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Abstract. Three di�erent adaptive methods are presented for meshless calculation of
steady and unsteady ows. Two approaches of point re�nement/coarsening and point
movement have their ground in the mesh-based methods that, in the present work, are
extended for meshless calculations. However, the third approach is a new concept, so-
called adaptive neighboring scheme, that concerns the optimum selection of the neighbors
for each point in the meshless framework. This means that the selection of the neighboring
region for each particular point is a�ected by the ow features in the domain. In this
paper, an explicit meshless method based on the least square scheme is used. The results
are presented for di�erent steady and unsteady ows and the e�ciency of the methods
in terms of computational cost and accuracy is investigated. It is observed that using
these adaptive approaches decrease the computational cost of the method by about 60% as
compared with the un-adapted results while improving the accuracy of results at the same
time.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In the recent years, researchers have tried to solve
the ows with complex stationary and/or moving
boundaries by using Euler and Navier-Stokes equations
in di�erent regimes. One of the main problems in the
Computational Fluid Dynamics (CFD) for numerical
ow simulation around complex geometries is quality
of the mesh. Generating meshes with high quality,
especially around complex geometries, are encouraging
to develop meshless methods. In these methods, for
each node, only the neighbors of that point are used.
This property can decrease the dependency on the
mesh (especially the connections), particularly around
complex geometries.

Lohner has shown that generation of a point cloud
distribution which can be used in meshless methods
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is obviously faster than the unstructured grids which
are usually used in mesh-based methods [1]. Several
meshless methods have been used [2-6] with di�erent
advantages and drawbacks. In these methods, approx-
imation of the characteristics or derivatives is based on
a group of nodes which can be nominated as neighbors.
So, in most of these methods, the area or volume
are not calculated at all, which may lead to lack of
conservation. To overcome this problem and improve
accuracy, higher-order methods are used [7]. Meshless
methods need strong instrument in comparison with
mesh-based methods [4]. To decrease the computa-
tional cost, convergence accelerating techniques are
applied [8]. Explicit method is usually used for time
discretization [5,6]. In the work by Katz and Jameson,
it is shown that Taylor series least-square method has
better accuracy than radial basis function method [9].
In this paper, Taylor series least square method is used
with explicit time discretisation scheme.

Solving the ows with high computational ef-
�ciency is another main objective in the Computa-
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tional Fluid Dynamics (CFD) community. To achieve
this aim, di�erent research works have been carried
out and numerous methods by di�erent complexities
were presented. It is obvious that the quality of
the numerical solutions of Euler and Navier-Stokes
equations is dependent upon the quality of the grid,
especially in the critical zones of the ow domain,
such as shock waves, stagnation points, and shear layer
areas. Grid adaptation is one of the known answers
to this problem. There are several methods presented
in the literature for structured and unstructured grid
adaptations [10,11]. But, only few works are reported
on adaptive cloud meshless methods [12-15]. Compared
with the mesh based algorithms, meshless methods are
more advantageous, especially in the moving and large
deformations. The reason is that replacing and moving
points are much simpler than changing or replacing
the edges and volumes. Another attractive property
of meshless methods is the ability of adding and sub-
tracting nodes from the pre-existing nodes [16]. There
are di�erent grid adaptation methods that normally
fall in three categories of grid movement, grid re�ne-
ment/coarsening, and re-gridding strategies. Lohner
et al. [17] tried to use adaptation scheme to achieve
optimal least square coe�cients in a meshless method.
The least square coe�cients only depended upon the
coordinates of points and their neighbors. Wang, G. et
al. [18] used a point replacement method to solve the
unsteady ows by meshless method. In another work,
Wang, H. et al. used Delaunay triangulation principles
to replace points in the domain for solution of unsteady
ow [19].

In this paper, three di�erent adaptive meshless
methods are presented for compressible ow calcula-
tions. In this investigation, the derivatives are calcu-
lated by using least square method based on Taylor
series [7,9].

2. Governing ow equations

In the present work, the unsteady Navier-Stokes equa-
tions are used in two dimensions as follows:�
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u and v are the ow velocity components in x and y
directions, respectively. While U and V represent the
relative velocity components and p, �, and E are the
pressure, density, and total energy, respectively, in the
domain. For a perfect gas, we can have:

p = ( � 1)�
�
E � u2 + v2

2

�
: (3)

In this equation,  is the ratio of the speci�c heats [20].

3. Meshless method

To approximate the derivatives, the least-square
scheme based on Taylor formula is used. By consid-
ering a group of points that are neighbors of point i
(Figure 1) and �ij as a value of any parameter at the
mid-point of each pair point ij (i and j are neighbors),
one can have [7,21]:�
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It is notable that the neighbors of each point are the
points which are in the inuence domain of that point.
This inuenced region can be de�ned as a circle with
the radius that can be di�erent in the domain. By
developing Eq. (4) for all neighbor points related to
point i, the following matrix can be achieved [7]:24 !i1�xi1 !i1�yi1� � � � � �

!im�xim !im�yim

352664 @�
@x

���
i

@�
@y

���
i

3775 =

24 !i1��i1� � �
!im��im

35 ;
(5)

where !ij is an arbitrary weighting factor. In this
investigation, !ij is equal to the inverse of the distance

Figure 1. Schematic of point and its neighbors.
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between points i and j. If the least-squares method is
applied to solve Eq. (5), then the following equations
for calculating the derivatives can be achieved [9,21]:
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In this equation, aij and bij are least-square coe�-
cients. These coe�cients can be calculated as fol-
lows [9,21]:
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By using these equations in the governing Eq. (1), a
semi-discrete form of the Navier-Stokes equations at
point i can be presented as follows:�
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where �fij = fj�fi and �gij = gj�gi. By considering
H = af + bg for each pair of points, ux can be
calculated similar to ux calculation in mesh-based
methods. So, Eq. (8), by substituting the direct ux,
becomes [9,21]:�
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The kind of discretization is central, in which the
solution is unstable. To overcome this problem and di-
minish the oscillations, an arti�cial dissipation method
is used [22].�
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where Di is the dissipation term which is added to
equations. In this context, the Jameson-Schmidt-
Turkel (JST) scheme for arti�cial dissipation term is
used [20,22]:
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here, "(2) and "(4) are local adaptive coe�cients. In
these coe�cients, the pressure gradient as a sensor is
used to �nd sharp gradients in the domain, such as
shocks [20,21].

By developing Eq. (10) for all nodes in the
domain, the following equation can be obtained [9]:
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For the �rst term in Eq. (12), time marching methods
are usually used. In this paper, the explicit four-stage
Runge-Kutta (R-K) scheme is used as follows:

w(0) = w(n)

w(1) = w(0) � �1�tR
�
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� � � � � �
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�
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(14)

wherem is the order of R-K that is taken 4 in this inves-
tigation and the coe�cient � can be achieved from [20].
Local time stepping is used in this investigation [20,21].

At solid boundary, mass or other uxes reect the
solid body [7,20,21]. To increase the accuracy in the
solid boundary, ghost point method is applied in this
investigation [7,23]. In the far �eld, Riemann invariants
method is used [21].
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4. Point adaptation methods

Capturing the ow phenomenon in the domain plays
an important role in numerical uid calculations. One
way to increase the accuracy of the results, especially in
the critical zones of the domain, is ow adaptation. In
this paper, three di�erent point adaptation methods
of point movement, point re�nement/coarsening, and
neighbor adaptation are developed.

The general steps of adaptation method are as
follow:

a) Generating the initial point distribution within the
domain;

b) Flow solution using the initial point distribution;

c) Calculation of the local errors;

d) Adapting the point (or neighbor) distribution based
on the local error;

e) Interpolating the ow variables on the new points;

f) Solving the ow over the new point distribution.

The point adaptation methods are implemented at
step (d) of the above steps. It should be noted that the
adaptation procedure is performed only once during
the above steps, since it was found to be su�cient for
acceptable results. The owchart of adaptation steps
is shown in Figure 2. The implementation details of
these methods are explained in the following sections.

Figure 2. The owchart of adaptation method.

Figure 3. Point movement strategy.

4.1. Point movement
In the point movement strategy used in this work, the
points are allowed to move towards the higher gradient
regions (i.e., shock wave) of the ow domain according
to a classical spring analogy scheme [24,25]. In this
method, the total number of points is �xed in the
domain and points are replaced according to the local
error (Figure 3). Therefore, by using spring method,
the coordinates of the point locations can be obtained
by iteratively calculating the following equations:

xm+1
A = xmA �

c
NP
n=1

wn(xmA � xmn )

NP
n=1

wn
;

ym+1
A = ymA �

c
NP
n=1

wn(ymA � ymn )

NP
n=1

wn
; (15)

where c is the relaxation factor chosen between 0.5
and 1.0, and wn is the weight function de�ned to
capture the features of the ow. For transonic ows
considered in this work, the main ow feature presented
is shock wave; thus, the suitable detection parameter
is calculated as:

wn =
jpA � pnj
jpA + pnj

4
p

(xA � xn)2 + (yA � yn)2: (16)

In order to have the best quality of point distribution,
the above equations are performed several times in a
loop. Normally, 10 to 20 iterations are su�cient and
give acceptable results. It is notable that only one
adaptation cycle is performed in this work as it was
found to be su�cient for optimum results.

4.2. Point re�nement/coarsening
In this method, the new points are added in the areas
where ow features have occurred. Thus, the number
of points is not �xed. One of the advantages of this
method is high quality of point distribution in di�erent
zones. At �rst, the error (ek) for each pair node is
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Figure 4. A sample point K and its neighbors.

calculated, as shown in Figure 4, to �nd if a new point
is needed for addition or not. To calculate the error
indicator ek, the non-dimensional form of the pressure
(p) gradient is chosen in the following form for each
pair of nodes (K, A):

eK =
jpA � pK j
jpA + pK j

4
p

(xA � xK)2 + (yA � yK)2: (17)

A function of the distance between two points (A, K)
is considered in the above formula in order to prevent
over-re�nement of the points near the discontinuities
(i.e., shock waves). Then, the average error (M) is
calculated for the domain as:

M =
1
n

nX
k=1

jekj; (18)

where n is the number of nodes in the domain. By
de�ning M and ek, the standard deviation � can be
calculated as follows:

� =
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(jek �Mj)2

n
: (19)

To �nd if a pair point is to be re�ned or not, the
statistical Relation (20) should be checked. If this
equation is satis�ed, then a point should be added in
between the pair point (K, A).

ek � M + ��: (20)

Again, for coarsening, the following equation should be
checked:

ek � M� ��: (21)

The amount of � is based on the problem and is
di�erent in coarsening and re�nement [26,27]. In the
present work, the values of 0.1 and 0.25 are used for
point re�nement and point coarsening, respectively.

The adaptive process, at �rst, starts with coars-
ening, and the points that satisfy Eq. (21) are omitted.
It is important that when one point is deleted, its
neighbors are not allowed to be deleted at this step,

Figure 5. Point re�nement method.

because it may decrease the accuracy of solution in
this area. After performing the coarsening step, the
neighboring data structure should be updated. In the
next step, the re�nement process is performed. The
added point is situated in the middle of each pair point
selected for re�nement, as sketched in Figure 5, and its
neighbors are de�ned from the neighbors of two original
points.

4.2.1. Neighbor region adaptation
The next method is based on the main privilege of
meshless methods that there is no edge between points.
This privilege can be resulted in that as di�erent points
in the domain based on the ow complexity are applied
as neighbors. For example, across critical zones of the
ow �eld such as shock waves, the number of neighbors
for each point is increased. Thus, in this adaptation
method, the number of points is �xed in the domain
while the neighbors of points could change according
to the ow features identi�ed by calculating the local
errors.

In this method, the statistical parameters are
applied, too. The error indicator (ek), average error M,
and the standard deviation (�) are calculated through
Relation (20). If this relation is satis�ed for each pair
point (K, A), which means the error is higher than the
prede�ned value, then a point in the domain should
be added to the neighbor list of the original point K,
so that the accuracy is preserved in this region. The
added neighbor is the nearest point to the neighbor
point A (Figure 6). It is clear that this method has
the advantage that without changing the number and
position of the points, it increases the accuracy and
e�ciency of the calculations.

Figure 6. Neighbor region adaptation.
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Figure 7. Point distribution around NACA 0012 at
M = 0:8 and AOA = 1:25.

5. Results

In order to show the capabilities of the point adaptation
methods presented in this paper, three di�erent test
cases are applied.

The �rst case is an inviscid ow at transonic
ow conditions of M = 0:8 and AOA = 1:25. The
initial point distribution is shown in Figure 7(a). The
point cloud after ow adaptation using point movement
method is shown in Figure 7(b). There are 5375
points in the domain. The number of points on the
solid boundary is 282. The point cloud after point
enrichment/coarsening is shown in Figure 7(c). It
is notable that the number of points after this type
of adaptation is 5403. In Figure 7(d), the point
distribution after implementation of both methods of
point movement and point re�nement is shown. It is
notable that the number of points here is less than
that in the previous case, where only point re�nement
was used. The pressure contours are compared in
Figure 8(a) and (b). As illustrated in this �gure, the
shock wave is well resolved with adapted distribution
of points in comparison with the initial distribution
(without adaptation).

The surface pressure coe�cient distributions are
shown for the adapted and un-adapted point distribu-
tions in Figure 8(c), comparing them with the �nite vol-
ume results of [20] that used the similar discretization
method as the current meshless method. As illustrated,
the adapted results are in better agreement with the
referenced �nite volume data, especially in capturing
the shock wave. The convergence histories of adapted

and un-adapted results are compared in Figure 8(d) to
show the computational e�ciency of each adaptation
method. It is clear from this �gure that the point
movement, point enrichment/coarsening, and neighbor
adaptation methods can individually decrease the com-
putational time by 35%, 30%, and 10%, respectively.
Additionally, the combination of three methods reduces
the computational time by about 60%. As it is obvious,
the combination of methods has better convergence
rate than each adaptation method, separately. The
reason is that in the combination method, not only
the number of points is optimized but also they are
situated in better places with optimized neighbors. The
computations are carried out on a Pentium PC Dual
core with 2.00 GHz speed. The results indicate that
in the third method, the added neighbors increase the
accuracy of the derivatives by balancing the neighbors
of each point (Figure 9).

The second test case is a transonic laminar ow
around NACA0012 airfoil at M = 0:8, Re = 500, and
AOA = 10 degrees. This is a well-known separated
ow that has been used for validation of numerical
methods. The initial point distribution has 13233
points of which 364 points are in the solid boundary. In
Figure 10(a) and (b), the point distribution before and
after adaptation is shown. The number of points after
adaptation is 13421 which is only less than 2 percent
more than the initial distribution. In Figure 10(c)
and (d), Mach number contours before and after
adaptation are shown. As it is obvious, smooth results
are achieved after adaptation in comparison with un-
adapted results. In this case, Mach number variation
is chosen as the error indicator ek as follows:

ek = MA �Mk: (22)

In this equation, A and K are pair points. The surface
pressure coe�cient distribution and the convergence
histories of the results are shown in Figure 11. As
illustrated, good agreements are achieved for surface
pressure coe�cient distribution in comparison with the
Control Volume method results [20]. As illustrated,
about 60% reduction in computational time is achieved
in this case as compared with the un-adapted results.
This exhibits similar computational e�ciency to that
of the previous inviscid case.

The next case is an unsteady ow around oscil-
lating NACA0012 airfoil that is considered to investi-
gate the capabilities of the adapted methods for such
complicated problems in which the ow features are
moving. Point distribution is the same as that in the
�rst case. The movement of solid boundary changes
the situation of the points. The ow condition is
Mach number 0.755 and the periodic angle around the
quarter chord by considering �m as a mean angle, �0
as the oscillation amplitude, and ! as the frequency of
the system can be achieved as follows:
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Figure 8. Results for the ow around NACA 0012 at M = 0:8 and AOA = 1:25.

Figure 9. Balancing the neighbors in the third method
(neighbor region adaptation method).

�(t) = (�m + �0 sin(!t)) ; (23)

where �m is chosen 0.016, �0 is taken as 2.51, and ! is
calculated as follows:

! =
2kU1
c

; (24)

where U1 is velocity in the far �eld, c is the chord
of the airfoil, and k is a reduced frequency which is
equal to 0.814 in this work. The point distribution
and pressure contours of adapted results for three
di�erent periodic angles are shown in Figure 12. As
mentioned before, the number of points within the
domain remains constant when using point movement
method while the number of points is changed in the

Figure 10. The point distribution and Mach number
contours before and after adaption for ow around NACA
0012, M = 0.8, AOA = 10, and Re = 500.
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Figure 11. The surface pressure coe�cient distribution and convergence history for ow around NACA 0012, M = 0:8,
AOA = 10, and Re = 500.

Figure 12. Point distribution and pressure contours after
adaptation (re�nement+movement) at Mach number of
0.755.

point re�nement method based on the ow features. In
this case, the numbers of points for the combination
method are 5325, 5334, and 5343, for AOA = 0,
AOA = 2, AOA = �2, respectively. While the
numbers of points for re�nement method are higher
than those for the combination method (5401, 5432,
5412 for AOA = 0, AOA = 2, AOA = �2, re-
spectively), which can increase the computational cost
and decrease the convergence rate. It is clear from
this �gure that the moving shock wave has suitably
been captured and re�ned by the presented adaptation
methods. The normal force coe�cients and pitching
moment coe�cients obtained from inviscid ow solu-
tion with di�erent adaptation methods are shown in
Figure 13 in comparison with the experimental data of
AGARD [28].

6. Conclusions

In this paper, three di�erent adaptive meshless meth-
ods were presented. An explicit meshless method
based on the least square scheme was used. Taylor
series based on the least square method was used
for calculating the derivatives at each point. Three
di�erent adaptive methods were developed, including
point movement, point re�nement/coarsening, and
neighbor adaptation, for meshless calculation of steady
and unsteady uid ows. The results were compared
with those of other reliable numerical methods and
it was shown that the accuracy of the adapted re-
sults for each method and the combination of meth-
ods was improved. In addition, the computational
cost and convergence time were discussed in di�er-
ent ow situations. The results showed that these
adaptation methods can decrease the computational
cost by about 60% as compared with un-adapted
method.
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Figure 13. Aerodynamic coe�cients for the unsteady ow around NACA 0012, and M = 0:755.
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