready, we have proposed
an algorithm which �nds the most suitable service
composition and will make it executable as a BPEL
�le. Due to the space limitation, we have not discussed
the algorithm in this paper and the algorithm can be
found in [36].

4.4. Service Selection Agent
This agent constructs an abstract service composition
for each input task-level BEF received from the Event
Control Agent and then selects the most suitable
composition among them. Finally, the service-level
BEF of the selected composite service is converted into
BPEL (Table 9).

Service Selection Agent consists of two compo-

Figure 7. Bidirectional investigation.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1209

Table 9. Service Selection Agent operations.

Service Selection Agent
Input: A set of task level BEFs, ontology base, pattern base, and service base
Output: A BPEL �le

As BEF �les are
received from the
event control agent

Step 1: An abstract service composition is found for each BEF.
Step 2: The most suitable composite abstract service is selected.
Step 3: The service level BEF of the selected composite service

is converted into BPEL.

nents: Entry Agent and Scheduler. Entry Agent is in
charge of Steps 2 and 3; scheduler performs Step 1.
Figure 8 shows a hierarchical view for the operations
of Service Selection Agent. Entry Agent disperses

Figure 8. Hierarchical view for operations of Service
Selection Agent.

task-level BEFs among Scheduler instances to �nd an
abstract service composition for each BEF. After that,
the most suitable abstract service composition will be
selected according to the total weight of compositions.
Selecting the most suitable service composition is
done by the service-level scheduling algorithm whose
detailed description can be found in [36].

5. SCW+ implementation

SCW+ has been implemented and deployed in two
sides, server and client sides that are discussed in the
following subsections, separately.

5.1. Server-side deployment
SCW+ has been implemented as a back-end server.
A portal application has been developed for permitted
users to administer and con�gure SCW+; see Figure 9.
This application provides permitted users with some fa-
cilities to connect to SCW+ and de�ne events and tasks

Figure 9. Server-side deployment view.

1210 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

along with required relationships. Every VM in the
server, which is allocated to an environment, deploys
an instance of SCW+ core which itself contains PaaS,
INaaS, and SaaS. Every environment can include one
or more than one VM, and more than one environment
can have common VMs.

5.2. User-side deployment
SCW+ has three types of roles: system adminis-
trators, service developers, and consumers. System
administrators work with the portal application and
are able to use every capability which is provided by
the portal. Service developer is an independent role
who develops web services and deploys them on any
type of infrastructures (an internal infrastructure or
other clouds). Consumer is an application that invokes
events or can be informed about the occurrence of
events. Consumers utilize an SDK (Software Devel-
opment Kit) which has been provided for the proposed
framework; see Figure 10.

This SDK provides an event-driven programming
model for users to develop software applications such
as ERP and CRM. The proposed model is a two-tiered
model which allows the developer to concentrate only
on his/her user interface tier without any concerns
about data and control tiers. An under-developing
software just needs to use this SDK to subscribe
available events for �ring them and retrieving their
results. For the �rst step, the software must be
authenticated for the cloud; once the authentication is
completed, and the user is known as a permitted one,
SDK acts as a middleware to retrieve a list of accessible
events for this user and sets them forth. These events
are then accessible to be used same as the other events
in. Net framework. Then, the user subscribes an event
if he/she wants to get its responses; the user can also
call the event to �re it.

6. Evaluation

To evaluate SCW+, we �rst investigate how the tar-
geted goals and sub-goals for SCW+ are obtained
in SCW+. Then, we evaluate the most important
components of the framework using the e-tour case; this
evaluation shows that not only SCW+ is applicable,
but also it provides acceptable performance.

6.1. Goals review
As stated before, SCW+ attempts to meet three main
goals: supporting heterogeneous multi-cloud, minimiz-
ing human involvement, and omitting the need for
skilled users. To meet these goals, some sub-goals are
required to be met which are listed and described as
follows:

� Heterogeneous multi-cloud support: This goal
is provided through Service Monitor, matchmaker,
and infrastructure broker. Aside from the type of
the environment, every existing service from every
cloud is extracted by Service Monitor; extracted
services are classi�ed in abstract services by match-
maker. This abstraction provides SCW+ with the
possibility of mapping workow plans to abstract
service compositions. Hence, this abstraction is the
key point of supporting heterogeneous multi-cloud
services;

� Minimum human involvement: Omitting or
minimizing human involvement requires some im-
portant factors, such as automatizing the process of
workow planning through web service composition,
which are met by the following sub-goals:
{ Automatic task workow design: According

to the system design and what happens in the
INaaS layer, as an event occurs, one or more
appropriate tasks will be found and according
to their preconditions and e�ects, some workow

Figure 10. User-side deployment view.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1211

plans will be de�ned; all of these stages are
done automatically by Event Detector and Task
Speci�er components;

{ Automatic service composition: Our service-
level scheduling maps workow plans to service
compositions automatically.

� No need for skilled user: Working with SCW+
in both server and client sides is not a cumbersome
task. Some other sub-goals that realize this goal are
mentioned below:

{ Supporting enterprise policies: Enterprise
policies are de�ned as preprocesses of events and
preconditions and are automatically handled by
Event Control Agent;

{ No mere dependency on a particular ser-
vice description: The system does not rely on
a particular web service description language and
Service Monitor translates every description to
ETAS to provide a uni�ed language. This uni�-
cation helps the system for further automaticity;

{ Ease of work from user-side: SDK enables
users to connect to SCW+ easily, invoke events,
and receive results.

6.2. SCW+ components evaluation
To evaluate applicability and performance of SCW+,
we applied the e-touring case to the essential compo-
nents of this framework. To do our experiments, we
produced di�erent sample web services with various
functionalities (banking, insurance, hotel, etc.) and
with di�erent dependency lengths (based on precondi-
tions and e�ects) from 0 to 4 (each web service could be
sequentially dependent on 0 to 4 other services). Each
of the web services had two quality parameters: time
and cost. Time values were between 1 and 7 and cost
values were between 10 and 35. We did random service
generation tests for 10 times with di�erent numbers of
services.

As the �rst criterion, we evaluated matchmaker
performance. As the second evaluation criterion, we
tried to compare our service composition approach,
which is the main part of Service Selection Agent, with
an ant-colony-based approach to show its performance
and its result optimality. Finally, we evaluated the
crucial part of SCW+ (i.e., the INaaS layer) which
includes event detection, task speci�cation, workow
(BEF) generation, and �nally �nding the best service
composition to be executed. Table 10 shows the
con�guration of 10 di�erent stages of the experiment.
In this random experiment, in addition to web services,
tasks and events were also generated automatically
with di�erent characteristics in di�erent stages. Every
task and event had from 1 to 6 input parameters
and from 1 to 4 output parameters. Similar to web
services, preconditions and e�ects of tasks were de�ned

Table 10. Automatically generated events, tasks, and
web services.

Events # Tasks # Concrete
services #

Exp 1 8 18 50
Exp 2 16 36 100
Exp 3 24 54 150
Exp 4 32 72 200
Exp 5 40 90 250
Exp 6 48 108 300
Exp 7 56 126 350
Exp 8 64 144 400
Exp 9 72 162 450
Exp 10 80 180 500

Table 11. The number of abstract services in di�erent
experiments.

Abstract service #

Exp 1 6
Exp 2 36
Exp 3 40
Exp 4 74
Exp 5 79
Exp 6 112
Exp 7 113
Exp 8 148
Exp 9 146
Exp 10 185

Figure 11. Spent time for creating or �nding one
abstract service (in sec).

automatically and randomly in such a way that made
dependency length from 1 to 4 tasks.

6.2.1. Evaluating the matchmaker component
We executed the matchmaker component for 10 times,
and it generated a di�erent number of abstract services
in each of the 10 stages (Table 11).

Figure 11 depicts how much time is needed to �nd
or create one abstract service in di�erent experiments.
Figure 12 shows the total time to �nd or create all web
services.

1212 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

Figure 12. Spent time for matchmaking all web services
(in sec).

Figures 11 and 12 show that creating and �nding
abstract services are done in a reasonable time manner.
For example, in experiment #10, with 500 web services,
the matchmaking time is 396.831 seconds, and this
time will be 0.793 for each web service; therefore,
matchmaking time consumption is also small. Since
Monitoring and Matchmaking components are pro-
posed by SCW+, and there is not any equivalent
component for them in other platforms, we cannot
provide a comparison of these two components with
other works.

6.2.2. Evaluating the service composition algorithm
ACO (Ant Colony Optimization) is one of the most
common approaches to target multi-objective opti-
mization [37]; hence, in order to evaluate our approach
to service composition, we compared this approach
with an ant-colony-based approach described in [37];
formulation of the main variables was in the way
mentioned in [37].

Figure 13 represents the spent time for the ex-
ecution of two under-comparison service composition
approaches. As Figure 13 shows, our approach has
much better time consumption; this is because it �nds
the composition on the �rst iteration and does not need
any more iteration. More details are available in [36].

Figure 13. Spent time for service composition (in sec) for
ACO approach and ours, when both are working based on
abstract services.

6.2.3. Performance evaluation of INaaS
This section evaluates the performance of INaaS, which
includes event detection, task speci�cation, workow
(BEF) generation, and �nally �nding the best service
composition to be executed. The service composi-
tion part was evaluated in the prior section; instead,
Figure 14 covers both Event Control and Service
Selection (i.e., from event detection to the �nal service
composition) Agents and presents the average spent
time according to ten experiment runs. As this �gure
shows, the range of spent time from 50 concrete services
to 500 concrete services is approximately between 2 and
5 seconds (in addition, this time will be cut back to
some extent using the pattern base, because the pattern
base refuses repetitive operations); it enables SCW+
to make fast decisions, for example, in environments,
such as mobile computing, that decision-making speed
is critical.

Like Figures 11 and 12, these results are not
compared with any other existing method, because
INaaS, as the heart of SCW+, has no equivalent in
other works so as to compare its performance with.

7. Discussion

Now, we intend to present a brief comparison be-
tween some cloud computing frameworks which can
support both workow management and user-side
programming with ours based on some qualitative
characteristics acquired from [38,39]. Most of these
characteristics were described in Section 2 and the
others were described as follows:

� Workow support: This characteristic speci�es
whether the cloud framework supports business
process design and execution or not. The platform
must support a workow designing language (such
as BPMN) and execution language (such as BPEL);

� Policy registry: Policy registry stores business
policies and helps the cloud framework to compose

Figure 14. Average time for INaaS main process
execution (in sec).

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1213

those services that are under the de�ned policies.
This parameter speci�es if a cloud framework has a
policy registry;

� Integration with on-premise software devel-
opment tools: This characteristic refers to the
issue concerning how much the cloud framework
supports working with di�erent software develop-
ment tools, such as analysis tools, UML design tools,
IDEs, and so forth. Basically, this characteristic
speci�es the variety of tools.

Table 12 shows that SCW+ has many positive features
against other similar frameworks. Some comparison
results are discussed as follows:

� Automatic service composition: SCW+ com-
poses services, automatically, by using ETAS and

our service composition approach. SOCCA has a
SOA layer on the top which is in charge of service-
oriented operations, such as service composition,
that are done automatically in this framework;

� Multi-cloud service composition: As stated
before, SCW+ provides this facility by using envi-
ronments, Service Monitor, and infrastructure bro-
ker. Moreover, SCW+ uses ETAS to unify di�erent
services from heterogeneous providers. SOCCA uses
ontology to unify underlying resources and then
treats these resources similarly;

� Policy registry: SCW+ and WSO2 have a policy
registry involved in service selection. SCW+ de�nes
these policies as events preprocesses and precon-
ditions which are handled automatically by Event
Control Agent;

Table 12. Framework components.

SCW+ SOCCA Aneka Azure WSO2 Stratos
Service type Iaas, Paas Paas Paas Paas Paas

Deployment Model Public, private Public, private Public Public Public, private

Workow support Yes Yes Yes Yes Yes

Automatic service
composition

Yes Yes No No No

Multi-cloud
service composition
(Multi-infrastructure
support)

Yes Yes No No No

Ontology-Based
service provision

Yes No No No No

Policy registry Yes No No No Yes

Automatic task
template generation

Yes No No No No

Integration with
on-premise software
development tools

Medium - Low Medium Low

Programming model Event-driven/
web service

Web service Task/
thread model

Web service Message passing/
web service

Programming language
support (user-side)

.Net framework
(till now)

- .Net Framework .Net framework Java

Multi-tenancy Yes (mediocre) Yes (poor) No Yes (poor) Yes (poor)

Complex event processing Yes No No No Yes

MapReduce No No Yes No Yes (poor)

1214 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

� Automatic task template generation: SCW+
generates workow templates according to task
preconditions and e�ects, automatically; but other
frameworks require manually designed workows;

� Integration with on-premise software devel-
opment tools: Since no document exists about
SOCCA implementation, we cannot say anything
about this framework. Aneka has a particular
web service type, so integration with other software
development tools in Aneka is cumbersome. WSO2
has its special development tools as well. Azure
is fully consistent with Visual Studio development
environment, but it is limited to. Net tools. SCW+
development is based on both event management
and web services; but, at the moment, SCW+
is based on. Net; therefore, it supports Azure
development tools at least;

� Multi-tenancy: As mentioned in [40], there are
two types of multi-tenancy patterns in the applica-
tion level: Multiple application instance and single
application instance. SOCCA tries to combine these
two patterns to support multi-tenancy in a balanced
way. Azure and WSO2 also provide an ability by
which multiple users can utilize common resources
and run multiple application instances; then, they
support the multiple-application instance pattern.
In SCW+, more than one environment can contain
common VMs, so it supports multiple application
instance patterns. SCW+ also provides a new type
of multi-tenancy because it considers events, tasks,
and abstract services as resources, and di�erent
environments can share these resources among one
another;

� Complex event processing: In essence, com-
plex event processing is implemented through event
process networks [31] de�ned by event-level ETAS
descriptions and provided through Event Control
Agent in SCW+;

� Map-Reduce: Aneka and WSO2 (limitedly) sup-
port this type of programming.

8. Conclusion

In this paper, we proposed a service-oriented frame-
work, named SCW+, for cloud workow systems. The
main components of SCW+ were evaluated by regard-
ing a familiar case study. We discussed, deeply, the
main components of the system and the underlying on-
tological languages for describing the environment for
the system to work in. After all of these architectural
and design concepts, we talked about the deployment
view of the proposed framework and evaluated it with
some di�erent range of inputs. The evaluation implies
that SCW+ is applicable and provides acceptable

performance. In future, we are going to support Map-
Reduce and extend SCW+ to support mobile cloud
computing. Moreover, we are planning to implement
infrastructure broker to support the integration of
SCW+ with Amazon EC2, Azure, etc.

References

1. Van der Aalst, W.M.P. and van Hee, K.M., Workow
Management: Models, Methods, and Systems, MIT
Press, Cambridge, MA, USA (2002).

2. Yu, J. and Buyya, R. \A taxonomy of workow
management systems for grid computing", Journal
of Grid Computing (2006). Doi: 10.1007/s10723-005-
9010-8

3. Beisiegel, M., Blohm, H. and Booz, D. \Service
component architecture: Building systems using
a service oriented architecture, SAP", http://
www.sybase.com/sb content/1038547/SCA White
Paper1 09.pdf, Accessed February 2013 (2005).

4. Hawke, S., Herman, I. and Prud'hommeaux, E.
\Semantic web, providing a common framework
that allows data to be shared and reused across
application, enterprise, and community bound-
aries", http://www.w3.org/2001/sw/, Accessed Febru-
ary 2013 (2001).

5. Berners-Lee, T. and Hendler, J. \The semantic web.
A new form of web content that is meaningful to
computers will unleash a revolution of new possibili-
ties", Scienti�c American Magazine, 299(4), pp. 34-43
(2001).

6. Akkiraju, R., Farrell, J., Miller, J., Nagarajan,
M., Schmidt, M., Sheth, A. and Verma, K.
\WSDL-S, web service semantic", http://www.w3.
org/Submission/WSDL-S/, Accessed February 2013
(2005).

7. Verma, K. and Sheth, A. \Semantically annotating a
web service", IEEE Internet Computing, 11(2), pp. 83-
85 (2007). Doi: 10.1109/MIC.2007.48

8. Martin, D., et al \OWL-S, semantic markup for
web services", http://www.w3.org/Submission/OWL-
S/, Accessed February 2013 (2005).

9. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara,
R., Stollberg, M., Polleres Feier, C., Bussler, C. and
Fensel, D. \Web service modeling ontology", Applied
Ontology, 1(1), pp. 77-106 (2005).

10. Battle, S., Bernstein, A. and Boley, H. \SWSO,
semantic web services ontology", http://www.w3.
org/Submission/SWSF-SWSO/, Accessed February
2013 (2005).

11. OMG \Business Process Model and Notation
(BPMN), version 2.0", Object Management Group,
Technical report (2011).

12. Peltz, C. \Web services orchestration and choreog-
raphy", Computer, 36(10), pp. 46-52 (2003). Doi:
10.1109/MC.2003.1236471

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216 1215

13. Aalst, W.V.D., Dumas, M. and Hofstede, A.T \Web
service composition languages: old wine in new bot-
tles?", Proceeding of the 29th EUROMICRO Con-
ference: New Waves in System Architecture, IEEE
Computer Society, Los Alamitos, pp. 298-305 (2003).
Doi: 10.1109/EURMIC.2003.1231605

14. OASIS (WSBPEL) \Web services business process
execution language version 2.0", Technical Report,
Organization for the Advancement of Structured In-
formation Standards (OASIS) (2007).

15. Thatte, S., XLANG Web Services for Business Process
Design, Microsoft Corporation (2001).

16. Aalst, W. and Hofstede, A. \YAWL: Yet another
Workow Language", Information Systems, 30(4), pp.
245-275 (2005).

17. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou,
M., Pautasso, C., Heinis, T., Gr�nmo, R., Ho�,
H., Berre, A.-J., Glittum, M. and Topouzidou, S.
\Developing scienti�c workows from heterogeneous
services", SIGMOD Record, 35(2), pp. 22-28 (2006).

18. Yelmo, J.C., Trapero, R., del �Alamo, J. \User-
driven service lifecycle management -adopting internet
paradigms in telecom services", Fifth International
Conference, Vienna, Austria, pp. 342-352 (2007). Doi:
10.1007/978-3-540-74974-5 28

19. L�ecu�e, F., Delteil, A. and L�eger, A. \Towards a seman-
tic state transition system for automated generation
of data ow in web service composition", Int. J.
Semantic Computing, 3(4), pp. 499-526 (2009). Doi:
10.1142/S1793351X09000896

20. Daniel, F., Casati, F., Benatallah, B. and Shan, M.-C.
Hosted Universal Composition: Models, Languages and
Infrastructure, in mashArt, in Alberto, Springer, pp.
428-443 (2009). Doi: 10.1007/978-3-642-04840-1 32

21. Pietschmann, S. \A model-driven development process
and runtime platform for adaptive composite web
applications", International Journal on Advances in
Internet Technology, 2(4), pp. 277-288 (2009).

22. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng,
C. and Yan, L. \From people to services to UI:
Distributed orchestration of user interfaces, in Richard
Hull Business Process Management, Springer Berlin
Heidelberg, pp. 310-326 (2010). Doi: 10.1007/978-3-
642-15618-2 22

23. Yang, Y., Liu, K., Chen, J., Liu, X., Yuan,
D. and Jin, H. \An algorithm in SwinDeW-C
for scheduling transaction-intensive cost-constrained
cloud workows", 4th IEEE International Conference
on E-Science (e-Science08), pp. 374-375 (2008). Doi:
10.1109/eScience.2008.93

24. Hristoskova, A., Volckaert, B. and Turck, F.D. \The
WTE+ framework: automated construction and run-
time adaptation of service mashups", Automated Soft-
ware Engineering (2011). Doi: 10.1007/s10515-012-
0105-8

25. Li, G. and Wei, M. \Everything-as-a-service platform
for on-demand virtual enterprises", Journal of Inf.
Syst. Front (2012). Doi: 10.1007/s10796-012-9351-3

26. Vecchiola, C., Chu, X. and Buyya, R. \Aneka: A
software platform for .Net-based cloud computing",
High Speed and Large Scale Scienti�c Computing, IOS
Press (2009).

27. Sukumar, K., Vecchiola, C. and Buyya, R. \The
Structure of the new it frontier: aneka platform
for elastic cloud computing applications", Strategic
Facilities Magazine, 25(6), pp. 599-616 (2010).

28. Chu, X., Nadiminti, K., Jin, C., Venugopal, S. and
Buyya, R. \Aneka: next-generation enterprise grid
platform for e-science and e-business applications",
3rd IEEE International Conference on e-Science and
Grid Computing, pp. 10-13 (2007). Doi: 10.1109/E-
SCIENCE.2007.12

29. Tsai, W.T., Sun, X. and Balasooriya, J. \Servi-
ce-oriented cloud computing architecture", Seventh
International Conference on Information Technol-
ogy: New Generations (ITNG), pp. 684-689 (2010).
Doi:10.1109/ITNG.2010.214

30. Huang, Y., Kumaran, S. and Chung, J.Y. \A
service management framework for service-oriented
enterprises", International Conference on E-
Commerce Technology, pp. 181-186 (2004). Doi:
10.1109/ICECT.2004.1319732

31. Etzion, O. and Niblett, P., Event Processing in Action,
Manning, Stanford, US (2011).

32. Mar�echaux, J. \Combining service-oriented architec-
ture and event-driven architecture using an enterprise
service bus", IBM Journal, 2, pp. 66-69 (2006).

33. Appendix, Available at: http://ticksoft.sbu.ac.ir/?
page id=5116 (2015).

34. Torkashvan, M. and Haghighi, H. \CSLAM: A frame-
work for cloud service level agreement management
based on WSLA", Sixth International Symposium on
Telecommunications (IST), pp. 577-585 (2012). Doi:
10.1109/ISTEL.2012.6483055

35. Wordnet, Lexical Data Base, Princeton University,
http://wordnet.princeton.edu/, Accessed May 2013
(2013).

36. Torkashvan, M. and Haghighi, H. \A greedy approach
for mapping workows to service compositions in
cloud workows", Sixth International Symposium on
Telecommunications (IST), pp. 929-935 (2012). Doi:
10.1109/ISTEL.2012.6483119

37. Zhang, W., Chang, C. and Feng, T. \QoS-based
dynamic web service composition with ant colony
optimization", IEEE 34th Annual Computer Software
and Applications Conference, pp. 493-502 (2010). Doi:
10.1109/COMPSAC.2010.76

1216 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195{1216

38. Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W.
and Li, Q. \Comparison of several cloud computing
platforms", Second International Symposium on Infor-
mation Science and Engineering, pp. 23-27 (2009). Doi:
10.1109/ISISE.2009.94

39. Rimal, B.P., Choi, E., Lumb, I. \A taxonomy and
survey of cloud computing systems", Fifth Interna-
tional Joint Conference on INC, IMS and IDC, IEEE
Computer Society, Washington, DC, USA, pp. 44-51
(2009). Doi: 10.1109/NCM.2009.218

40. Huang, Y., Su, H., Zhang, J.M., Guo, C.J., Xu, J.M.,
Jiang, Z.B., Yang, S.X. and Zhu, J. \Framework for
building a low-cost, scalable, and secured platform
for web-delivered business services", IBM Journal of
Research and Development, 54(6), pp. 1-14 (2010).
Doi:10.1147/JRD.2010.2065891

Biographies

Milad Torkashvan is graduate of Information Tech-
nology from the University of Shahid Beheshti, Tehran,
Iran. He also took his bachelor degree from University
of Bahonar, Kerman. He has written some papers
about service-level agreement in cloud computing, ser-
vice composition, and mobile cloud computing. His
main research interests are cloud computing and Sys-
tem security.

Hassan Haghighi is an Assistant Professor in Com-
puter Science and Engineering Department, Shahid
Beheshti University, Tehran, Iran. He received his
PhD degree in Computer Engineering-Software from
Sharif University of Technology, Iran, in 2009. His
main research interests are formal methods, software
testing, and service-oriented architecture.

