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Abstract. In this paper, decentralized control of formation of a special category of leader-
follower networks on bounded velocity trajectories is addressed. The network of the agents
in this study is supposed to have a directed graph with a spanning tree rooted at the leader
agent. Moreover, follower agents do not receive online or have o�ine velocity of the desired
trajectory, such as in tracking problem of trajectories which are not prede�ned or when the
total bandwidth is narrow. Furthermore, the leader does not receive any information from
any agent and its control is fully centralized. In the present study, formation problem is
considered a consensus problem. The controller is designed for integrator and double-
integrator agents via backstepping. Furthermore, suitable condition of the robustness
of the controller against the changes of the communication topology of the network is
derived. Simulations verify the capability and robustness of the designed control law. In a
simulation, formation keeping error reduction by tuning a gain of the controller, as claimed
in the design procedure, is demonstrated.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In the recent decade, due to advancements in design-
ing and producing high speed processors and wire-
less networks developments, researchers have been
interested in performing complicated tasks by multi-
agent systems of ordinary robots instead of designing
super-mature robots. Therefore, various missions have
been de�ned for multi-agent systems such as ock-
ing [1], coverage [2], rendezvous [3], deployment [4],
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formation [5], and, in a more general case, con-
sensus [6,7]. Due to high bandwidth necessary for
centralized controllers and failure of whole mission
due to failure of a single-agent in centralized missions,
decentralized control laws are preferred apparently.
Formation methods, till now, can be classi�ed to three
approaches, including: behavior-based approach [8],
virtual structure approach [9], and Leader-follower
approach [10]. Robustness of the proposed formation
algorithms against changes in communication topol-
ogy, which are probable as a result of surrounded
environmental terms and conditions, is so important.
For example, in [11], a robust decentralized attitude
formation controller against information ow changes
and disturbances is designed via sliding mode method.
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In [12], by a method named leader-to-formation stabil-
ity method, interconnection topology is correlated to
stability and ways of improving robustness of forma-
tion in spite of changes of information ow topology
have been suggested. In [13], suitable condition for
robustness of formation of multi-agent systems in
case of time varying communication graphs has been
addressed.

The present paper deals with decentralized con-
trol of formation of leader-follower multi-agent sys-
tem with directed networks having spanning tree on
bounded velocity trajectories. The leader of the
networks considered in this study is supposed not to
be receiver of information from the followers. On
the other hand, the followers do not know or receive
any explicit information about the desired trajec-
tory.

The �rst section of the present paper is about
some of the needed preliminaries and theorems and
lemmas about the networks. Control design section
introduces the general properties of the considered
category of networks in this study. So, control laws for
integrator and double integrator agents are designed
via backstepping method. Furthermore, robustness
condition of the controller on the networks with uncer-
tain topology of communications is derived. Finally,
some simulations are performed to exhibit the capabil-
ity, limitations, and robustness of the designed control
law.

2. Preliminaries

For an index set I = f1; 2; � � � ; ng, a digraph G consists
of a triple (V; "; A) in which V = fviji 2 Ig is a �nite
nonempty set of nodes and " = feij = (vi; vj)ji; j 2 Ig
is the edge set and A = faij jaij 6= 0 , eji 2 "; aij =
0 , eji =2 "g is the adjacency matrix. vi and vj
are called tail and head of the edge (vi; vj). It is
assumed that aii = 0 and 8aij � 0; i 6= j. The
adjacency matrix can be weighted or unweighted. The
Laplacian matrix associated with graph G is de�ned as
L = � � A in which �ii = degin(vi) and �ij = 0 for
all i 6= j and degin(vi) =

Pn
j=1 aij . The Laplacian

matrix always has a zero eigenvalue with the right
eigenvector of one, because the sum of its columns is
zero and so its determinant is zero, which means that
the matrix has a zero eigenvalue with right eigenvector
of one. These eigenvalue and eigenvector are denoted
by �1 = 0; wr = 1 = [1; 1; � � � ; 1]T . Moreover, it should
be noted that a digraph has spanning tree if there
is at least one node (named root) that can reach all
the other nodes following the direction of information
ow. In leader-follower multi-agent systems, the root
of spanning tree is usually set at the leader node. A
useful theorem about digraphs with spanning tree is
expressed as follows.

Theorem

If a digraph has a spanning tree, then its Laplacian
matrix has a simple zero eigenvalue associated with
an eigenvector 1 and all of the other eigenvalues have
positive real parts [14].

Laplacian matrix is used to model multi-agent
system problems such as consensus, formation, etc. In
fact, the problems of the multi-agent systems, such
as formation, can be considered a consensus problem.
Consensus simply means that values of a quantity of
all agents in a system should be converged to a same
value. This value can be speed of agents, position of
agents, etc. If consensus is reached, then (L
Im)r = 0
by remembering that Laplacian matrix always has a
zero eigenvalue with 1 vector as the right eigenvector.
m is the quantity dimension of r, obviously. Also,
if (L 
 Im)r = 0 is satis�ed, then it will mean that
consensus is accomplished due to:

(L
 Im)r=0)r 2 span(1
 rc); rc 2 R3(L
 Im)r

= 0) r 2 span(1
 rc); rc 2 R3; (1)

where, rc is consensus value and depends on initial
value of r. Now, by substituting r with � = r�rform in
which rform is reference vector of the desired formation,
one can write the following equation:

(L
 Im)� = 0) � 2 span(1
 re); re 2 R3

) r 2 span(1
 re) + rf : (2)

It means that formation is reached because summing
formation reference vector with a vector does not a�ect
formation as shown in Figure 1. So if a decentralized
control law causes (L 
 Im)� = 0, then the desired
formation will be achieved.

Lemma [15]

If a digraph has a spanning tree and the associated
Laplacian graph is L, then there exists a symmetric
positive de�nite matrix P satisfying the following equa-
tion:
PL+ LTP = Q; (3)

Figure 1. Summing formation reference vector of a
square formation ([0 0 1 0 1 1 1 1 1 1 0 1]T ) with a vector
that does not a�ect formation.
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where, Q is a positive semi-de�nite matrix. This
lemma has been proven in [15] using Theorems 4.6 and
4.29 from [16,17], respectively.

3. Designing decentralized controller via
backstepping

Characteristics of the network of the system can a�ect
the control law design. So, at �rst step of the con-
troller design, general characteristics of the networks
considered in the present work should be de�ned.
After that, decentralized control laws are designed to
track the velocity bounded trajectories by formation
of integrator and double-integrator agents. Robust
controller design is the �nal step of the controller
design.

3.1. General properties of network
Narrow necessary total bandwidth to perform missions
always is preferred. Decreasing this bandwidth even
in case of the decentralized controllers is recommended
because it results in ad-hoc communications with more
narrow bandwidths. Therefore, using decentralized
controllers on digraph networks is preferred to their
usage in undirected graphs, which needs higher total
bandwidth. So, the chosen proximity graph of this
study is a digraph. In leader-follower approach, the
desired trajectory of mission is sent from a station to
the leader of the multi-agent system (in case of missions
which are not prede�ned) or is set on the leader, previ-
ously, while followers communicate together and with
the leader. In the mission of this study, it is assumed
that the leader does not receive any information from
other agents to reduce the required bandwidth. The
digraph of this study has spanning tree with the leader
as the root of the tree. Consequently, the general
properties of the network of this study can be listed
as follows:

- The proximity graph of the network is a directed
graph;

- No follower sends information to the leader;
- The trajectory which should be tracked by the

formation is sent only to the leader from the central
station or is de�ned, previously, only for the leader;

- The digraph of the network has a spanning tree with
the root located on the leader.

3.2. Controller design for network of
integrator agents

For an Integrator agent, equation of motion is _ri = ui,
obviously. Therefore, proper control input of the leader
agent can be adopted as uL = _rd � KLerL in which
KL is a positive constant and rd is the desired value
of rL and erL = rL � rd. This form of input makes
the tracking error for the leader exponentially stable

with zero equilibrium point, obviously. To design the
decentralized controller of the system, a Lyapunov
function, such as Vf = 1

2�
T (LTPL 
 Im)�, can be

considered, in which matrix P is the matrix de�ned
in the lemma. So, derivative of this Lyapunov function
will be:

_Vf =
1
2
�
UT

�
LTPL
 Im� �

+�T
�
LTPL
 Im�U� : (4)

U is the input vector of all the agents in the recent
equation. Without losing generality, it can be assumed
that leader agent is the �rst agent. By choosing U as:

U = �K0 (L
 Im) � +
�

uL
0(n�1)�1

�
; (5)

in which k0 is a positive constant, it can be concluded
that:

_Vf � 1
2
��k0�T

�
LTQL
Im� � + �T

�
LTQ0L
Im� ��

+ k _rdk2 +K2
LkerLk2: (6)

The matrix Q in the recent equation is the same as
the Q matrix in the lemma. In the derived inequality
matrix, Q0 = PLTLP , which is a positive semi-de�nite
matrix due to the de�nition of the P matrix. As
explained previously, tracking error of the leader is
exponentially stable with zero equilibrium point. So, a
Lyapunov function for the leader tracking error can be
found such that _VL � �K2

LkerLk2. Consequently, one
can have the following inequality:

_Vf + _VL � 1
2

(�k0�2(Q)+�max(Q0)) k(L
 Im)�k2

+ k _rdk2: (7)

�2 denotes the second smallest eigenvalue (the �rst
one is zero) and �max is notation of the largest
eigenvalue, de�nitely. If k0 � �max(Q0)

�2(Q) , then it can
be concluded that if the velocity of the trajectory
is bounded then formation keeping error will be up-
bounded with 2 max(k _rdk)2

(k0�2(Q)��max(Q0)) . Therefore, increasing
k0 can increase formation precision. Notice that
input is fully decentralized for the followers and fully
centralized for the leader because the leader does not
listen to the followers and the �rst row of L is zero,
accordingly.

3.3. Controller design for network of double
integrator agents

For double integrator agents, equation of motion is
�ri = ui, apparently. To perform Backstepping control
design, a Lyapunov function should be candidate.
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The candidate function is the same as the candidate
function of the integrator agents, but the derivative
of this Lyapunov function for double integrator agents
will be:

_Vf =
1
2
�

_rT
�
LTPL
 Im� �

+�T
�
LTPL
 Im� _r

�
: (8)

By de�ning Z = _r � _rs in which _rs is de�ned as:

_rs = �K0(L
 Im)� +
�

_rsL
0m(n�1)�1

�
;

_rsL = _rd � kLerL : (9)

Eq. (8) will result in the following inequality:

_Vf � 1
2

(ZTZ) +
1
2
��k0�T

�
LTQL
 Im� �

+ 2�T
�
LTQ0L
 Im� ��+

k _rsLk2
2

: (10)

Now, if _Z = �KZZ in which KZ is a positive
constant, then Z will be exponentially stable with zero
equilibrium point. Therefore, a Lyapunov function VZ
can be found such as _VZ � � 1

2Z
TZ. Consequently, the

following inequality is correct due to de�nition of _rsL :

_Vf + _VZ � 1
2
��k0�T

�
LTQL
 Im� �

+ 2�T
�
LTQ0L
 Im� ��+ k _rdk2

+K2
LkerLk2: (11)

_Z = �KZZ will result in control input vector as:

U =� k0(L
 Im) _r �KZ( _r + k0(L
 Im)�)

+
�

�rd �KL _erL +KZ( _rd �KLerL)
0m(n�1)�1

�
; (12)

which is fully decentralized for the followers and fully
centralized for the leader because the �rst row of the
L is zero. By Eq. (12), input of the leader will be
uL = �rd � (KL + KZ) _erL � KZKLerL . This form
of the control input of the leader makes trajectory
tracking error of the leader exponentially stable with
zero equilibrium point. So, a Lyapunov function for
the leader can be found such that _VL � �KLkerLk2.
Then, Inequality (11) will be changed to:

_Vf + _VZ + _VL � 1
2
��k0�2(Q)

+ 2�max(Q0)
�k(L
 Im)�k2 + k _rdk2: (13)

If one chooses k0 such as k0 � 2�max(Q0)
�2(Q) and velocity

of the trajectory is bounded, then k(L 
 Im)�k2 is
up-bounded with 2 max(k _rdk)2

(k0�2(Q)�2�max(Q0)) . The error of
the formation, while tracking the trajectory, can be
reduced by increasing the gain k0 as possible.

3.4. Robustness of formation under changing
network topologies

Because of terms, conditions, and changes of sur-
rounded environment, topology of networks during
missions may be altered accidentally. So, robustness of
multi-agent systems against the variations of the prox-
imity graph of the system is too important. Therefore,
robustness of the derived control law in the previous
section should be guaranteed.

For a network of agents with the mentioned char-
acteristics, �nite forms of proximity graphs and asso-
ciated unweighted Laplacian matrices can be assigned.
Moreover, Laplacian matrices of some of them have the
same eigenvalues and eigenvectors and so they are the
same from controller design point of view. Consider
that there arem possible independent proximity graphs
with the explained characteristics on a network of
agents denoted by � = fLj jj = 1; 2; � � � ;mg. For each
member of � with a constant Q1, matrices Pj , Qj , and
Q0j are calculated. The second smallest eigenvalues of
all Qjs, denoted by �2(Qj), and the largest eigenvalue
of Q0j , denoted by �n(Q0j), are derived accordingly. So,
for the system of integrator or double integrators, sets
�1 and �2 can be found, respectively, as:

�1 =
� �max(Q0j)

�2(Qj)

���� j = 1; 2; � � � ;m
�
;

�2 =
� 2�max(Q0j)

�2(Qj)

���� j = 1; 2; � � � ;m
�
: (14)

So, to design robust formation controller under varying
topology networks, it is su�cient that k0 � max(�).

4. Simulation results

In this section, some simulations have been performed
on a multi-agent system of four double integrator
agents. The desired shape of the formation is the
square of Figure 1 and reference vector of formation
is the same, too. At �rst, e�ect of k0 on the precision
of the formation keeping while tracking trajectory of
a path with bounded velocity is examined. So, in the
next simulation, it is shown that the designed controller
loses its capability in keeping formation while tracking
trajectories with boundless velocities. In the other
words, followers cannot be located on the formation
shape around the leader while the leader tracks its
desired trajectory. The last simulation is around the
robustness capabilities of the designed control law
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against the changes of the Laplacian matrix of the
network and it is veri�ed that the proposed controller
exhibits enough robustness when it is subjected to the
aforementioned surrounded environmental conditions
which cause changes in the topology of the network. In
all these three simulations, it is assumed that all agents
start to move from stationary situation and their initial
positions are:

r0 =
�
r01 r02 r03 r04

�T
=
�
2 3 4 7 6 2 1 6

�T : (15)

4.1. E�ect of k0 value on precision of
formation

In this simulation, it is veri�ed that increasing k0 will
reduce the error of the formation, as claimed. Desired
trajectory of leader is de�ned by a velocity bounded
trajectory as rd = [t sin(t)]T . Therefore, the designed
control law can keep formation precision while tracking
the trajectory. The proximity graph of the network is
assumed to be a chain graph like the left side graph in
Figure 2 having all the considered characteristics. By
considering Q1 of lemma as (0:01)I3�3, one can obtain
�2(Q) = 0:0034, �n(Q0) = 0:0037. Therefore, from
the condition found while backstepping, k0 should be
adopted such that k0 � 2:13. Consequently, for the
�rst simulation, k0 and all gains are set to 5. Values
of other gains are assumed 5, too. In Figure 3, X
and Y coordinates of agents during mission have been

Figure 2. Proximity graphs of network in simulations.

demonstrated and it is obvious that the formation has
been kept with a bounded error, as claimed formerly.
From Figure 4, it is obvious that velocities of agents in
X direction have converged to a same value because the
acceleration of the desired trajectory in X direction is
zero. As depicted in Figure 4, consensus on velocity in
Y direction has a bounded error because acceleration in
Y direction is bounded. Also, in Figure 5, jj(L
 I2)�jj
as formation keeping error is plotted versus time and it
has been veri�ed that error of formation demonstrated
by a thick line is under the up-bound derived in
backstepping. Moreover, Figure 5 demonstrates that
the shape of the formation is too di�erent from the
desired square shape.

In the next simulation, only k0 is changed to 20
to verify that if the formation precision is improved or
not. Plot of jj(L
I2)�jj versus time depicts degradation
of formation error and its bound in comparison with
previous simulation and the square formation has been
achieved well as depicted in Figure 6. Therefore, as
proved, higher k0 values increase precision of formation
and decrease error of formation. Of course, increasing
k0 in real applications may cause saturation in actua-
tors of robots.

4.2. Controller failure in tracking trajectories
with unbound velocities

In this simulation, the desired trajectory of leader
is assumed to be rd = [t2 sin(t)]T . Since _rd =
[2t cos(t)]T , the velocity of the desired trajectory is
unbounded. So, the formation error will be unbounded
by the designed controller. The proximity graph of
the system and Q1 matrix are the same as those
in previous simulations. The gains of the system
by considering the condition derived in Backstepping
are set to 5. In Figure 7, X and Y coordinates
of the agents during mission are demonstrated. As
demonstrated in Figure 7 and proved in Backstepping,

Figure 3. Coordinates of agents during mission in the �rst simulation.
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Figure 4. Velocity of agents in X direction during mission in the �rst simulation.

Figure 5. Error of formation and bound of error (a) and shape of formation during mission for k0 = 5 (b).

Figure 6. Error of formation and bound of error (a) and shape of formation during mission for k0 = 20 (b).



1070 H. Sayyaadi and A. Soltani/Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 1064{1072

Figure 7. Coordinates of agents during mission in case of tracking trajectory with unbounded velocity.

Figure 8. Error of formation during mission in case of
tracking trajectory with unbounded velocity.

the error of the formation in X direction increases
during the mission because the velocity of the desired
trajectory in X direction increases by time. Never-
theless, the formation along Y axis has bounded error
as proven and depicted in Figure 7. So, as proven
formerly, jj(L 
 I2)�jj would increase and the error of
the formation would not be bounded, as depicted in
Figure 8. Consequently, in case of the trajectories with
unbounded velocities, the designed controller lost its
capability.

4.3. Robust formation control against network
topology changes

In this simulation, a formation controller, which is
robust against the network topology changes, has
been designed for a leader-follower multi-agent system
of four double-integrator agents. A Leader-follower
multi-agent system with four agents has 144 indepen-
dent forms of unweighted Laplacian matrices. Set
�2 is calculated by the Q1 matrix of the previous
simulations and its maximum is 34.08. Therefore,
if k0 � 34:08, then the controller will be robust

against the changes of the proximity graph of the
network. Two simulations have been performed to
analyze e�ect of k0 value on the robustness of the
formation against the changes of proximity graphs. In
one of the simulations, k0 < 34:08 and in another,
k0 � 34:08, while other gains are set to 5. In both of
the simulations, the simulation starts with proximity
graph and unweighted Laplacian matrix of left graph
of Figure 2 and at t = 5:3 seconds, the proximity
graph changes to right graph of this �gure, suddenly.
The desired trajectory of formation in both of the
simulations is same as that of the �rst simulation.
In Figure 9, the error of the formation during the
mission for k0 = 20 and k0 = 40 is demonstrated.
Comparing these two plots represents that the deec-
tion of the formation from its steady state value in
the case of k0 = 40 is less than when k0 = 20, as
predicted.

5. Conclusion

This paper introduces a robust decentralized control
law to guide formations of special category of leader-
follower multi-agent systems on bounded velocity tra-
jectories which are not prede�ned or only de�ned
for the leader agent. By implementing the proposed
control laws, formation keeping will have bounded error
while the desired trajectory is tracked by leader. This
bound can be decreased by increasing a gain of the
controller. Control laws are redesigned to be robust
against the proximity graph changes. Simulations
veri�ed the capabilities of the designed control laws and
their robustness, appropriately. Designing observer for
agents to estimate the velocity of the trajectory may
decrease the formation error. Moreover, using this
control law, which enters the saturation problem, in
real networks is recommended.
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Figure 9. Error of formation with uncertain network topology during mission for k0 = 20 (a) and k0 = 40 (b); less
deviation around t = 5:3 s is obvious when k0 = 40.
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