Scientia Iranica D (2016) 23(3), 1195-1216

PZIN
N4

SCIENTIA
IRANICA

Sharif University of Technology

Scientia Iranica
Transactions D: Computer Science € Engineering and Electrical Engineering

www.scientiairanica.com

SCW+-:

workflow systems

M. Torkashvan and H. Haghighi*

A service-oriented framework for cloud

Department of Computer Science and Engineering, Shahitd Beheshti University G. C., Tehran, P.O. Box 1983963113, Iran.

Received 22 October 2014, received in revised form 16 August 2015; accepted 14 December 2015

KEYWORDS

Cloud workflow;
Cloud computing;
Cloud framework.

Abstract. Cloud workflow is a special type of cloud computing systems which mainly
concentrates on workflow management.
systems is automatic multi-cloud workflow management. This paper proposes a service
oriented framework for cloud workflow management which integrates heterogeneous multi-

One of the major issues with cloud workflow

cloud platforms to provide integrated applications for users by minimizing the human

intervention as far as possible.

The proposed framework involves a language to define

some basic entities for environments and uses these definitions to integrate applications and
services in a cloud workflow. This framework has already been implemented. In addition,
its main operations have been evaluated by a case study and the results show that the
framework works properly as a cloud integrator and main activities of the framework are
done automatically with a reasonable performance.

(© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

There are some types of service platforms which facili-
tate the execution of distributed applications like work-
flow management systems. A workflow management
system defines, manages, and executes workflows on
computing resources [1]. According to this definition,
there can be many platforms as computing resources,
such as grid computing [2] and cloud computing, to
run workflow management systems. Cloud workflow
systems are those workflow management systems which
are executed based on cloud computing as their un-
derlying infrastructure. When the underlying layer
consists of more than one cloud provider, the notion
of multi-cloud workflow management emerges.
Although some cloud workflow platforms have
been introduced, one of the main issues in this field is
still heterogeneous multi-cloud workflow management.

*. Corresponding author. Tel.: +98 21 29904190;
E-mail addresses: Milad. Torkashvan@gmail.com (M.
Torkashvan); h-haghighi@sbu.ac.ir (H. Haghight)

Heterogeneity in this context refers to different cloud
platforms serving as a unified platform from different
cloud providers, that is, each of these cloud platforms
can advertise different services, and thus, a particular
user may need a workflow whose atomic services are
spread across various cloud platforms. Another issue in
workflow management systems is to reduce the human
intervention. While some existing systems do not need
human intervention in their managerial operations,
they are not practicable enough to be used by end
users (i.e., they need skilled users to define ontologies,
entities, and some other parts related to the workflow
management). In order to conquer the aforementioned
issues and, in other words, to provide an easy-working
and heterogeneous multi-cloud workflow management
with the least possible human intervention, this paper
proposes a service-oriented framework for cloud work-
flows. This framework is named SCW+ that stands
for Service-oriented Cloud Workflow + Ontology and
Semantic web.

SCW+ is a framework with five essential layers
each having access to the provided services from its



1196 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

lower layer. To achieve the goals of SCW+, this paper
defines one environment for each customer of SCW+
(although some customers may share their environ-
ments). Each environment has four major entities:
Event, Task, Abstract service, and Concrete service
operation. SCW+ utilizes an ontology language, which
is called ETAS (Event, Task, and Abstract Service), for
defining these entities and their relationships. ETAS
provides a unified language and ontology for SCW+
which helps SCW+ to step toward unifying heteroge-
neous service provider as its underlying layer.

The rest of this paper is organized as follows:
Section 2 discusses the related work; Section 3 shows
an abstract view of SCW+; Section 4 gets deep
into the most significant layer of SCW+; Section 5
provides some descriptions about the implementation
of SCW+; Section 6 evaluates SCW+; Section 7 gives
a comparison of SCW+ with other similar platforms;
and finally Section 8 concludes the paper.

2. Related work

A lot of works have been done in the context of
workflow management and its related areas, such as
service composition and semantic web services. On
the other hand, there are some cloud platforms which
support workflow management. In this section, some
backgrounds on service composition and workflow
management are introduced, and then some cloud
platforms, which support workflow management, are
reviewed.

With the emergence of SOA (Service Oriented
Architecture) [3], many workflow applications have
been implemented using web services. One of the main
benefits of SOA is reusing services; semantic web [4,5]
has improved reusability by accessing the content of
web services. Some languages, such as WSDL-S [6]
and SA-WSDL [7], have enriched WSDL through
semantic concepts; also, some descriptive languages,
such as OWL-S [8], WSMO [9], and SWSO [10], have
provided a semantic description based on IOPE (Input,
Output, Precondition, and Effect). Since web service
composition is needed to execute business processes
and workflows, various languages have been designed
to support service composition, such as BPMN [11],
WFF [12,13], BPEL [14], XLANG [15], WSFC [12,13],
and YAWL [16]; they are used by various workflow
management systems and service composition frame-
works.

SODIUM [17] and OPUCE [18] introduce two
frameworks including a set of languages and tools
needed for creating and executing business processes
based on heterogeneous services. Unfortunately, using
these frameworks, business process modeling is done
manually. There are some other frameworks, such
as SOA4ALL [19], MashArt [20], CRUISe [21], and

MacroFlow [22], for service orchestration and workflow
execution. The main problem with SOA4ALL is that
input/output is defined manually through data flow
models; MashArt, CRUISe, and MacroFlow all support
dynamic service composition, but none of them support
multi-provider service composition.

In this section, we have compared SCW+ with five
other cloud platforms: SwinDew-C [23], WTE+ [24],
Everything-as-a-service platform [25], Aneka [26-28],
and SOCCA [29]. There are other known cloud
platforms which support workflow management, such
as Microsoft Azure and WSO2 Stratos. Tables 1
and 2 show the main strengths and weaknesses of
the mentioned platforms, respectively. The meanings
behind the given items or criteria (from both tables)
are explained here:

e Market orientation and providing services
according to cost and time: Cost and time are
the most important parameters for selecting services
which make a platform market-oriented. For ex-
ample, according to the user request, a platform
may select a composition of services with the lowest
possible price;

e Considering both types of workflow and non-
workflow applications: Some applications have
one or more specified workflows which can be per-
formed by the composition of web services; on the
other hand, some other applications do not have
specific service-based workflows and they perform
some duties in a functional manner;

e Utilizing more than one algorithm for
scheduling: There are many options for selection
of the underlying web services so as to compose and
execute the final workflow. This item refers to the
platforms which do not rely on only one algorithm
for service selections;

¢ Supporting run-time software production and
configuration: This item addresses the platforms
which give users the ability to define workflows
dynamically and add new functionality (or configure
an existing functionality) in their systems during
runtime;

e Possibility for manually manipulating the
created mashups: Since a mashup consists of
some services in a proper manner to perform a
specific job, in some platforms there is a facility for
users to change these mashed-up services or the way
the services are related to each other;

e Proposing a programming model: Does the
platform prefer a new programming model or it just
needs the developers use the platform APIs and
deploy their applications?

¢ Providing a common environment for hetero-
geneous service providers: This item specifies if



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

1197

Table 1. Cloud platform strengths.

Criterion

SwinDew-C WTE+

Everything- Aneka SOCCA Azure WSO,

as-a-service

Market orientation and providing v
services according to cost and time

Considering both types of workflow v
and non-workflow applications

Utilizing more than one algorithm v
for scheduling

Supporting run-time software
production and configuration

Using semantic web and ontology for
facilitating service composition

Possibility for manually manipulating
created mashups

Proposing a programming model

Providing a common environment for
heterogeneous service providers

Supporting multi-service provider in
the infrastructure layer

Supporting software life-cycle
Supporting MapReduce model

Supporting automatic service
composition

Supporting ontology based service
description

Supporting multi-tenancy
Simplicity of producing applications
Supporting complex event processing

Supporting enterprise policies

AN

v

Weakly

Weakly

a platform provides a common (shared) environment
for some service providers so as to integrate them;

Supporting multi-service provider in the in-
frastructure layer: It specifies whether a cloud
framework uses other clouds to provide the service
composition or not. Then, it shows that the cloud
framework can act as a cloud integrator;

Supporting software lifecycle: This parameter
specifies if a cloud framework can support the entire
software development lifecycle (analysis, architec-
ture, design, implementation, test, and deploy-
ment);

Supporting map-reduce model: This item refers
to a platform that provides users with a built-in

map-reduce infrastructure (such as Hadoop) such
that the users can develop applications interacting
with this infrastructure;

Supporting automatic service composition:
Does the platform compose services automatically
or it needs the user to select them?

Supporting ontology-based service descrip-
tion: This parameter usually appears in cloud
frameworks, which provide service composition au-
tomatically, and specifies whether the cloud frame-
work regards some semantic data in web service de-
scription. This data, which can appear as ontologies,
facilitates the process of service composition;

Supporting multi-tenancy: Refers to using com-



1198

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Table 2. Cloud platform weaknesses.

Criterion

SwinDew-C WTE+4 Everything- Aneka SOCCA Azure WSO

as-a-service

No consideration on service
selection algorithm and its v
effects on task scheduling

Depending on manually workflow v
definition in design time

No support for run-time configuration v
Service description inflexibility

Cumbersome request creation

Depending on specialist users

Not using ontology for describing
heterogeneous resources and services

Single cloud provider

v v v
v v v v v
v v

v v

mon resources by different users and providing
isolation for these users;

Supporting complex event processing: Event
processing is the analysis of information streams [30]
and concluding from them. CEP (Complex Event
Processing) is an event processing that combines
data from multiple sources [31] to infer patterns
that suggest more complicated situations to identify
meaningful events [32] and respond to them as
quickly as possible. This characteristic specifies
whether the cloud framework supports CEP or not;

Supporting enterprise policies: Does the plat-
form consider (and have the ability to define) user
(or enterprise) policies so as to affect the service
selection process?

No consideration for service selection algo-
rithm and its effects on task scheduling: This
item refers to the platforms that do not have any
specific strategy for service selection and the user
marshals services, together, manually;

Dependence on manual workflow definition in
design time: In service-oriented software develop-
ment processes (like SOMA), service composition is
usually addressed in design time and, in most of
the cases, this is done manually. Many platforms
strongly depend on this type of service composition;

No support for run-time configuration: This
item addresses the platforms which do not give users
the ability to add new functionality (or configure
an existing functionality) in their systems during
runtime (in opposite to the “Supporting run-time
software production and configuration” item);

e Service description inflexibility: Many of the

platforms rely only on one or some specific service
description languages (like WSDL); this item refers
to platforms that are not flexible in service descrip-
tions and can just accept some specific languages;

Cumbersome request creation: In some plat-
forms, the user (or the client-side application) needs
to generate a request in a complex manner (like
SOAP protocol) so as to trigger a workflow, whereas
there are other platforms by which the user can
trigger a workflow only through a simple message;

Dependence on specialist users: Normally,
service composition is not a common job for anyone
to do and it should be performed by a software
engineer with a great background and experience;
after that, the process of system maintenance (like
service/workflow configuration) must be done by
these engineers. In this way, many platforms need
system engineers to interact with each other, which
are addressed by this item. It is not a weakness per
se; yet, in comparison to the platforms that attempt
to automatize most parts of the service composition
(in design-time and even run-time), such as service
selection and work flow generation, it can be referred
to as a weakness;

Not using ontology for describing heteroge-
neous resources and services: This item is in
opposition to the mentioned “Supporting ontology-
based service description” item in the strength
criteria;

Single cloud provider: In opposite to the men-
tioned “Supporting multi-service provider in the
infrastructure layer” item in the strength criteria;



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1199

e Simplicity of producing applications: This
item refers to platforms that provide a simple
programming model for the developers. In these
platforms, developers can focus on the main con-
cerns and they are not supposed to be worried about
messaging, communicating with services, triggering
the workflows, and so forth.

Remarks:

1. “Providing a common environment for heteroge-
neous service providers” is considered “weak” for
“Everything-as-a-service” because it has not men-
tioned any details about service level and task level
scheduling algorithm;

2. “Supporting ontology-based service description” is
considered “weak” for “SOCCA” because it has not
mentioned its utilized ontology language;

3. “Service description inflexibility” is considered for
“WTE+" because it merely depends on OWL-
S. In addition, “Depending on specialist users” is
considered for “WTE+" because describing services
through OWL-S needs special skills;

4. “Cumbersome request creation” is considered for
“WTE+" because its messages should be in the
XML format.

Considering strengths and weaknesses of the related
work, the main goal of SCW+ is to integrate het-
erogeneous cloud platforms while diminishing the
need for skilled users and human agent involvement
(through providing automatic workflow management).
So, SCW+ is aimed as a framework for cloud workflow
with the following strength points:

¢ Multi-cloud support;

e Automatic service composition (with considering
QoS) through a special service-level scheduling al-
gorithm;

e Automatic task workflow design;

e Supporting enterprise policies;

¢ Complex event processing support;

e Ontology-based entity description;

¢ No mere dependency on a particular service descrip-
tion;

e FEase of work in user-side.

SCW+ has also some weaknesses which are as follows

(we try to overcome them in our future work):

e No support for map-reduce programming;

e Proposing a special task-level scheduling algorithm;

e No support for multi-tenancy in the resource level.

3. SCW+

Since SOA is an appropriate approach to develop cloud-
based software applications [30], this paper proposes
SCW+ as a service-oriented framework for cloud work-
flow management systems. Inputs for SCW+ are
defined as events: Every occurrence in the environment
will be sent to SCW+ as an event and will be pro-
cessed according to event processing definitions [31,32].
SCW+ proposes four essential entities (Figure 1) for
each enterprise or environment on which the cloud is
deployed: Event, Task, Abstract service, and Concrete
service operation. These entities are defined for the
system through ontology; they help the system to find
what tasks can meet the goals of an event and what
abstract services can meet the goals of a task. Finally,
a concrete service composition will be generated to
provide actual results. An abstract service is the
container of concrete service operations which realize
the functionality of that abstract service. We propose
an ontology and XML-based language to describe all of
the mentioned entities. This language is named ETAS
(stands for Event, Task, and Abstract Service) and is
described in [33].

3.1. SCW+ layers

This section discusses different layers of SCW+. In ad-
dition to three conventional layers, i.e. Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS), SCW+ proposes two
novel layers, named INtelligence-as-a-Service (INaaS)
layer and Environment layer.

3.1.1. Environment layer

This is the topmost layer in SCW+ which provides an
abstract environment for the users of its underlying
layers. Fach customer has at least one environment,
but more than one customer may have a common
environment. An environment may be an enterprise, a
cloud, or any external application. The only matter is
that the administrator must define connection channels
between environments. The only communication path
among different clouds and costumers is via environ-
ments; each environment can access the entities of
another cloud (such as services, tasks, etc.) through
the environment of that cloud if permitted.

The data which can be interchanged between two
environments depends on the type of environments.
For instance, if both environments are clouds which
have been built based on SCW+, all entities can
be interchanged between environments (if permitted);
however, if one of them is based on some other
cloud platform (such as Azure), or it is an external
application or enterprise, it is possible to access its
service repository and extract its web services (service
extraction is the responsibility of the Service Monitor
component that will be described later).



1200 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Environment Layer

Legend: rEnwmnmentrﬂl

s Databases

Buses

QPSR 3 aS (for each environment)
component

Data Service

Event Control Agent

Preprocessor

Access Portal

Development ‘

Controller

Infrastructure Broker

amazon
webservice ’

- ),
| Goo

App Engine

tools 1 .
1 Service Bus
| T ANS)
i . =

» Environment #2 " Environment #3 Q—b Environment #N

ERP, CRM, Billing, Document Manager, Content Manager, E-Mail, and any other application

Services

Intelligence as a Service (for each environment)

Service Selection Agent

duler Ser\ ito Matchmaker

[REST/

Internal Infrastructure

Figure 1. SCW+ architecture.

3.1.2. SaaS layer

In this layer, environments can access web services and
data services. Every application such as ERP, CRM,
and SCM can be utilized by the user through this layer.
The abstraction level which is provided through the
environment layer along with this layer realizes multi-
tenancy characteristic for SCW+ in the application
(service) level (since more than one costumer can have
common environments and utilize the software and re-
sources in those environments), but not in the resource
level (because we do not focus on resource sharing and
isolation). Software systems in this layer are web-
based and can be implemented by any programming
language. The only requirement is that the developer
must use a user development kit which proposes an
event-driven programming model to connect to the
cloud and invoke events. Events occur through this
layer and are sent to the lower layer (INaaS) to be
processed.

3.1.3. INaaS layer

This layer is the heart of SCW+ and performs the main
functionality of SCW+ described before. Therefore,
INaaS is in charge of automatizing the procedure of
mapping goals to the composed services. The main
portion of this paper is to describe how INaaS does
this job.

3.1.4. PaaS layer

This layer provides services and tools which are re-
quired to develop software systems. PaaS provides
users with a graphical interface to connect to their
environments and define events, event relationships
and transformations, tasks, goals, policies, SLAs, and
so forth.  Significant components in PaaS are as
follows: To refuse repetitive operations, Pattern Base
is a repository which helps Event Control and Service
Selection Agents (in INaaS) to remember the last
task or service composition which has been selected
for a particular event. Service base stores a list



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1201

of existing concrete web services and their related
properties supposed to be extracted by Service Monitor
(in INaaS). Ontology base is the place where goals,
categories, events, tasks, abstract services, and their
relationships are maintained. SLA Manager works
based on CSLA (Cloud Service Level Agreement)
framework described in [34]; SLA base stores the agreed
documents between consumers and providers about
service level agreements. There are also two types of
buses: service bus and data bus. The data bus is used
by internal components when they need to access some
data from the existing bases; the service bus can be
used by both internal components and external users
to utilize the existing services. Access Portal interacts
with privileged users directly; it provides abilities to
develop services, configure SLAs, define events and
tasks, and provide monitoring information and SLA
definitions.

3.1.5. Interface broker

This layer stands on virtual machines and infrastruc-
ture resources to provide a virtual access to resources.
Requests to access low-level resources, such as web
services, files, and databases, are sent to this layer.
A request will be compiled according to the target
infrastructure type (e.g., IBM cloud and Amazon EC2)
and the result will be sent to the requester (i.e., the
layer component which has triggered the request).
Requests are sent to the broker from PaaS which
itself receives requests from INaaS; INaaS requests
are triggered by events from SaaS. There is not an
TaaS layer in SCW+, because instead of dedicating a
particular layer SCW+, along with its infrastructure
broker, is designed in a way that it can use any other
clouds or infrastructures as the physical layer.

3.2. XML-based languages

Two XML-based languages, i.e. ETAS and BEF, used
in INaa$S layer, are introduced. The main purpose of
ETAS is to define business entities from the highest
level to the lowest one; and BEF (Business Entity Flow)
is an XML-based language whose main purpose is to
describe a composition of business entities (generated
automatically). The entire INaaS layer acts as a
knowledge management system (including an ontolog-
ical model and an inference mechanism) in a way that
ETAS and BEF are the ontological descriptions of the
environment, and the main operational components
of INaaS (Section 4) form the inference part of the
system. We have used an ontological model because
the main job of the system is to find out which services
can make a “good” fit for the intended goal of the
user. The “goodness” can be decided based on the
price, time, or any other user’s objective of the selected
services; ETAS and BEF both provide the INaaS layer
components with the required data so as to make a

proper decision. In [33] we have elaborated on ETAS
and BEF in more depth.

3.3. Dynamic view on SCW-+

SCW+ has a general view on everything that can pro-
vide services, such as other cloud services, applications,
enterprises, and so forth. Therefore, Infrastructure
Broker provides the communication with these different
environments. There are many managerial operations
such as workflow definition, service definition, SLA
definition, event definition, monitoring the operations,
and so forth which are provided for cloud users with
different access limitations in the PaaS layer. SCW+
is event-driven, that is events which are defined in
the PaaS layer may occur in the user-side, and served
by SCW+ in the server-side. Responding to events
starts from the INaaS layer to construct proper work-
flows for the occurred events by Event Control Agent;
then, SCW+ selects appropriate services to execute
the constructed workflows by Service Selection Agent.
INaaS continuously searches for new services in the
defined environments by Service Monitor component
and attempts to convert descriptions of the found
services into the unified service description languages
of SCW+ by matchmaker component. These unified
languages provide the ability for SCW+ to manage
services from different cloud providers. SaaS layer
is the most concrete layer in SCW+ which contains
the applications that are using services from SCW+
provider. These applications are typically workflow-
based and trigger events which are served by the INaaS
layer. The topmost layer is called Environment layer
which provides a logical view for each different defined
environment to have its own view on SCW+ and its
applications. Figure 2 shows the main activities in
SCW+ such as event definition, service monitoring,
matchmaking, event detection, service selection, and
execution.

Note that in Figure 2, AS-flow refers to abstract
service flow and CS-flow refers to concrete service flow.
Figure 2 depicts three main scenarios in SCW+, which
are numbered from 1 to 3, on the point where they start
(The numbered circles refer to the number of different
scenarios at the start point.) Scenario 1 refers to entity
definition by the user (mainly, administrator users);
to do so, the user works with utilities provided in
Paa$S layer to define the entities and PaaS stores them
on ontology base. Scenario 2 refers to environment
definition and what happens after that. It shows that
SCW+ connects to the defined environments through
its infrastructure broker, then the service monitor
component tries to find new service descriptions from
those environments to store them in service repository
(in PaaS) and convert them into ETAS description and
store them on ontology base. Scenario 3 shows what
happens when an event occurs in SaaS layer from behalf



1202 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Infrastructure Broker

Connecting to
the Environment

=
=
25
= =
E®
o
(&)

o
Q
Q
(%}

Entity
Definition

Environment
Definition

v

Storing the Service
Description

A *

Storage
Mgmt

Executing the final workflow

Service
Execution

Z
)

Converting service description
to ETAS description

T

Matchmaker

Unification

Extracting service

- Service Monitor
definitions

New Service Service Desc.

Detection

Extracting the ETAS
description

Event
Detection

Event Detector

Finding the tasks required to Preprocessor &
fulfill the event goals Task Specifier

Task flow
Construction

Converting the task flow to

. Entry Agent
abstract service flow yAe

AS-flow
Construction

Scheduler Agent

Service
Selection

Executing the workflow scheduling algorithm to find the
L best concrete services for the abstract service flow

Generating the concerete service flow

and finally the BPEL S i

g)")’ CS-flow
v | Construction

Event
Occurence
w

Result
Reception

Figure 2. SCW+ activity diagram.



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D:

Touring 1

?

Bank 1 Insurance 1 \*
:& 1
s

Insurance 1

Water sHipI]lent Air line 1

Bank 1

Computer Science & ... 23 (2016) 1195-1216 1203

Touring 1

Insurance 1 t

Rail company 1

Hotel 1

Hotel 1 Hotel 2

Air line 1

Hotel 2

Figure 3. A sample of e-touring company.

Reglzﬁ—-

—

Airline ticket
reservation

—
Train ticket
: i F—
: reservation
e
Ship ticket
reservation
—
Legends
[ Task Bus ti(‘lfot |
/\f‘LJ Task Witih. a reservation
g precondition

O

Post
needed?

Hotel
reservation
Insurance
needed?

Insurance
recuest

Figure 4. E-tour company workflow.

of an application. It shows that when INaaS detects
an event, it tries to extract ETAS description of the
event and, according to its goals, SCW+ finds the
required tasks, abstract service flow, concrete service
flow, and so forth to provide the appropriate results
for the occurred event.

3.4. Running example

In the remaining of the paper, we get deep into INaaS
layer and follow its different components and concepts
along with a real world case to elucidate them. The
case is an e-touring company with so many customers.
This company is connected to many other touring
companies to coordinate tours in different places; it,
also, is in connection with many hotel and restau-
rant services. This company uses various banking
services to do financial operations. In addition, it
is in relation with many road traveling companies,
airlines, shipment companies, and rail road companies
to transfer passengers. If it is required to post any
document, the company communicates with different

post companies. Finally, the company may need
some insurance services. Obviously, there are many
connections and services from many service providers
to plan a tour for customers (Figure 3). The tour
planning workflow is depicted in Figure 4.

4. Elaborating on INaaS layer

Figure 5 shows the components of INaaS and the
relationships among them. INaaS consists of four main
components: Event Control Agent, Service Selection
Agent, Service Monitor, and matchmaker. Table 3
represents the operations of INaaS.

The input for INaaS is provided through Event
Detector (from Event Control Agent). Steps 1 and
2 are done by Task Specifier. Step 3 is done by
Entry Agent (from Service Selection Agent) and Sched-
uler Agent. Entry Agent performs Step 4. In the
proceeding, Service Monitor will be discussed first.
Then, matchmaker, Event Control Agent, and Service
Selection Agent will be elaborated; however, an overall



1204 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Service level scheduling strategy

Event Control Agent

__——

_| Service
base
e

<

BEF
Preprocessor

— Ontology
Service Selection Agent

_—

| | Pattern
base

Scheduler Agent

~_

_——

—«[ Service Monitor H Matchmaker W Ll sLA
J base

)
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
|
i
| base
Scheduler Agent i A
s
i
|
|
I
|
|
|
|
U

i
1
i
|
|
|
|
|
|
1
|
|
I
1
|
1
1
1
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
\

Service Repositories (various providers)

As a new

service is
found

Service Service Service

repository| |repository repository

Figure 5. INaaS architecture.

Table 3. INaaS operations.

INaaS operation

Input: Event occurrence from the user side, ontology base

Output: BPEL file with the most suitable composition of services to gain the final result

Step 1: A list of tasks is gathered that have the same goals
and categories in comparison to the occurred event
(the ontology base is searched for).

Step 2: A BEF file is made for each of the above tasks according

INaaS operations to its preconditions and effects.

Step 3: Regarding all tasks, the most suitable abstract service
composition is selected and described by a BEF.

Step 4: The BEF description of the selected abstract service

composition is converted to a BPEL file.

overview of INaaS components can be found in the — Matchmaker: Finding or creating an abstract
following: service for each extracted web service operation;
e INaaS: Generating a BPEL with the most suitable — Event Control Agent: Generating task level
composition of services for an occurred event; BEFs which fulfill an occurred event;
— Service monitor: Extracting web services (and * Event detector: Receiving an event, search-

their operations) from connected environments; ing in pattern base if there is a BEF for that



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1205

event or not, and executing event precondi-
tions;

* Task specifier: Finding tasks that fulfill an
occurred event and generating task level BEFs
for them;

x Preprocessor: Executing preprocesses of an
occurred event.

— Service Selection Agent: Mapping the found
task level BEFs into abstract service composi-
tions (described via abstract service level BEFs),
selecting the most suitable service composition,
and generating its corresponding BPEL file;

* Entry agent: Selecting the most suitable
abstract service composition and mapping it
into a BPEL file;

* Scheduler agent: Mapping a task level BEF
into an abstract service composition.

4.1. Service monitor

The Service Monitor and matchmaker components
facilitate the integration of heterogeneous service
providers. The main purpose of Service Monitor is
to extract web services which are defined in other
connected environments. These services along with

their needed information (input, output, service goal,
service category, service precondition, service effect,
QoS information, and price) will be sent to matchmaker
to be assigned to an appropriate abstract service. Op-
erations of the Service Monitor component are shown
in Table 4.

There is no constraint for the service description
language (it can be WSDL, WSDL-S, SA-WSDL,
OWL-S, and WSMO) and Service Monitor extracts the
needed information according to the type of descrip-
tion. Table 5 shows what information can be extracted
from a service description.

After extracting the required information, it will
be sent to the matchmaker component which is de-
scribed in the next subsection.

4.2. matchmaker component

This component benefits from an algorithm that is
used for generating abstract services. As mentioned
before, an abstract service contains a group of web
service operations with the same functionality; find-
ing or creating suitable abstract services for concrete
web service operations is the main purpose of the
matchmaker algorithm. matchmaker does its duty by

Table 4. Service monitor operations.

Service monitor operations

Input: Web service description

Output: Set of (input, output, goal, category, precondition, effect, QoS, price)

L. Step 1:
As a service is found (from
the connected environments)
by service monitor
Step 2:

Required information {input, output, goal, category,
precondition, effect, QoS, price} is extracted
according to the type of service description.

The extracted information is sent to matchmaker

Table 5. Extractable information from web service descriptions.

Required information

Web service description parts

Input Web service data contract

Output

Web service data contract

When there is not enough annotation (such as WSDL): name of the service

Goal operation in the web service operation contact

It is particularly specified when there is enough annotation (such as OWL-S)

When there is not enough annotation (such as WSDL): name of the web service

Category

It is particularly specified when there is enough annotation (such as OWL-S)
Precondition Tt is specified if the language is IOPE-based (such as OWL-S and WSDL-S)
Effect It is specified if the language is IOPE-based (such as OWL-S and WSDL-S)
QoS QoS data fields are addressed either directly in the description or its annotation

Price Price is addressed either in the description or in the annotation




1206 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Table 6. Matchmaking algorithm operations.

matchmaker algorithm

Input: Service operation (input, output, goal, category, precondition, effect, QoS, price)

Output: An abstract service

Step 1:
Step 2:

A list of existing abstract services is gathered.

An abstract service with the same or similar goal,

category, precondition and effect as input values is

found; if not found, a new abstract service is created.

Step 3:

As the input is received

Step 4:

Service operation name is appended to the set of concrete
services of the found/created abstract service.

Service operation input parameters are added to the abstract

service input set, and service operation output parameters

are added to the abstract service output set.

Step 5:

The Min SLA parameter field of the abstract service is

modified (if needed).

receiving input, output, goal, category, precondition,
effect, QoS, and price information related to a service
operation. Table 6 shows the main operation of the
matchmaker algorithm.

A summary of the matchmaker algorithm is de-
picted in Figure 6. Suppose that AS is an Abstract
Service and [ is the received concrete service operation.
AS will be selected as a matched abstract service if:

SimilarityO f(I.Category, AS.Category)
= 1.0 A SimilarityO f(ToString(I.E f fect),
ToString(AS.Ef fect))

=1.0 A SimilarityO f(ToString(I.PreCondition),

Concrete service operation

N N N N N A

—— Append

+—— Append

—— Similar Goal

+—— Similar Category

— Similar

—— Similar Effect

- If it’s minimum —

ToString(AS.PreCondition))

= 1.0 A SimilarityO f(I.Goal, AS.Goal) = 1.0.

SimilarityOf() is a function which has two input ar-
guments and checks whether these two arguments are
lexically similar or not (in our implementation, we have
used WordNet.Net project which measures the similar-
ity according to the WordNet lexical database [33]).
The result of this function is an integer number showing
how similar are two inputs (in the range of 0.0 to 1.0
where 1.0 means two inputs are the same). ToString()
is used to convert PreCondition and Effect into a text
string (Step 1 and 2).

If the above condition is not met, a new abstract
service must be generated and then the following steps
will go on. In Step 3, I.OperationName is appended

Abstract service

Input parameter

Output parameter

Precondition

Min SLA

Set of concrete services

Figure 6. Matchmaking a concrete service operation with a typical abstract service.



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1207

Table 7. BEF files which meet event goal, category, input, and output are generated.

Event control agent

Input: Event, ontology base, pattern base

Output: A set of task level BEF files

Event ETAS description is extracted.

Event precondition is executed: going to the next

step if the precondition is met; otherwise, replying

an error message.

Pattern base is investigated to find a pattern for the

event; jumping to the Service Selection Agent, if the

pattern exists (pattern base keeps found task level

BEFs for events in past).

Step 1:
Step 2:
Step 3:

As an event

is received

by the agent
Step 4:
Step 5:
Step 6:

Event preprocesses are executed if exists.
Existing tasks are extracted from ontology base.

BEF files which meet event goal, category, input

and output are generated.

Table 8. Task specifier operations.

Task specifier

Input: Event input, event output, event goal, event category, and ontology base.

Output: A set of task level BEF's.

A list of existing tasks is gathered from ontology base.

Tasks that have the same or similar goal and category

in comparison to the input event, and their inputs cover

Step 1:
Step 2:
As an input is
received from Step 3:
event detector
effects.
Step 4:

the event inputs are selected.
A flow of tasks is constructed for each of the selected

tasks from Step 2, according to their preconditions and

A BEF file is generated for each task selected in Step 2

according to its flow constructed in Step 3.

to AS.ConcreteServiceOperations. In Step 4, LInput
parameters are added to AS.Input parameter. I Output
parameters are also added to AS.Qutput parameters.

AS. Input = AS.Input U I.Input,

AS.Qutput = AS.Qutput U I.Output.

In Step 5, AS.MinSLA is modified (if needed);
first, I.QoS is normalized; then, the normalized value
is compared with normalized AS.MinSLA. A conven-
tional normalization function is the following one:

Normalized value = Z Q; *W,.
(1<i<m)

Q); indicates the value of the ith quality parameter
in the SLA, W; corresponds to the weight of this
parameter, and m is the number of these parameters.

4.3. FEvent control agent
The main purpose of this agent is to detect events and
find appropriate tasks to handle the detected events.

Event Control Agent contains three components:
Event Detector, Preprocessor, and Task Specifier.
Event Detector detects events occurring through SDK
described later. In addition, Steps 1, 2, and 3 in Table 7
are performed by this component; the Preprocessor
component is in charge of Step 4; finally, Steps 5 and 6
are done by Task Specifier which constructs task flows
for the detected events. At the end, Event Control
Agent prepares one or more than one task-level BEF
and sends them to Service Selection Agent to find the
most suitable service composition. Table 8 shows the
main operations of Task Specifier.

In Step 2 of Table 8, we select those tasks that
are consistent with the input event. Suppose (I, O, G,
C, L) is an input for Task Specifier in which I, O, G,



1208

C, L are event input, event output, event goal, event
category, and ontology base, respectively. Task T' can
be selected in Step 2 under the following condition.

SimilarityO f(T.Goal, @)
= 1.0 A SimilarityO f(T.Category, C)
= 1.0 A InputSetO f(T)supportsl,

Py Supports Py < Vpo : Py.3py 2 Pr.(TypeO f(p1)
= TypeO f(ps)) A (SimilarityO f(NameO f(p1),

NameO f(p2)) = 1.0).

For two sets P, and P,, P; Supports P, if for each
parameter in P, there is at least one parameter in P;
with similar name and type.

Step 3 must construct the flow structure for the
task found in Step 2 considering both task precondition
and task effect sections. These two sections are
investigated in two opposite directions and according
to the needed invocations in them, the flow structure
is constructed; this bidirectional investigation is shown
in Figure 7.

As shown in Figure 7, there is a set of tasks that
should be connected to the found task so as to construct
the task flow. The following relation is needed to be
met so that two tasks ¢; and 5 get connected to each
other:

(t1 — t2)
< (1 isinvokeddirectlyin PreconditionO f(t2)
v 3i : OutputSetO f(i1).
1 iscalledin PreconditionO f(t3))

V (tg isinvokeddirectlyinE f fectO f(t1)

< Backward | Forward

\ Precondition |l Effect

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

V i : InputSetO f(t2).

1 iscalledinE f fectO f(t1)).

At first, this relation must be checked for the initially
found task t. When some tasks are determined to be
connected to ¢, the above relation will be applied to
these tasks as well; this process will keep on iteratively
until every remaining task has no tasks to be connected
to. Now, the issue is how to generate the workflow plan.
There are some main flow structures in a workflow
plan, such as Sequence, Parallel, Join, Switch Case,
and Loop. Also it is possible to invoke another task
or assign a value to a variable. The proper workflow
structure is generated according to the connected tasks.
A parallel structure is made when an OR operator
exists in the effect section of the considered task. A
Loop structure is required when the precondition of
task t invokes another task whose effect section invokes
t, too. Switch Case structure will be required when one
or more comparisons are needed in the precondition
and/or effect of a task. If more than one task invoke a
particular task in their effect section, Join structure
is considered. At last, based on the selected flow
structures, the workflow plan will be generated. Since
it is possible that more than one plan are generated for
each event, after plans are ready, we have proposed
an algorithm which finds the most suitable service
composition and will make it executable as a BPEL
file. Due to the space limitation, we have not discussed
the algorithm in this paper and the algorithm can be
found in [36].

4.4. Service Selection Agent
This agent constructs an abstract service composition
for each input task-level BEF received from the Event
Control Agent and then selects the most suitable
composition among them. Finally, the service-level
BEF of the selected composite service is converted into
BPEL (Table 9).

Service Selection Agent consists of two compo-

>
‘~A

B

Found task

Figure 7. Bidirectional investigation.



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 2

3(2016) 1195-1216 1209

Table 9. Service Selection Agent operations.

Service Selection Agent

Input: A set of task level BEFs, ontology base, pattern base, and service base

Output: A BPEL file

Step 1:
As BEF files are
. Step 2:
received from the
Step 3:

event control agent

An abstract service composition is found for each BEF.
The most suitable composite abstract service is selected.
The service level BEF of the selected composite service
is converted into BPEL.

nents: Entry Agent and Scheduler. Entry Agent is in
charge of Steps 2 and 3; scheduler performs Step 1.
Figure 8 shows a hierarchical view for the operations
of Service Selection Agent. FEntry Agent disperses

BEF's

Break down

Scheduler

Scheduler

Abstract service composltlon—V—Abstract service composition—

Selectlon

Figure 8. Hierarchical view for operations of Service
Selection Agent.

Underlying clouds

Internal infrastructures

Environment# 1

task-level BEFs among Scheduler instances to find an
abstract service composition for each BEF. After that,
the most suitable abstract service composition will be
selected according to the total weight of compositions.
Selecting the most suitable service composition is
done by the service-level scheduling algorithm whose
detailed description can be found in [36].

5. SCW+ implementation

SCW+ has been implemented and deployed in two
sides, server and client sides that are discussed in the
following subsections, separately.

5.1. Server-side deployment

SCW+ has been implemented as a back-end server.
A portal application has been developed for permitted
users to administer and configure SCW+; see Figure 9.
This application provides permitted users with some fa-
cilities to connect to SCW+ and define events and tasks

Xen hypervisor

Domam 0

Environment#2

VM_1

I VM_2 l:l VM3

H VM_4 \ VM_5 \

VM9 ‘ VM0 |

Portal USDK

VM.13 H VM_14 ‘ VM._15 \

VM_1

SaaS
INaaS

PaaS

VM.18 ’ { VM9 |

VM_20 \

Data bus

Figure 9. Server-side deployment view.



1210 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

along with required relationships. Every VM in the
server, which is allocated to an environment, deploys
an instance of SCW+ core which itself contains PaaS,
INaaS, and SaaS. Every environment can include one
or more than one VM, and more than one environment
can have common VMs.

5.2. User-side deployment

SCW+ has three types of roles: system adminis-
trators, service developers, and consumers. System
administrators work with the portal application and
are able to use every capability which is provided by
the portal. Service developer is an independent role
who develops web services and deploys them on any
type of infrastructures (an internal infrastructure or
other clouds). Consumer is an application that invokes
events or can be informed about the occurrence of
events. Consumers utilize an SDK (Software Devel-
opment Kit) which has been provided for the proposed
framework; see Figure 10.

This SDK provides an event-driven programming
model for users to develop software applications such
as ERP and CRM. The proposed model is a two-tiered
model which allows the developer to concentrate only
on his/her user interface tier without any concerns
about data and control tiers. An under-developing
software just needs to use this SDK to subscribe
available events for firing them and retrieving their
results. For the first step, the software must be
authenticated for the cloud; once the authentication is
completed, and the user is known as a permitted one,
SDK acts as a middleware to retrieve a list of accessible
events for this user and sets them forth. These events
are then accessible to be used same as the other events
in. Net framework. Then, the user subscribes an event
if he/she wants to get its responses; the user can also
call the event to fire it.

6. Evaluation

To evaluate SCW+, we first investigate how the tar-
geted goals and sub-goals for SCW+ are obtained
in SCW+. Then, we evaluate the most important
components of the framework using the e-tour case; this
evaluation shows that not only SCW+ is applicable,
but also it provides acceptable performance.

6.1. Goals review

As stated before, SCW+ attempts to meet three main
goals: supporting heterogeneous multi-cloud, minimiz-
ing human involvement, and omitting the need for
skilled users. To meet these goals, some sub-goals are
required to be met which are listed and described as
follows:

e Heterogeneous multi-cloud support: This goal
is provided through Service Monitor, matchmaker,
and infrastructure broker. Aside from the type of
the environment, every existing service from every
cloud is extracted by Service Monitor; extracted
services are classified in abstract services by match-
maker. This abstraction provides SCW+ with the
possibility of mapping workflow plans to abstract
service compositions. Hence, this abstraction is the
key point of supporting heterogeneous multi-cloud
services;

e Minimum human involvement: Omitting or
minimizing human involvement requires some im-
portant factors, such as automatizing the process of
workflow planning through web service composition,
which are met by the following sub-goals:

— Automatic task workflow design: According
to the system design and what happens in the
INaaS layer, as an event occurs, one or more
appropriate tasks will be found and according
to their preconditions and effects, some workflow

User interface

—
1. Authentication

| S
2. Acceptance

6. Subscribing in an event

—>
7. Event call

8. Final result

User-side application

Enterprise

5. List of accessible event S

Data, control

l

3. Ask for the list of

accessible events

4. Event list

1
1
1
1
1
1
1
1
i
1
1
I
1
1
1
1
1
1
1
| —>
1
1
1
1
1
|
1
|
1
1
1
|
1
1
1
1

I
1
|
|
|
|
|
|
|
|
|
|
|
|
|
i
:
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 10. User-side deployment view.



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1211

plans will be defined; all of these stages are
done automatically by Event Detector and Task
Specifier components;

— Automatic service composition: Our service-
level scheduling maps workflow plans to service
compositions automatically.

e No need for skilled user: Working with SCW+
in both server and client sides is not a cumbersome
task. Some other sub-goals that realize this goal are
mentioned below:

— Supporting enterprise policies: Enterprise
policies are defined as preprocesses of events and
preconditions and are automatically handled by
Event Control Agent;

— No mere dependency on a particular ser-
vice description: The system does not rely on
a particular web service description language and
Service Monitor translates every description to
ETAS to provide a unified language. This unifi-
cation helps the system for further automaticity;

— Ease of work from user-side: SDK enables
users to connect to SCW+ easily, invoke events,
and receive results.

6.2. SCW+ components evaluation

To evaluate applicability and performance of SCW+,
we applied the e-touring case to the essential compo-
nents of this framework. To do our experiments, we
produced different sample web services with various
functionalities (banking, insurance, hotel, etc.) and
with different dependency lengths (based on precondi-
tions and effects) from 0 to 4 (each web service could be
sequentially dependent on 0 to 4 other services). Each
of the web services had two quality parameters: time
and cost. Time values were between 1 and 7 and cost
values were between 10 and 35. We did random service
generation tests for 10 times with different numbers of
services.

As the first criterion, we evaluated matchmaker
performance. As the second evaluation criterion, we
tried to compare our service composition approach,
which is the main part of Service Selection Agent, with
an ant-colony-based approach to show its performance
and its result optimality. Finally, we evaluated the
crucial part of SCW+ (i.e., the INaaS layer) which
includes event detection, task specification, workflow
(BEF) generation, and finally finding the best service
composition to be executed. Table 10 shows the
configuration of 10 different stages of the experiment.
In this random experiment, in addition to web services,
tasks and events were also generated automatically
with different characteristics in different stages. Every
task and event had from 1 to 6 input parameters
and from 1 to 4 output parameters. Similar to web
services, preconditions and effects of tasks were defined

Table 10. Automatically generated events, tasks, and
web services.

Events # Tasks # Concrete

services #

Exp_1 8 18 50
Exp_2 16 36 100
Exp_3 24 54 150
Exp_4 32 72 200
Exp_5 40 90 250
Exp_6 48 108 300
Exp_7 56 126 350
Exp_8 64 144 400
Exp_9 72 162 450
Exp_10 80 180 500

Table 11. The number of abstract services in different

experiments.
Abstract service #

Exp_1 6

Exp_2 36
Exp_3 40
Exp-4 74
Exp_b 79
Exp_6 112
Exp.7 113
Exp-8 148
Exp_9 146
Exp_10 185

|+ Spent time for creating or finding one abstract service

0.4
o 0.3 0.295 0.302 | 0.297 | 0.3 |0.294 | 0.301
s /\ M v v ) 0.317
o 0.210.147,4 0.266 0.278
g
-~ 0.1
H
0.0
9 09 3 ¥ 27 % 5 ¥ 9 9
2, o) o a a a 2 2 a i
I I ] ] >< ] " ] " o
= = & = = = = = = L:j

Figure 11. Spent time for creating or finding one
abstract service (in sec).

automatically and randomly in such a way that made
dependency length from 1 to 4 tasks.

6.2.1. Evaluating the matchmaker component

We executed the matchmaker component for 10 times,
and it generated a different number of abstract services
in each of the 10 stages (Table 11).

Figure 11 depicts how much time is needed to find
or create one abstract service in different experiments.
Figure 12 shows the total time to find or create all web
services.



1212 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

—o— Spent time for matchmaking all web services

500
) 396.831
< 400 361.11 —
(]
2 300 7 352.55
2 197441 270.281
= 200 ——— :
£ 128.25 | 4] 216.4
100 51.623_65‘q 171.463
0
3 B i = bl < 5% bl =
a a o a & a 2 o a i
% % % % % % % % % o
= = = 3] = = <} <3} = is|

Figure 12. Spent time for matchmaking all web services
(in sec).

Figures 11 and 12 show that creating and finding
abstract services are done in a reasonable time manner.
For example, in experiment #10, with 500 web services,
the matchmaking time is 396.831 seconds, and this
time will be 0.793 for each web service; therefore,
matchmaking time consumption is also small. Since
Monitoring and Matchmaking components are pro-
posed by SCW+, and there is not any equivalent
component for them in other platforms, we cannot
provide a comparison of these two components with
other works.

6.2.2. Evaluating the service composition algorithm
ACO (Ant Colony Optimization) is one of the most
common approaches to target multi-objective opti-
mization [37]; hence, in order to evaluate our approach
to service composition, we compared this approach
with an ant-colony-based approach described in [37];
formulation of the main variables was in the way
mentioned in [37].

Figure 13 represents the spent time for the ex-
ecution of two under-comparison service composition
approaches. As Figure 13 shows, our approach has
much better time consumption; this is because it finds
the composition on the first iteration and does not need
any more iteration. More details are available in [36].

1.2

T T

. IACO ‘ 1.081
1.0 -|{—#—Our approach| | 1 , | /
0.8
0.684 0.686
S 06 A A
K / N No.3so/ | M
0.583
g 0.4l \0.37]7 /
5 [ \.237 /.._.
0.336| 0.346
0.2 0.171 /]
0.105 o
0.025_|—4~0:029 4\(/./ 017
0.0 é=.:¥ 0.0000 TE 1012 T
LU0
0.005 | 0.015| 0.019
-0.2

Exp_-1
Exp_2
Exp-3
Exp-4
Exp-5
Exp-6
Exp_7|
Exp-8
Exp-9
Exp-10

Figure 13. Spent time for service composition (in sec) for
ACO approach and ours, when both are working based on
abstract services.

6.2.3. Performance evaluation of INaaS

This section evaluates the performance of INaaS, which
includes event detection, task specification, workflow
(BEF) generation, and finally finding the best service
composition to be executed. The service composi-
tion part was evaluated in the prior section; instead,
Figure 14 covers both Event Control and Service
Selection (i.e., from event detection to the final service
composition) Agents and presents the average spent
time according to ten experiment runs. As this figure
shows, the range of spent time from 50 concrete services
to 500 concrete services is approximately between 2 and
5 seconds (in addition, this time will be cut back to
some extent using the pattern base, because the pattern
base refuses repetitive operations); it enables SCW-+
to make fast decisions, for example, in environments,
such as mobile computing, that decision-making speed
is critical.

Like Figures 11 and 12, these results are not
compared with any other existing method, because
INaaS, as the heart of SCW+, has no equivalent in
other works so as to compare its performance with.

7. Discussion

Now, we intend to present a brief comparison be-
tween some cloud computing frameworks which can
support both workflow management and user-side
programming with ours based on some qualitative
characteristics acquired from [38,39]. Most of these
characteristics were described in Section 2 and the
others were described as follows:

e Workflow support: This characteristic specifies
whether the cloud framework supports business
process design and execution or not. The platform
must support a workflow designing language (such
as BPMN) and execution language (such as BPEL);

o Policy registry: DPolicy registry stores business
policies and helps the cloud framework to compose

—o— Spent time from event detection to service composition

6
5.252
5 4.864
- 4 3.672
g 3.216
] 3.017 3.035 3.112
\; 3 4~ %
£ |2109 7T \// \//
B2 2146 2219
1
o
— N [ar] < i) © o~ e} =2} (=}
| | i | 1 d i 1 i =
o, o, o) o, =R a, o) o, o !
" " » " ) ) » " " &
084 A &8 A& @ @ @ @ ;3

Figure 14. Average time for INaaS main process
execution (in sec).



M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216 1213

those services that are under the defined policies.
This parameter specifies if a cloud framework has a
policy registry;

Integration with on-premise software devel-
opment tools: This characteristic refers to the
issue concerning how much the cloud framework
supports working with different software develop-
ment tools, such as analysis tools, UML design tools,
IDEs, and so forth. Basically, this characteristic
specifies the variety of tools.

Table 12 shows that SCW+ has many positive features
against other similar frameworks.
results are discussed as follows:

Some comparison

e Automatic service composition: SCW+ com-

poses services, automatically, by using ETAS and

our service composition approach. SOCCA has a
SOA layer on the top which is in charge of service-
oriented operations, such as service composition,
that are done automatically in this framework;

Multi-cloud service composition: As stated
before, SCW+ provides this facility by using envi-
ronments, Service Monitor, and infrastructure bro-
ker. Moreover, SCW+ uses ETAS to unify different
services from heterogeneous providers. SOCCA uses
ontology to unify underlying resources and then
treats these resources similarly;

Policy registry: SCW+ and WSO- have a policy
registry involved in service selection. SCW+ defines
these policies as events preprocesses and precon-
ditions which are handled automatically by Event
Control Agent;

Table 12. Framework components.

SCW -+ SOCCA Aneka Azure WSO;> Stratos
Service type Iaas, Paas Paas Paas Paas Paas
Deployment Model Public, private  Public, private Public Public Public, private
Workflow support Yes Yes Yes Yes Yes
Automa%t}c service Ves Yes No No No
composition
Multi-cloud
service .c,omposmlon Ves Ves No No No
(Multi-infrastructure
support)
Ont.ology-Ba.Ls'ed Yes No No No No
service provision
Policy registry Yes No No No Yes
Automatic task ' Yes No No No No
template generation
Integration with
on-premise software Medium - Low Medium Low
development tools
Event-driven/ Task/ Message passing/

Programming model

Programming language
support (user-side)

Multi-tenancy
Complex event processing

MapReduce

web service

.Net framework
(till now)

Yes (mediocre)
Yes

No

‘Web service

Yes (poor)
No

No

thread model

‘Web service

web service

.Net Framework .Net framework Java
No Yes (poor) Yes (poor)
No No Yes
Yes No Yes (poor)




1214 M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

e Automatic task template generation: SCW+
generates workflow templates according to task
preconditions and effects, automatically; but other
frameworks require manually designed workflows;

¢ Integration with on-premise software devel-
opment tools: Since no document exists about
SOCCA implementation, we cannot say aunything
about this framework. Aneka has a particular
web service type, so integration with other software
development tools in Aneka is cumbersome. WSO,
has its special development tools as well. Azure
is fully consistent with Visual Studio development
environment, but it is limited to. Net tools. SCW+
development is based on both event management
and web services; but, at the moment, SCW+
is based on. Net; therefore, it supports Azure
development tools at least;

e Multi-tenancy: As mentioned in [40], there are
two types of multi-tenancy patterns in the applica-
tion level: Multiple application instance and single
application instance. SOCCA tries to combine these
two patterns to support multi-tenancy in a balanced
way. Azure and WSO, also provide an ability by
which multiple users can utilize common resources
and run multiple application instances; then, they
support the multiple-application instance pattern.
In SCW+, more than one environment can contain
common VMs, so it supports multiple application
instance patterns. SCW+ also provides a new type
of multi-tenancy because it considers events, tasks,
and abstract services as resources, and different
environments can share these resources among one
another;

¢ Complex event processing: In essence, com-
plex event processing is implemented through event
process networks [31] defined by event-level ETAS
descriptions and provided through Event Control
Agent in SCW+;

e Map-Reduce: Aneka and WSO2 (limitedly) sup-
port this type of programming.

8. Conclusion

In this paper, we proposed a service-oriented frame-
work, named SCW+, for cloud workflow systems. The
main components of SCW+ were evaluated by regard-
ing a familiar case study. We discussed, deeply, the
main components of the system and the underlying on-
tological languages for describing the environment for
the system to work in. After all of these architectural
and design concepts, we talked about the deployment
view of the proposed framework and evaluated it with
some different range of inputs. The evaluation implies
that SCW+ is applicable and provides acceptable

performance. In future, we are going to support Map-
Reduce and extend SCW+ to support mobile cloud
computing. Moreover, we are planning to implement
infrastructure broker to support the integration of
SCW+ with Amazon EC2, Azure, etc.

References

1.

10.

11.

12.

Van der Aalst, W.M.P. and van Hee, K.M., Workflow
Management: Models, Methods, and Systems, MIT
Press, Cambridge, MA, USA (2002).

Yu, J. and Buyya, R. “A taxonomy of workflow
management systems for grid computing”, Journal
of Grid Computing (2006). Doi: 10.1007/s10723-005-
9010-8

Beisiegel, M., Blohm, H. and Booz, D. “Service
component architecture:  Building systems wusing
a service oriented architecture, SAP”, http://
www.sybase.com/sb_content/1038547/SCA_White_
Paper1.09.pdf, Accessed February 2013 (2005).

Hawke, S., Herman, I. and Prud’hommeaux, E.
“Semantic web, providing a common framework
that allows data to be shared and reused across
application, enterprise, and community bound-
aries”, http://www.w3.org/2001/sw/, Accessed Febru-
ary 2013 (2001).

Berners-Lee, T. and Hendler, J. “The semantic web.
A new form of web content that is meaningful to
computers will unleash a revolution of new possibili-
ties”, Scientific American Magazine, 299(4), pp. 34-43
(2001).

Akkiraju, R., Farrell, J., Miller, J., Nagarajan,
M., Schmidt, M., Sheth, A. and Verma, K.
“WSDL-S, web service semantic”, http://www.w3.
org/Submission/WSDL-S/, Accessed February 2013
(2005).

Verma, K. and Sheth, A. “Semantically annotating a
web service”, IEEFE Internet Computing, 11(2), pp. 83-
85 (2007). Doi: 10.1109/MIC.2007.48

Martin, D.; et al “OWL-S, semantic markup for
web services”, http://www.w3.org/Submission/OWL-
S/, Accessed February 2013 (2005).

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara,
R., Stollberg, M., Polleres Feier, C., Bussler, C. and
Fensel, D. “Web service modeling ontology”, Applied
Ontology, 1(1), pp. 77-106 (2005).

Battle, S., Bernstein, A. and Boley, H. “SWSO,
semantic web services ontology”, http://www.w3.
org/Submission/SWSF-SWSO/, Accessed February
2013 (2005).

OMG “Business Process Model and Notation
(BPMN), version 2.0”, Object Management Group,
Technical report (2011).

Peltz, C. “Web services orchestration and choreog-
raphy”, Computer, 36(10), pp. 46-52 (2003). Doi:
10.1109/MC.2003.1236471



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Aalst, W.V.D., Dumas, M. and Hofstede, A.T “Web
service composition languages: old wine in new bot-
tles?”, Proceeding of the 29th EUROMICRO Con-
ference: New Waves in System Architecture, IFEFE
Computer Society, Los Alamitos, pp. 298-305 (2003).
Doi: 10.1109/EURMIC.2003.1231605

OASIS (WSBPEL) “Web services business process
execution language version 2.0”, Technical Report,
Organization for the Advancement of Structured In-

formation Standards (OASIS) (2007).

Thatte, S., XLANG Web Services for Business Process
Design, Microsoft Corporation (2001).

Aalst, W. and Hofstede, A. “YAWL: Yet another
Workflow Language”, Information Systems, 30(4), pp.
245-275 (2005).

Tsalgatidou, A., Athanasopoulos, G., Pantazoglou,
M., Pautasso, C., Heinis, T., Grgnmo, R., Hoff,
H., Berre, A.-J., Glittum, M. and Topouzidou, S.
“Developing scientific workflows from heterogeneous
services”, SIGMOD Record, 35(2), pp. 22-28 (2006).

Yelmo, J.C., Trapero, R., del Alamo7 J. “User-
driven service lifecycle management -adopting internet
paradigms in telecom services”, Fifth International
Conference, Vienna, Austria, pp. 342-352 (2007). Doi:
10.1007/978-3-540-74974-5_28

Lécué, F., Delteil, A. and Léger, A. “Towards a seman-
tic state transition system for automated generation
of data flow in web service composition”, Int. J.
Semantic Computing, 3(4), pp. 499-526 (2009). Doi:
10.1142/S1793351X09000896

Daniel, F., Casati, F., Benatallah, B. and Shan, M.-C.
Hosted Unwversal Composition: Models, Languages and
Infrastructure, in mashArt, in Alberto, Springer, pp.
428-443 (2009). Doi: 10.1007/978-3-642-04840-1_32

Pietschmann, S. “A model-driven development process
and runtime platform for adaptive composite web
applications”, International Journal on Advances in
Internet Technology, 2(4), pp. 277-288 (2009).

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng,
C. and Yan, L.
Distributed orchestration of user interfaces, in Richard
Hull Business Process Management, Springer Berlin
Heidelberg, pp. 310-326 (2010). Doi: 10.1007/978-3-
642-15618-2_22

“From people to services to Ul

Yang, Y., Liu, K., Chen, J., Liu, X., Yuan,
D. and Jin, H. “An algorithm in SwinDeW-C
for scheduling transaction-intensive cost-constrained
cloud workflows”, jth IEEE International Conference
on E-Science (e-Science08), pp. 374-375 (2008). Doi:
10.1109/eScience.2008.93

Hristoskova, A., Volckaert, B. and Turck, F.D. “The
WTE+ framework: automated construction and run-
time adaptation of service mashups”, Automated Soft-
ware Engineering (2011). Doi: 10.1007/s10515-012-
0105-8

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1215

Li, G. and Wei, M. “Everything-as-a-service platform
for on-demand virtual enterprises”, Journal of Inf.
Syst. Front (2012). Doi: 10.1007/s10796-012-9351-3

Vecchiola, C.,; Chu, X. and Buyya, R. “Aneka: A
software platform for .Net-based cloud computing”,
High Speed and Large Scale Scientific Computing, I0S
Press (2009).

Sukumar, K., Vecchiola, C. and Buyya, R. “The
Structure of the new it frontier: aneka platform
for elastic cloud computing applications”, Strategic
Facilities Magazine, 25(6), pp. 599-616 (2010).

Chu, X., Nadiminti, K., Jin, C.,; Venugopal, S. and
Buyya, R. “Aneka: next-generation enterprise grid
platform for e-science and e-business applications”,
3rd IEEE International Conference on e-Science and
Grid Computing, pp. 10-13 (2007). Doi: 10.1109/E-
SCIENCE.2007.12

Tsai, W.T., Sun, X. and Balasooriya, J. “Servi-
ce-oriented cloud computing architecture”, Seventh
International Conference on Information Technol-
ogy: New Generations (ITNG), pp. 684-689 (2010).
Doi:10.1109/ITNG.2010.214

Huang, Y., Kumaran, S. and Chung, J.Y. “A
service management framework for service-oriented
enterprises”, Conference on  E-
Commerce Technology, pp. 181-186 (2004). Doi:
10.1109/ICECT.2004.1319732

International

Etzion, O. and Niblett, P., Fvent Processing in Action,
Manning, Stanford, US (2011).

Maréchaux, J. “Combining service-oriented architec-
ture and event-driven architecture using an enterprise
service bus”, IBM Journal, 2, pp. 66-69 (2006).

Appendix, Available at: http://ticksoft.sbu.ac.ir/?

page id=5116 (2015).

Torkashvan, M. and Haghighi, H. “CSLAM: A frame-
work for cloud service level agreement management
based on WSLA”, Sizth International Symposium on
Telecommunications (IST), pp. 577-585 (2012). Doi:
10.1109/ISTEL.2012.6483055

Wordnet, Lexical Data Base, Princeton University,
http://wordnet.princeton.edu/, Accessed May 2013
(2013).

Torkashvan, M. and Haghighi, H. “A greedy approach
for mapping workflows to service compositions in
cloud workflows”, Sizth International Symposium on
Telecommunications (IST), pp. 929-935 (2012). Doi:
10.1109/ISTEL.2012.6483119

Zhang, W., Chang, C. and Feng, T. “QoS-based
dynamic web service composition with ant colony
optimization”, IEEE 34th Annual Computer Software
and Applications Conference, pp. 493-502 (2010). Doi:
10.1109/COMPSAC.2010.76



1216

38.

39.

40.

M. Torkashvan and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 1195-1216

Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W.
and Li, Q. “Comparison of several cloud computing
platforms”, Second International Symposium on Infor-

mation Science and Engineering, pp. 23-27 (2009). Doi:
10.1109/ISISE.2009.94

Rimal, B.P., Choi, E., Lumb, I. “A taxonomy and
survey of cloud computing systems”, Fifth Interna-
tional Joint Conference on INC, IMS and IDC, IEEE
Computer Society, Washington, DC, USA, pp. 44-51
(2009). Doi: 10.1109/NCM.2009.218

Huang, Y., Su, H., Zhang, J.M., Guo, C.J., Xu, J.M.,
Jiang, Z.B., Yang, S.X. and Zhu, J. “Framework for
building a low-cost, scalable, and secured platform
for web-delivered business services”, IBM Journal of
Research and Development, 54(6), pp. 1-14 (2010).
Doi:10.1147/JRD.2010.2065891

Biographies

Milad Torkashvan is graduate of Information Tech-
nology from the University of Shahid Beheshti, Tehran,
Iran. He also took his bachelor degree from University
of Bahonar, Kerman. He has written some papers
about service-level agreement in cloud computing, ser-
vice composition, and mobile cloud computing. His
main research interests are cloud computing and Sys-
tem security.

Hassan Haghighi is an Assistant Professor in Com-
puter Science and Engineering Department, Shahid
Beheshti University, Tehran, Iran. He received his
PhD degree in Computer Engineering-Software from
Sharif University of Technology, Iran, in 2009. His
main research interests are formal methods, software
testing, and service-oriented architecture.





