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Abstract. The classical Economic Production Quantity (EPQ) inventory model does not
consider ordering and holding costs of raw materials. In this direction, this paper considers
the ordering and holding costs for both raw materials and �nished product. Basically,
four EPQ inventory models are developed from an easy perspective that has not been
considered before. It was found that the ordering and holding costs of raw materials must
be taken into account, because they signi�cantly impact on the optimal production lot size
of the �nished product in both EPQ without shortages and EPQ with shortages inventory
models. Furthermore, an EPQ inventory model that determines the optimal lot size for
a product that requires more than one raw material, and an EPQ inventory model that
obtains the optimal batch size for multiple products, which are manufactured with multiple
raw materials, are proposed. Numerical examples are presented in order to illustrate the
use of the proposed inventory models.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, a signi�cant progress has been made in
inventory management. Management of the inventories
is a mandatory activity that any company must do in
the best way. Therefore, the inventory has become
a key challenge for every production manager. It is
well known that the two classical inventory models
of Economic Order Quantity (EOQ) and Economic
Production Quantity (EPQ) have been proposed by
Harris [1] and Taft [2], respectively. Afterwards, the
consultant, Wilson [3], made the EOQ popular, be-
cause he applied it in practice in several companies. It
is important to remark that the EOQ inventory model
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determines the optimal order quantity to be purchased.
Conversely, the EPQ inventory model calculates the
optimal production quantity to be manufactured. Since
that the EOQ/EPQ inventory models appeared, many
researchers and academicians have been constantly
studying and extending these inventory models in order
to model real life constraints. Two years ago, the
EOQ inventory model celebrated its 100th anniversary.
According to C�ardenas-Barr�on et al. [4], Ford Whitman
Harris is the Founding Father of Inventory Theory.

There is a vast literature on inventory models
that considers raw materials. For example, inventory
models considering raw materials that satisfy the needs
of a production process were proposed by Banerjee et
al. [5], Golhar and Sarker [6], Jamal and Sarker [7],
Sarker and Golhar [8], Sarker and Parija [9], Sarker et
al. [10], Sarker and Parija [11], Sarker and Khan [12],
Khan and Sarker [13], just to name a few works. Con-
versely, there exists also a rich literature on inventory
models for multiple products on one machine. Perhaps



Pacheco-Vel�azquez and C�ardenas-Barr�on/Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 736{746 737

Eilon [14] and Rogers [15] were the �rst researchers
who studied the multi products-single manufacturing
system. Later, this type of the problem was treated ex-
tensively in the works of Bomberger [16], Madigan [17],
Stankard and Gupta [18], Hodgson [19], and Baker [20],
just to name a few pioneer works that address multi
products on a single machine. Later, Davis [21],
Fransoo et al. [22], Sarker and Newton [23], Cooke et
al. [24], and Hishamuddin et al. [25] continued studying
this problem. The problem of multi products in one
machine is still being studied by several researchers.
For example, Taleizadeh et al. [26] proposed an in-
ventory model that considered multi products single-
machine production system with stochastic scrapped
production rate, partial backordering, and service level
constraint. Their inventory model determined, for
each product, the optimal production quantity, the
allowable shortage level, and the period length. In
the same year, Taleizadeh et al. [27] developed an
EPQ inventory model with backorders to determine the
optimal lot size and backorders level for multiproduct
manufactured in a single machine. Also, Taleizadeh et
al. [28] derived an EPQ inventory model with random
defective items, service level constraints, and repair
failure. Basically, their inventory model obtained the
optimal cycle length, optimal lot size, and optimal
backordered level. Chiu et al. [29] obtained the optimal
replenishment lot size and shipment policy for an EPQ
inventory model with multiple deliveries and rework of
defective products. Later, Taleizadeh et al. [30] solved
the multiproduct single machine problem with and
without rework considering backorders. Taleizadeh et
al. [31] addressed the multi-product, multi-constraint,
single period problem considering uncertain demands
and an incremental discount situation. On the other
hand, Sepehri [32] addressed a multi-period and multi-
product problem in a multi-stage with multi-member
supply chain. Subsequently, Taleizadeh et al. [33] de-
veloped an EPQ inventory model with rework process
for multi products in one machine and determined the
optimal cycle length as well as the optimal production
quantity for each product. In the same year, Rameza-
nian and Saidi-Mehrabad [34] presented a Mixed Inte-
ger Nonlinear Programming (MINLP) model to solve
a multi-product unrelated parallel machines schedul-
ing problem considering that the production system
could manufacture imperfect products. Afterwards,
Taleizadeh et al. [35] proposed an EPQ inventory model
with random defective items and failure in repair for
multiproduct in one machine environment. Later,
Taleizadeh et al. [36] optimized a joint total cost for
an imperfect, multi-product production system with
rework subject to budget and service level constraints.
In a subsequent paper, Taleizadeh et al. [37] devel-
oped and analyzed an EPQ inventory model with
interruption in process, scrap, and rework. Their

inventory model considered multiple products and all
products were processed in one machine. Recently,
Holmbom et al. [38] developed a solution procedure
that solved the well-known Economic Lot Scheduling
Problem (ELSP) when the machine had high utiliza-
tion. Later, Holmbom and Segerstedt [39] gave a
historical summary from Harris's [1] EOQ formulae to
the ELSP. Basically, they presented the complexities
and di�culties in scheduling several products on one
machine subject to capacity constraint. Pal et al. [40]
developed a stochastic inventory model that considered
two di�erent markets to sell the products: 1) for good
quality products, and 2) for average quality products.
This inventory model also considers that the used
products' recovery rates from consumers are random
variables and recovery products are put in storage in
two warehouses. After that, Roy et al. [41] proposed an
economic production lot size model for a manufacturing
system that produced defective products. The defec-
tive products were accumulated and then reworked.
This inventory model also permits shortages and the
partial and full backordering situations are analyzed
and compared. Other relevant and related studies are
the research works of Hsu [42], Hsu and Hsu [43],
Sana [44], Kumar et al. [45], Tripathi [46], Sana [47],
Sana et al. [48], and Farughi et al. [49].

The rest of the paper is organized as follows. Sec-
tion 2 introduces the problem and establishes the no-
tation that is used through the whole paper. Section 3
presents the mathematical formulation of the EPQ in-
ventory model with raw material costs for multiple raw
materials and one �nished product. Also, a comparison
with the classical EPQ inventory model is made.
Section 4 develops two EPQ inventory models. The
�rst one is for multi-products without shortages with
the constraint that all products share the same setup
cost for the production run. The second one is for the
situation when the products are comprised of multiple
raw materials. Finally, Section 5 provides a conclusion.

2. Problem de�nition and notation

Regularly, the EPQ inventory model (see Figure 1)
considers that at the beginning of the production run,
there is not inventory cost due to the fact that there are
not �nished products. However, in the real world, there
are some costs that must be considered, because raw
materials are procured with anticipation. Thus, the
ordering and holding costs of raw material are incurred
before starting a production run. In this direction, this
research work has the main goal to include these costs
in the development of the inventory models.

In any manufacturing process, at the beginning
of every production run, it is necessary to prepare all
the raw materials required to complete lot size of the
�nished products. This also means that an ordering
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Figure 1. The classical inventory behavior in the EPQ
inventory model without shortages.

cost of the raw material is incurred when one places
an order on the supplier. Additionally, the holding
cost of raw material must be considered too. These
costs typically are ignored in the traditional EPQ
inventory model. Therefore, the cost of ordering the
raw material and its holding cost must be considered
in the development of the inventory model.

Obviously, with the inclusion of the raw material
costs, the optimal lot size of the �nished product
will change considerably. Consequently, in this paper,
we propose an Economic Production Quantity (EPQ)
without shortages and with shortages considering full
backordering when the inventory of raw materials is
involved.

The notations that will be used in this paper are
de�ned and given below:
D Demand rate (units/time unit);
P Production rate (units/time unit);
AP Setup cost of the production run

($/setup);
hP Holding cost of the �nished product

($/unit/time unit);
CP Production cost per �nished product

($/unit);
AM Ordering cost of raw material

($/order);
u Units required to produce one unit of

�nished product (units);
hM Holding cost of raw material

($/unit/time unit);
CM Raw material cost ($/unit);
� Fixed backordering cost ($/unit);
�t Linear backordering cost ($/unit/time

unit);
Q� Production lot size (units);
b� Backorders level (units);
K Total cost.

Figure 2. Inventory behavior of (a) raw material with
EOQ, and (b) �nished product with EPQ without
shortages.

3. Development of the inventory models

3.1. An EPQ inventory model with raw
material costs and without shortages

First of all, it is necessary to develop an inventory
model that considers the replenishment of raw material
and the manufacturing process, jointly. Basically, this
means that the ordering and holding costs of raw
material must be included in the modelling of the
inventory model (see Figure 2). It is assumed that
the amount of raw materials ordered before must meet
the requirements for the production lot size within any
production cycle. Mathematically speaking, this can
be expressed as follows.

K(Q) =AP
D
Q

+ hP
Q
2

�
1� D

P

�
+AM

D
Q

+ uhM
Q
2
D
P
: (1)

Algebraically, the above expression is reduced to:

K(Q)=(AP +AM )
D
Q

+
Q
2

�
hP
�

1�D
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�
+uhM

D
P

�
:

(2)

In obtaining the global minimum optimal solution, the
total cost function of the EPQ inventory model is
optimized via di�erential calculus. It is easy to see
and show that K(Q) is a convex function in Q. Then,
by applying the optimization technique via di�erential
calculus, one gets the optimal production lot size, given
by Eq. (3):

Q� =

s
2(AP +AM )D
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�
1� D

P

�
+ uhM D

P
: (3)

It is obvious that if the ordering (AM ) and holding
(hM ) costs of raw material are not considered, then
the production lot size decreases immediately to the
classical EPQ without shortages.

3.2. An EPQ inventory model with raw
material costs and shortages

Now, this subsection presents an EPQ inventory model
with raw material costs and shortages. Here, we
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consider that the shortages occur only for the �nished
product. It is assumed that all shortages are backo-
rdered. The total cost of the inventory model is given
below:

K(Q; b) = AP
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It is required to minimize the function K(Q; b) to
determine Q and b. It is easy to show that K(Q; b) is a
convex function in Q and b. Therefore, it is necessary
to di�erentiate K(Q; b), partially, with regard to Q and
b. Hence, optimizing Eq. (5), one obtains the optimal
production lot size and the optimal backorders level,
which are given by Eqs. (6) and (7), respectively:
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It is easy to see that the above expression for the
production lot size immediately transforms into the
well-known equation of the EPQ with shortages when

both ordering (AM ) and holding (hM ) costs of raw
material are zero. In other words, it is when these
costs are not considered.

3.3. Comparison with EPQ with and without
shortages

In this section, a numerical comparison is made be-
tween the results of the proposed inventory model and
those of the classical EPQ inventory model with and
without shortages.

Numerical examples 1 and 2.
The data for Examples 1 and 2 are given in the �rst
columns of Tables 1 and 2, respectively. The results
of the comparison with the EPQ without shortages are
presented in Table 1. In Table 2, they are given for
the comparison with the EPQ with shortages. In both
tables, we use the expression of w = uCM=CP . This
means that the raw material cost is a fraction of the
cost of the �nished product. Typically, the holding
costs are calculated as a percent of the cost (i.e., hP =
iCP yhM = iCM ); then, the term w can be estimated
as w = uhM=hP .

Here, note that according to the results of Tables 1
and 2, the optimal production lot size is sensible to
the fraction of cost of raw material in both inventory
models. If the fraction increases, the production lot
size decreases.

3.4. An EPQ inventory model with multiple
raw materials and one �nished product

It is now appropriate to discuss that in many situations
of the real life, a product is comprised of several raw
materials. Although there is a unique �nished product,
it is made of several raw materials; therefore, one
can apply the inventory models developed in the Sec-
tions 3.1 and 3.2. There are always welcome practical

Table 1. Comparison of the proposed inventory model with EPQ without shortages.

AP hP AM w D P Q� Q� % of
di�erenceEPQ Proposed inventory

50 2 20 0.1 500 1000 223.61 252.26 12.82
50 2 20 0.3 500 1000 223.61 232.04 3.77
50 2 20 0.5 500 1000 223.61 216.02 3.39
50 2 20 0.7 500 1000 223.61 202.92 9.25
50 2 20 0.9 500 1000 223.61 191.94 14.1

Table 2. Comparison of the proposed inventory model with EPQ with shortages.

AP hP AM w � �t D P Q� b� Q� b� Q b
EPQ Proposed inventory % of di�erence

50 2 20 0.1 0.5 10 500 1000 238.48 9.45 268.72 11.98 12.68 26.74
50 2 20 0.3 0.5 10 500 1000 238.48 9.45 243.86 9.90 2.25 4.81
50 2 20 0.5 0.5 10 500 1000 238.48 9.45 224.83 8.32 5.73 11.97
50 2 20 0.7 0.5 10 500 1000 238.48 9.45 209.65 7.05 12.09 25.35
50 2 20 0.9 0.5 10 500 1000 238.48 9.45 197.19 6.02 17.32 36.34
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perspectives in any company for applying mathemati-
cal models. Therefore, in this direction, one needs just
to establish the following oversimpli�cation, which is
simple, easy to apply, and computationally e�cient.

Set AM1; AM2; � � � ; AMn as the ordering costs of
each raw material; u1; u2; � � � ; un as the number of
units of each raw material required to manufacture one
unit of the �nished product; and hM1; hM2; � � � ; hMn as
the holding cost of each raw material. Then, AM and
uhM are de�ned as AM = AM1 +AM2 + � � �+AMn and
uhM = u1hM1 +u2hM2 + � � �+unhMn, respectively. As
a result, one can use the previous proposed inventory
models.

4. An EPQ inventory model without shortages
with multi-products and raw material costs

4.1. An EPQ inventory model without
shortages with multi-products and one
raw material

Here, the situation is considered in which there is
a unique raw material to process several �nished
products and these products are manufactured in one
machine or process. Consequently, it is assumed that
all products share one setup cost of the production run.
In this type of problem, a schedule is required for the
fabrication of products. A common cycle time is used
for all the products. Figure 3 illustrates the common
cycle time.

It is easy to understand that in order to minimize
the holding cost of raw materials, it is necessary that
the product with a higher consume rate of raw material
must be scheduled �rst.

As an illustrative example, consider the situation
of two products A and B. Suppose that one unit of
product A consumes 6 units of raw material and one
unit of product B requires 4 units of raw material.
Moreover, the production rate of product A is 2000
units per year and the production rate of product B
is 4000 units per year. Therefore, the consume rates
of raw material for products A and B are 12000 units
per year and 16000 units per year, respectively. As
mentioned before, product B must be the �rst in the
production schedule (i.e., the sequence is B-A).

Then the optimization problem can be expressed
as:

minK(Q1; Q2; � � � ; Qn) = AP
Dj

Qj

+
nX
k=1

�
hk
2
Qk
�

1� Dk

Pk

��
+AM

Dj

Qj
+ hM �I; (8)

subject to:

D1

Q1
=
D2

Q2
= � � � = Dn

Qn
; (9)

where �I represents the required units of raw material
and is given by Eq. (11). The details of the derivation
of Eq. (11) are given in the Appendix.

Since:
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D3Q1
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Eq. (8) can be written as:

minK(Q1) = (AP +AM )
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kukhM
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Optimizing Eq. (12), one can obtain the optimal lot
size for the product 1, which is given by Eq. (13) given
in Box I.

The optimal lot sizes for the rest of the products
can be easily calculated by the following equation:

Q�i =
Di

D1
Q�1: (14)

Numerical Example 3
Consider a set of products that share the same raw

Figure 3. Inventory behavior of (a) raw material, (b) �nished product 1, and (3) �nished product 2 considering an EPQ
without shortages.
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Box I

Table 3. Additional information for Numerical Example 3.

Units of raw
material

Total cost of
raw material

uihM
Unit of

production cost
Production

rate
Demand

rate
Product A 12 $ 120.00 $ 24.00 $ 300.00 20000 4000
Product B 6 $ 60.00 $ 12.00 $ 400.00 60000 3000
Product C 4 $ 40.00 $ 8.00 $ 200.00 30000 1500
Product D 8 $ 80.00 $ 16.00 $ 180.00 50000 2800

material and all of them must be manufactured in a
unique machine. The joint setup cost of the production
rate is 1000 $ per run and the ordering cost of the
raw material is 400 $/order. The cost of each unit
of raw material is 10 $ per unit. Assume that the
annual holding cost is calculated as 20% of the cost
of raw material and �nished product (i.e., hk = 0:2Ck
and hM = 0:2CM ). Additional information for the
numerical example is given in Table 3.

An observation is that in order to solve the inven-
tory problem, it is necessary to obtain the consume
rate of raw material for each product. Hence, the
consume rates are 240000, 360000, 120000 and 400000
for the products A, B, C, and D, respectively. Thus, the
sequence of production is D-B-A-C, and this sequence
represents the order of the products in Eq. (13) as
shown in Box I.

Using Eq. (13), the production lot size for prod-
uct 1 isQ1 = 186:96. The other lot sizes are determined
with Eq. (14) and their results are Q2 = 200:32, Q3 =
267:09, and Q4 = 100:16. In other words, according
to the sequence D-B-A-C, 186.96 units of product D,
200.32 units of product B, 267.09 units of product A,
and 100.16 units of product C must be manufactured.

4.2. Multiple raw materials and multiple
�nished products on a unique machine

Now, this section deals with the case in which there
exists multiple raw materials and multiple �nished
products, all of which are manufactures on a unique

machine. This case reduces to the previous case, there-
fore, we only need to do the following:

Let AM1; AM2; � � � ; AMn be the cost of ordering
each raw material, respectively. Let u1; u2; � � � ; un be
the number of units of each raw material and be the
holding costs of the raw materials. In this case, we
de�ne AM as:

AM = AM1 +AM2 + � � �+AMn;

and for each product, we establish:

uihM = u1ihM1 + u2ihM2 + � � �+ unihMn:

So, the problem is reduced to the previous case.

Numerical Example 4
As an illustrative example, assume that a set of
products share the same set of raw materials. In other
words, there are four di�erent products named as A,
B, C, and D, which share three types of raw materials,
called RM1, RM2, and RM3. The cost of setup of
production run is 1000 $/per run and the ordering
costs for raw materials RM1, RM2, and RM3 are 300
$/order, 400 $/order, and 200 $/order, respectively.
Furthermore, the unit cost of each raw material is
10$/unit, 8$/unit, and 20$/unit for RM1, RM2, and
RM3, respectively. Assume that the annual holding
cost is determined as 15% of the costs, i.e. hk = 0:15Ck
and hMk = 0:15CMk. Additional data for the products
is shown in Table 4.

With the above information, the consume rate for

Table 4. Additional information for Numerical Example 4.

Units of
RM 1

Units of
RM 2

Units of
RM 3

Total cost of
raw materials

uihM
Production
cost by unit

Production
rate

Demand
rate

Product A 4 3 2 $ 104.00 $ 15.60 $ 400.00 20000 4000
Product B 6 1 2 $ 108.00 $ 16.20 $ 500.00 40000 3000
Product C 8 1 3 $ 148.00 $ 22.20 $ 400.00 30000 1500
Product D 6 4 1 $ 112.00 $ 16.80 $ 280.00 50000 2800



742 Pacheco-Vel�azquez and C�ardenas-Barr�on/Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 736{746

production of raw material, multiplied by uihM for
each product, is calculated. The values are: 312000,
648000, 666000, and 840000 for products A, B, C, and
D, respectively. Therefore, the schedule of production
is D-C-B-A. Thus, AM = AM1 + AM2 + AM3 = 900.
Solving the problem, one obtains the lots sizes as Q1 =
183:25, Q2 = 98:17, Q3 = 196:34, and Q4 = 261:79.
In other words, according to the sequence D-C-B-A,
183.25 units of product D, 98.17 units of product C,
196.34 units of product B, and 261.79 units of product
A must be manufactured in the machine.

5. Conclusion

In the traditional EPQ model, the ordering and holding
costs of the raw material are not considered. Therefore,
in this paper, a generalization of the EPQ inventory
model of Taft (1918) was developed. The proposed
inventory model considers both costs of raw material:
ordering and holding. A main conclusion is that these
costs must be taken into account, because they impact,
directly, on the optimal production lot size. In both
inventory models, EPQ without shortages and EPQ
with shortages were observed. It is concluded that the
production lot size is very sensible to the costs of raw
material. The main new contribution of this paper is
presenting an EPQ inventory model that determines
the optimal lot size for a product that requires more
than one raw material and an EPQ inventory model
that determines the lot size for multiple products and
multiple raw materials.
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Appendix A

Detailed derivation of inventory average (�I)
The inventory level of raw material at any time t,
as depicted in Figure A.1., is partitioned into the
quantities manufactured by time for each of the three
�nished products and the total inventory is consumed
in that time.

Thus, the inventory average is determined as
follows:
Q1=P1

Q1=D1

[(u1Q1 + u2Q2 + u3Q3) + (u2Q2 + u3Q3)]
2

+
Q2=P2

Q1=D1

[(u2Q2 + u3Q3) + (u3Q3)]
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[u3Q3]
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D1Q2

P2Q1

u2Q2 + 2u3Q3
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P3Q1

u3Q3

2
:

Figure A.1. Inventory pattern of raw material with three
�nished products.
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, hence:

D1

P1

u1Q1 + 2u2Q2 + 2u3Q3

2

+
D1Q1D2

P2Q1D1

u2Q2 + 2u3Q3

2
+
D1Q1D3

P3Q1D1

u3Q3

2

=
D1

P1

u1Q1 + 2u2Q2 + 2u3Q3

2

+
D2

P2

u2Q2 + 2u3Q3

2
+
D3

P3

u3Q3

2

=
D1

2P1
u1Q1 +

D2

2P2
u2Q2 +

D3

2P3
u3Q3

+
D1

P1
(u2Q2 + u3Q3) +

D2

P2
(u3Q3)

=
D1

2P1
u1
Q1D1

D1
+
D2

2P2
u2
Q1D2

D1
+
D3

2P3
u3
Q1D3

D1

+
D1

P1

�
u2
Q1D2

D1
+u3

Q1D3

D1

�
+
D2

P2

�
u3
Q1D3

D1

�
=

Q1

2D1
u1
D2

1
P1

+
Q1

2D1
u2
D2

2
P2

+
Q1

2D1
u3
D2

3
P3

+
D1

P1

�
u2
Q1D2

D1
+u3

Q1D3

D1

�
+
D2

P2

�
u3
Q1D3

D1

�
=

Q1

2D1

�
u1
D2

1
P1

+ u2
D2

2
P2

+ u3
D2

3
P3

�
+
Q1

D1

�
D1

P1
(u2D2 + u3D3) +

D2

P2
(u3D3)

�
;

�I=
Q1

2D1

8<: 3X
k=1

uk
D2
k

Pk
+2

2X
k=1

24Dk

Pk

0@ 3X
j=k+1

ujDj

1A359=; :

For induction, the inventory average for n products is
calculated as shown in Box II. After some algebraic
manipulations, one obtains:
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Q1=P1
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Since that D1
Q1

= D2
Q2

= � � � = Dn
Qn , thus Qk = DkQ1

D1
.

Therefore, by substituting Qk, we have:
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Simplifying:
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after some algebraic manipulations:�
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the �rst part can be expressed as:
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Substituting the expression of Qk:
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the second part can be expressed as:
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= 2
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Thus, the inventory average is given by:
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