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Abstract. In this paper, we employ a sub-equation method to �nd the exact solutions
to the fractional (1 + 1) and (2 + 1) regularized long-wave equations which arise in several
physical applications, including ion sound waves in plasma, by using a new de�nition of
fractional derivative called conformable fractional derivative. The presented method is
more e�ective, powerful, and straightforward and can be used for many other nonlinear
partial fractional di�erential equations.
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1. Introduction

In recent years, fractional di�erential equations are in-
creasingly utilized to model many problems in biology,
chemistry, engineering, physics, economic, and other
areas of applications [1-5]. The fractional di�erential
equations have become a useful tool for describing non-
linear phenomena of science and engineering models.
There are several de�nitions for fractional di�erential
equations. The most popular de�nitions in the world
of fractional calculus are [6]:

(i) The Riemann-Liouville derivative of fractional
order of function, given as:

D�
t f(t) =

1
�(1� �)

d
dt

Z t

0

f(")
(t� ")� d(");

0 < � � 1: (1)
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(ii) The Caputo fractional derivative of a di�erentiable
function says f(t) is de�ned as:

D�
t f(t) =

1
�(1� �)

Z t

0

f 0(")
(t� ")� dx;

0 < � � 1: (2)

Furthermore, Jumarie in [7] proposed the follow-
ing modi�ed Riemann-Liouville fractional derivative:

D�
t f(t) =

1
�(1� �)

d
dt

Z t

0
(t� ")��(f(")� f(0))d";

0 < � � 1: (3)

We give some basic properties for the modi�ed
Riemann-Liouville derivative as follows (see [7, formu-
lae (3.12) and (3.13)]):

D�
x (u(x)v(x)) = v(x)D�

x (u(x)) + u(x)D�
x (v(x)); (4)

D�
x [f(u(x))] = D�

xf(u)(u0x)�; (5)

D�
x [f(u(x))] = f 0u(u)D�

xu(x): (6)
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During the last few years, the exact solution methods
have been proposed for solving fractional di�erential
equations, e.g. the functional variable method [8], the
�rst integral method [9], the exp-function method [10],
fractional Riccati expansion method [11-12], and so
on [13-14]. Eqs. (5) and (6) are applied in many
papers to solve the exact solutions to some nonlinear
fractional di�erential equations; if Eq. (6) is correct,
then using the variable transformation � = kx+ly+ct�

�(�+1) ,
where k; l, and c are constants, the fractional partial
derivative @�u(x;y;t)

@t� is reduced to ordinary derivative
cu0(�). Therefore, the corresponding fractional dif-
ferential equations become the ordinary di�erential
equations which are easy to study. But Liu in [15] has
shown that Jumarie's basic (Eqs. (4), (5), and (6)) are
incorrect; thus, the corresponding results on di�erential
equations are not correct.

Recently, to dominate these and other di�cul-
ties, Khalil et al. [16] introduced a new simple well-
behaved de�nition of the fractional derivative called
conformable fractional derivative. This fractional
derivative is theoretically very easier to handle and
also obeys some conventional properties that cannot
be satis�ed by the existing fractional derivatives, for
instance, the chain rule [17]. The conformable frac-
tional derivative has the weakness that the fractional
derivative of any di�erentiable function at the point
zero is equal to zero. Atangana et al. [18-20] proposed
a suitable fractional derivative that allows us to escape
the lack of the conformable fractional derivative. The
�-derivative of a function f : [�;1]! R is de�ned as:

A
0 D

�
t (f(t)) = lim

"!0

f
�
t+ "(t+ 1

�(�) )1���� f(t)

"
; (7)

for all t � �, 0 < � � 1. Then, if the above limit exists,
f is said to be �-di�erentiable.

In this paper, we obtain the exact solutions to
the one- and two-dimensional fractional Regularized
Long-Wave (RLW) equations by means of conformable
fractional derivative by using the sub-equation method.
The sub-equation method is a powerful solution
method for the computation of exact traveling wave
solutions. This method is one of the most direct and
e�ective algebraic methods for �nding exact solutions
to nonlinear Fractional Partial Di�erential Equations
(FPDEs).

2. Conformable fractional derivative

Grunwald-Letnikov, Riemann-Liouville, Caputo, Weyl,
Marchaud, and Riesz de�nitions of fractional deriva-
tives attempt to satisfy the usual properties of the
standard derivative. The only property inherited by all
the de�nitions of fractional derivatives is the linearity
property. Some properties of one de�nition or another

are listed as follows [6,16]:

(i) Most of the fractional derivatives do not satisfy
D�
t (C) = 0 (C is a constant), if � is not a natural

number.
(ii) All fractional derivatives do not obey the known

product rule for two functions:

D�
t (fg) = fD�

t (g) + gD�
t (f): (8)

(iii) All fractional derivatives do not satisfy the known
quotient rule for two functions:

D�
t

�
f
g

�
=
fD�

t (g)� gD�
t (f)

g2 : (9)

(iv) All fractional derivatives do not obey the chain
rule:

D�
t (fog)(t) = D�

t f(g(t))D�
t g(t): (10)

(v) All fractional derivatives do not satisfy D�
t D

�
t f =

D�+�
t f , in general.

(vi) Caputo de�nition assumes that the function f is
di�erentiable.

Recently, Khalil et al. in [16] introduced a new
de�nition of fractional derivative to overcome some of
these and other di�culties, as follows:

De�nition 1 [16]. Let f :(0;1) ! R, then, the
conformable fractional derivative of f of order � is
de�ned as:

tT�f(t) = lim
"!0

f(t+ "t1��)� f(t)
"

; (11)

for all t > 0; 0 < � � 1. If f is �-di�erentiable in
some (0; a); a > 0, and lim

t!0+
tT�f(t) exists, then, by

de�nition:

tT�f(0) = lim
t!0+

tT�f(t):

In [16], authors have proved that the new fractional
derivative satis�es the product rule (Eq. (8)) and Quo-
tient rule (Eq. (9)). If, in addition, f is di�erentiable,
then, tT�(f)(t) = t1�� dfdt .

In [17], T. Abdeljawad established the chain rule
for conformable fractional derivatives as the following
theorem:

Theorem 1 (chain rule). Let f; g : (0;1) ! R be
�-di�erentiable functions, where 0 < � � 1. Then,
f(g(t)) is �-di�erentiable and for all t with t 6= 0 and
g(t) 6= 0, we have:

tT�(fog)(t) = (tT�f)(g(t))(tT�g)(t)g(t)��1: (12)

If t 6= 0, then:

tT�(fog)(0) = lim
t!0+

(tT�f)(g(t))(tT�g)(t)g(t)��1:
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Theorem 2. Let f : (0;1) ! R be a function such
that f is di�erentiable and also �-di�erentiable. Let
g be a function de�ned in the range of f and also
di�erentiable; then, one has the following rule:

tT�(fog)(t) = t1��g0(t)f 0(g(t)): (13)

Now, we list here the fractional derivatives of certain
functions:

(i) tT�(e 1
� t
�

) = e 1
� t
�

,
(ii) tT�(sin 1

� t
�) = cos 1

� t
�,

(iii) tT�(cos 1
� t
�) = � sin 1

� t
�,

(iv) tT�(t�) = �t���; for all � 2 R.

On letting � = 1 in these derivatives, we get the
corresponding ordinary derivatives.

De�nition 2 (fractional integral) [16]. Let a � 0
and t � a. Also, let f be a function de�ned on (a; t) and
a 2 R. Then, the �-fractional integral of f is de�ned
by:

tI�a f(t) =
Z t

a

f(x)
x1�� dx;

if the Riemann improper integral exists.

3. The sub-equation method

In this section, we describe the main steps of the
sub-equation method for �nding the exact solutions of
Fractional Partial Di�erential Equations (FPDEs).

Remark 1. We write @�
@t� (f) for tT�(f) to denote the

conformable fractional derivatives of f with respect to
the variable t > 0 of order �.

Suppose that a nonlinear fractional partial dif-
ferential equation, say, in two or three independent
variables, x, y, and t, is given by:

F (u;
@�u
@t�

;
@�u
@x�

;
@�u
@y�

;
@2�u
@t2�

;
@2�u
@t�@x�

; :::) = 0;

0 < � � 1; (14)

where u(x; y; t) is an unknown function, F is a polyno-
mial in u and its various partial derivatives, in which
the highest order derivatives and nonlinear terms are
involved.

The main steps of the sub-equation method [21]
are summarized as follows:

Step 1. Using a wave transformation:

u(x; y; t) = u(�); � = k
x�

�
+ l

y�

�
+ c

t�

�
; (15)

where k; l, and c are constants to be determined later.

This enables us to use the following changes:
@�

@t�
(:) = c

d
d�

(:);
@�

@x�
(:) = k

d
d�

(:);
@�

@y�
(:)

= l
d
d�
;
@2�

@t2�
(:) = c2

d2

d�2 ; :::

Then, Eq. (14) can be turned into the following
fractional ordinary di�erential equation with respect
to variable �:

G(u; u0; u00; u000; :::) = 0; (16)

where G is a polynomial in u.

Step 2. We suppose that Eq. (16) has a solution in
the form given below:

u(�) =
nX
i=0

ai'i; (17)

where ai(i = 0; 1; 2; :::; n) are constants to be deter-
mined later with an 6= 0. The positive integer n can be
determined by considering the homogeneous balance
between the highest order derivatives and nonlinear
terms appearing in Eq. (16), and ' = '(�) satis�es
the following Riccati equation:

'0 = � + '2; (18)

where � is a constant. By using Eq. (18) repeatedly,
we can express all derivatives of ' in terms of series in
'.It is found that the Riccati equation(Eq. (18)) admits
several types of solutions [22]:

' =

8>>>>>><>>>>>>:
�p�� tanh(

p���) � < 0;
�p�� coth(

p���) � < 0;p
� tan(

p
��) � > 0;

�p� cot(
p
��) � > 0;

� 1
�+w ; w = const.; � = 0:

(19)

Step 3. Substituting Eqs. (17) and (18) into Eq. (16)
and collecting the coe�cients of '(�) and setting the
coe�cients of ['(�)]i (i = 0; 1; 2; :::)to be zero, we get
an over-determined system of algebraic equations with
respect to ai(i = 0; 1; 2; :::; n) and k; l; c.

Step 4. Finally, assuming that k; l; c and ai(i =
0; 1; 2; :::; n) are obtained by solving the algebraic
equations in the previous step, and substituting these
constants and the solutions of Eq. (18) into Eq. (17),
we can obtain the explicit solutions of Eq. (16).

Remark 2. After applying this transformation to
Eq. (14), by use of the chain rule (Eq. (13)), the
original fractional partial di�erential equation can be
transformed into another ordinary di�erential equation
in one independent variable.
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4. Application

In this section, we construct the exact solutions for
fractional RLW equations (Eqs. (20) and (21)) by using
the sub-equation method described in Section 3.

One of the important nonlinear evolution equa-
tions by which we construct the exact solutions is
the fractional Regularized Long-Wave equation (RLW).
The fractional (1+1) RLW equation is as follows:

@�

@t�
u+

@�

@x�
u+ "u

@�

@x�
u� � @3�

@t�@x2�u = 0;

t > 0; 0 < � � 1; (20)

where " and � are positive constants and u; t, and x
denote the amplitude, time, and spatial coordinate,
respectively. Moreover, the fractional (2 + 1) RLW
equation is as follows:

@�

@t�
u+

@�

@x�
u+

@�

@y�
u+ "u

@�

@x�
u+ �u

@�

@y�
u

� � @3�

@t�@x2�u� v @3�

@t�@y2�u = 0;

t > 0; 0 < � � 1; (21)

where ", �, �, and v are positive constants and u,
t and x; y denote the amplitude, time, and spatial
coordinates, respectively. Further, � is a parameter
describing the order of the fractional derivative. In
the case of � = 1, the fractional RLW equation (one
and two dimensional) decreases to the classical RLW
equation. The RLW equations play a major role in the
study of nonlinear dispersive waves since they describe
a large number of important physical phenomena,
such as shallow water waves and ion-acoustic plasma
waves [23,24].

4.1. The one-dimensional fractional RLW
equation

Using a wave transformation:

u(x; t) = u(�); � = k
x�

a
c
t�

�
:

Eq. (20) can be reduced to the following nonlinear
ordinary di�erential equation:

(c+ k)u0 + k"uu0 � k2c�u000 = 0: (22)

We suppose that Eq. (22) has a solution in the form
given below:

u(�) =
nX
i=0

ai'i; (23)

where ai(i = 1; 2; :::; n) are constants. Balancing the
highest order derivative term u000 and with nonlinear
term uu0 in Eq. (22), we can obtain n = 2. So, we

have:

u(�) = a0 + a1'+ a2'2: (24)

Substituting Eq. (24) into Eq. (22), using Eq. (18), and
collecting all the terms with the same power of 'i; i =
0; 1; :::; 5 equating each coe�cient with zero, yields a set
of algebraic equations. Solving these equations yields:

a0 = �k + c� 8�k2c�
"k

; a1 = 0; a2 =
12�kc
"

:

Substituting the above result into Eq. (24) and com-
bining it with Eq. (19), we obtain three types of exact
solutions to Eq. (20), namely, two generalized hyper-
bolic function solutions, two generalized trigonometric
function solutions, and one rational solution as follows:

u1(x; t) =� k + c� 8�k2c�
"k

� 12�kc�
"

tanh2
�p���kx�

�
+ c

t�

�

��
; � < 0;

u2(x; t) =� k + c� 8�k2c�
"k

� 12�kc�
"

coth2
�p���kx�

�
+ c

t�

�

��
; � < 0;

u3(x; t) =� k + c� 8�k2c�
"k

+
12�kc�

"

tan2
�p

�
�
k
x�

�
+ c

t�

�

��
; � > 0;

u4(x; t) =� k + c� 8�k2c�
"k

+
12�kc�

"

cot2
�p

�
�
k
x�

�
+ c

t�

�

��
; � > 0;

u5(x; t) = � 1
(k x�� + c t�� ) + w

;

w = const; � = 0:

In Figures 1 and 2, u1(x; t) shows one exact solution of
Eq. (20) corresponding to the values � = 1 and � = 0:9
for k = 0:8; c = 1:1; � = �1:5; � = 0:7, and " = 1:5.

4.2. The two-dimensional fractional RLW
equation

Using a wave transformation:

u(x; y; t) = u(�); � = k
x�

�
+ l

y�

�
+ c

t�

�
:

Eq. (21) can be reduced to the following nonlinear
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Figure 1. Graph of u1(x; t) of Eq. (20) corresponding to
� = 1 for k = 0:8, c = 1:1, � = �1:5, � = 0:7, and " = 1:5.

Figure 2. Graph of u1(x; t) of Eq. (20) corresponding to
� = 0:9 for k = 0:8, c = 1:1, � = �1:5, � = 0:7, and
" = 1:5.

fractional ordinary di�erential equation:

(c+ k + l)u0 + ("k + �l)uu0 � c(�k2 + vl2)u000 = 0:
(25)

We suppose that Eq. (21) has a solution in the form
given below:

u(�) =
nX
i=0

ai'i; (26)

where ai(i = 0; 1; 2; :::; n) are constants. Balancing the
highest order derivative term u000 and with nonlinear
term uu0 in Eq. (25), we can obtain n = 2. So, we
have:

u(�) = a0 + a1'+ a2'2: (27)

Substituting Eq. (27) into Eq.(25), using Eq. (18), and

collecting all the terms with the same power of 'i(i =
0; 1; :::; 5), equating each coe�cient with zero, yields
a set of algebraic equations. Solving these equations
yields:

a0 = �k + l + c� (8�k2 + 8vl2)c�
"k + �k

;

a1 = 0; a2 =
12(�k2 + vl2)c

"k + �l
:

Substituting the above result into Eq. (25) and com-
bining it with Eq. (19), we obtain three types of exact
solutions to Eq. (21), namely, two generalized hyper-
bolic function solutions, two generalized trigonometric
function solutions, and one rational solution as follows:

u1(x; y; t) =� k + l + c� (8�k2 + 8vl2)c�
"k + �k

� 12(�k2 + vl2)c�
"l + �l

tanh2
�p���

k
x�

�
+ l

y�

�
+ c

t�

�

��
; � < 0;

u2(x; y; t) =� k + l + c� (8�k2 + 8vl2)c�
"k + �k

� 12(�k2 + vl2)c�
"k + �l

coth2
�p���

k
x�

�
+ l

y�

�
+ c

t�

�

��
; � < 0;

u3(x; y; t) =� k + l + c� (8�k2 + 8vl2)c�
"k + �k

+
12(�k2 + vl2)c�

"k + �l
tan2

�p
��

k
x�

�
+ l

y�

�
+ c

t�

�

��
; � > 0;

u4(x; y; t) =� k + l + c� (8�k2 + 8vl2)c�
"k + �k

+
12(�k2 + vl2)c�

"k + �l
cot2

�p
��

k
x�

�
+ l

y�

�
+ c

t�

�

��
; � > 0;

u5(x; y; t) = � 1
(k x�� + l y�� + c t�� ) + w

;

w = const.; � = 0:

In Figures 3 and 4, u4(x; y; t) shows one exact solution
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Figure 3. Graph of u4(x; y; t) of Eq. (21) corresponding
to � = 1 for k = 0:85, c = 0:5, l = 0:5, � = 0:75, � = 0:8,
� = 1:5, v = 1:2, and " = 1:6 at y = 0:75.

Figure 4. Graph of u4(x; y; t) of Eq.(21) corresponding to
� = 0:8 for k = 0:85, c = 0:5, l = 0:5, � = 0:75, � = 0:8.
� = 1:5, v = 1:2 and " = 1:6 at y = 0:75.

of Eq. (21) corresponding to the values of � = 1 and
� = 0:8 for k = 0:85; c = 0:5; l = 0:5; � = 0:75; � =
0:8; � = 1:5; v = 1:2, and " = 1:6 at y = 0:75.

5. Conclusion

In this article, a sub-equation method was successfully
applied for solving one- and two-dimensional fractional
RLW equations by using conformable fractional deriva-
tive. In this method, we have three types of exact so-
lutions, two generalized hyperbolic function solutions,
two generalized trigonometric function solutions, and
one rational solution, which may be very useful to
further understand the mechanisms of the complicated
nonlinear physical phenomena and FPDEs. We can
conclude that the proposed method can be extended

to solve the nonlinear fractional problems which arise
in the theory of solitons and other areas. Although
this paper focuses just on the partial fractional di�er-
ential equations with conformable fractional derivative,
the fractional partial di�erential equations with beta
derivative can be discussed based on the method of
this paper. This will be the goal for investigation in
the future works. The computations associated with
the examples were performed using Maple 18.

Acknowledgments

We are very grateful to two anonymous referees for
their careful reading and valuable comments which led
to the improvement of this paper.

References

1. Ahmed, E. and Elgazzar, A.S. \On fractional order
di�erential equations model for nonlocal epidemics",
Phys. A., 379(2), pp. 607-614 (2007).

2. El-Sayed, A.M.A., El-Mesiry, A.E.M. and El-Saka,
H.A.A. \On the fractional-order logistic equation",
Appl. Math. Lett., 20(7), pp. 817-823 (2007).

3. Aminikhah, H., Refahi Sheikhani, A. and Rezazadeh,
H. \Stability analysis of linear distributed order system
with multiple time delays",U.P.B. Sci. Bull. Series A.,
77(2), pp. 207-218 (2015).

4. Laskin, N. \Fractional market dynamics",Phys. A.,
287, pp. 482-492 (2000).

5. Xin, B., Chen, T. and Liu, Y. \Projective synchro-
nization of chaotic fractional-order energy resources
demand-supply systems via linear control", Commun.
Nonlinear Sci. Numer. Simulat., 16(11), pp. 4479-4486
(2011).

6. Podlubny, I. Fractional Di�erential Equations, Aca-
demic Press, San Diego (1999).

7. Jumarie, G. \Modi�ed Riemann-Liouville derivative
and fractional Taylor series of non-di�erentiable func-
tions further results", Comput. Math. Appl., 51(9), pp.
1367-1376 (2006).

8. Liu, W. and Chen, K. \The functional variable method
for �nding exact solutions of some nonlinear time-
fractional di�erential equations", Pramana., 81(3), pp.
377-384 (2013).

9. Lu, B. \The �rst integral method for some time
fractional di�erential equations", J. Math. Anal. Appl.,
395(2), pp. 684-693 (2012).

10. Bin, Z. \Exp-function method for solving fractional
partial di�erential equations", The Sci. World J.,
2013, pp. 1-8 (2013).

11. Abdel-Salam, E.A.-B., Yousif, E.A., Arko, Y.A.S. and
Gumma, E.A.E. \Solution of moving boundary space-
time fractional Burger's equation",J. Appl. Math.,
2014, pp. 1-8 (2014).



1054 H. Aminikhah et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 1048{1054

12. Abdel-Salam, E.A.-B. and Yousif, E.A. \Solution of
nonlinear space-time fractional di�erential equations
using the fractional Riccati expansion method", Math.
Probl. Eng., 2013, pp. 1-6 (2013).

13. Abdel-Salam, E.A.-B. and Gumma, E.A.E. \Analyt-
ical solution of nonlinear space-time fractional di�er-
ential equations using the improved fractional Riccati
expansion method", Ain Shams Eng. J., 6(2), pp. 613-
620 (2015).

14. Abdel-Salam, E.A.-B. and Al-Muhiameed, Z.I.A. \An-
alytic solutions of the space-time fractional combined
KdV-mKdV equation", Math. Probl. Eng., 2015, pp.
1-6 (2015).

15. Liu, C.S. \Counterexamples on Jumarie's two basic
fractional calculus formulae", Commun. Nonlinear Sci.
Numer. Simul., 22(1), pp. 92-94 (2015).

16. Khalil, R., Al Horani, M., Yousef, A. and Sababheh,
M. \A new de�nition of fractional derivative", J.
Comput. Appl. Math., 264, pp. 65-70 (2014).

17. Abdeljawad, T. \On conformable fractional calulus",
J. Comput. Appl. Math., 279, pp. 57-66 (2015).

18. Atangana, A., and Doungmo Goufo, E.F. \Extension
of matched asymptotic method to fractional boundary
layers problems", Math. Probl. Eng., 2014, pp. 1-7
(2014).

19. Atangana, A., and Oukouomi Noutchie, S.C. \Model
of break-bone fever via beta-derivatives", J. BioMed.
Biotechnol., pp. 1-10 (2014). DOI 10.1155/2014/
523159.

20. Atangana, A. \A novel model for the lassa hemorrhagic
fever: deathly disease for pregnant women",Neural.
Comput. Appl. 26(8), pp. 1895-1903 (2015).

21. Zhang, S., Zhang, H.Q. \Fractional sub-equation
method and its applications to nonlinear fractional

PDEs", Phys. Lett. A., 375(7), pp. 1069-1073 (2011).

22. Fan, E. \Tanh-function method and its applications to
nonlinear equations extended", Phys. Lett. A., 277(4),
pp. 212-218 (2000).

23. Benjamin, T.B., Bona, J.L. and Mahony, J.J. \Model
equations for long waves in nonlinear dispersive sys-
tems", Philos. Trans. R. Soc. London A., 272(1220),
pp. 47-78 (1972).

24. Huang, Z. \On Cauchy problems for the RLW equation
in two space dimensions", Appl. Math. Mech., 23(2),
pp. 159-164 (2002).

Biographies

Hossein Aminikhah was born in Iran, in 1979.
He received a PhD degree in Applied Mathematics
(Numerical Analysis) from University of Guilan, Rasht,
Iran, in 2008, where he is currently Associate Professor.
His research interests include numerical methods for
functional di�erential equations and numerical linear
algebra.

Amir Hossein Refahi Sheikhani was born in Iran,
in 1980. He received a PhD degree in Applied Mathe-
matics (Numerical Analysis) from University of Guilan,
Rasht, Iran, in 2010. He is currently Assistant Profes-
sor in the faculty of Mathematical Sciences, Islamic
Azad University of Lahijan. His research interests
include numerical methods for PDEs and ODEs and
fractional di�erential equations.

Hadi Rezazadeh is now a PhD student in the Applied
Mathematics Department of University of Guilan. His
interests and research areas include fractional di�eren-
tial equations.




