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Abstract. This paper proposes a robust optimization model for robust and reliable design
of an integrated forward-reverse logistics network with hybrid facilities under uncertainty
and random facility disruptions. The proposed model utilizes several e�ective reliability
strategies to mitigate the impact of random facility disruptions. First, the proposed model
allows two types of hybrid facilities, namely, reliable and unreliable, to be located in the
concerned logistics network where unreliable ones may be partially or fully disrupted, and
thus a percentage of their capacities may be lost. However, they can still serve their
customers with the remaining of their available capacities. Furthermore, a sharing strategy
is taken into account, in which goods can be shipped from reliable hybrid facilities to
unreliable ones to compensate their lost capacity. A robust optimization approach is
applied on the developed model to handle the uncertainties in the parameters of the
concerned network. Finally, several numerical experiments along with a sensitivity analysis
are conducted to illustrate the signi�cance and applicability of the proposed model as well
as the e�ectiveness of the robust optimization approach in this context.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Recent studies in the supply chain literature pay a
particular attention to designing integrated forward-
reverse logistics networks to avoid sub-optimality re-
sulting from the separated design of forward and
reverse networks and, at the same time, reaching
higher levels of productivity and customer satisfac-
tion [1,2]. It has been recognized that robust and
reliable design of such networks helps �rms to maintain
and enhance their competitive advantages, and assists
them to cope with the growing environmental turbu-
lence. A part of literature refers to con�guration of
integrated forward-reverse logistics networks, includ-
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ing both forward and reverse ows, because of the
existing legal requirements, environmental protection,
as well as related economic bene�ts [3,4]. The goal
of a forward network is to provide a value for the
end consumer in terms of product attributes like
quality and cost, while the reverse network tries to
recover the economic and environmental value from
used products in a cost-e�ective manner. The pro-
cesses and activities concerned with material supply,
production, distribution, and consumption are embed-
ded in the forward network, while reverse network
encompasses the activities associated with collection,
inspection/separation, recovery, and disposal of the
used products [5,6].

Another attention of the recent research is paid to
incorporate risk management into the design phase of
global supply chains. There are two wide categories
of risks that impress supply chain network design
problem:
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1. The risks originating from the di�culties in coordi-
nating supply and demand;

2. The risks originating from the threat of disruptions
to normal activities, which include the issues con-
cerned with natural disasters, strikes, and economic
disruptions, terrorist attacks, etc. [7].

Consequently, designing reliable and robust networks
is of particular interest. It is worth pointing out
the di�erence between robustness and reliability terms
when studying supply chain risks. A supply chain is
robust if it performs well when facing the �rst category
of risks; while it is reliable if it performs well when
disruptions occur, for example, when parts of the
supply chain system fail due to natural disasters [8].

A large body of the extant literature is assigned
to the �rst category of risks in which some parameters
of a logistics network such as demand, lead times,
transportation costs, and quantity of returned products
may be uncertain. Environmental and system uncer-
tainties are two aspects of uncertainty, which drasti-
cally a�ect the overall performance of supply chains [9].
The environmental uncertainty addresses uncertainties
concerned with demand and supply originated in the
performance of suppliers/manufacturers and behavior
of customers. Those uncertainties impressing produc-
tion, distribution, collection, and recovery processes
are called system uncertainties. Since the logistics
network design problem has a strategic nature, it is
very critical that uncertainties are to be incorporated
in the problem [9].

Stochastic programming, robust optimization,
and fuzzy mathematical programming are three pow-
erful tools, which can tackle the existing uncertain-
ties in the parameters of the model. Application of
stochastic programming for modeling uncertain supply
chain network design can be seen in [4,10-15]. However,
in many real applications of stochastic programming,
there is no enough historical data to estimate the
probability distribution of uncertain parameters. As
an alternative, robust optimization can be applied to
handle uncertainty in a given bounded uncertainty
set. Implementation of robust optimization approach
to design closed-loop logistics networks can be traced
in [16,17]. In this paper, we resort to the robust
optimization approach to handle uncertainties in the
parameters of an integrated forward-reverse logistics
network design problem. Furthermore, fuzzy mathe-
matical programming is a exible tool for modeling
epistemic uncertainty that comes from lack of infor-
mation about the actual value of parameters [18-20].
For e�ective implementation of fuzzy mathematical
programing to design supply chain networks with
uncertain parameters, the reader may refer to [21-23].

The second type of risks (our concern in this
paper) can disrupt any point of a supply chain net-

work (e.g., facilities and/or transportation links) in a
relatively random manner. As highlighted by Peng
et al. [8], disruption risks may lead to both negative
�nancial e�ects and serious operational consequences,
i.e. higher transportation costs, delays in delivery of
orders, inventory shortages, loss of market shares, etc.
Therefore, it is important to incorporate disruption
risks carefully when con�guring supply chain networks.
Most studies have focused on managing disruption
risks in the facility location problems, while there is a
less attention on incorporating this type of risks when
designing a forward-reverse logistics network.

One of the �rst reliability models refers to the
unreliable p-median and (p; q)-center location problem,
in which suppliers may be inactive by a given probabil-
ity [24]. Snyder and Daskin [25] formulate the random
disruptions of a facility in a facility reliability problem
by a r-level assignment approach. According to this
approach, a customer will be served if and only if all
of the assigned facilities at levels 0; 1; � � � ; r� 1 fail. In
addition, the same disruption probability is considered
for all distribution centers. Several reliability models,
similar to that presented by Snyder and Daskin [25],
have been developed in the literature, but the uniform-
disruption-probability assumption is relaxed using a
variety of modeling approaches [8,26-31].

Lim et al. [31] introduced a hardening strategy
and incorporated it into a mixed integer program-
ming model to hedge the impact of random facility
disruptions. Two types of facilities, i.e. reliable fa-
cilities that are not subject to disruptions but are
the more expensive and unreliable ones, which may
be disrupted, are considered in their proposed model.
In the hardening strategy, the reliable facilities are
protected against random disruptions by a substantial
investment and therefore, disruptions cannot a�ect
them. Azad et al. [32] extend the hardening strat-
egy introduced by Lim et al. [31] and propose the
soft hardening strategy for a supply chain network
design under random facility disruptions. Almost
in all studies pertaining to reliable facility location
problem, except Azad et al. [32], it is assumed that
facilities may fully fail by a disruptive event and
thus, they may not service their assigned customers.
Furthermore, the capacity restrictions and disruptions
are not considered in these studies. However, in real
world, facilities may lose a portion of their capacities
after disruptions. In this regard, Azad et al. [32]
suppose that the capacity of unreliable facilities may
be partially disrupted. Furthermore, it is assumed that
reliable facilities have unlimited capacity while unre-
liable ones have �nite capacities. Besides, Davarzani
et al. [33] discussed the e�ect of single/dual/multiple
sourcing to handle the potential disruptions occurred
in supply chains. Lim et al. [34] consider a fa-
cility location problem in the presence of random
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facility disruptions where facilities can be protected
with additional investments. Whereas most existing
models in the literature implicitly assume that the
disruption probability estimate is perfectly accurate,
the authors investigated the impact of misestimating
the disruption probability. Furthermore, Aboolian et
al. [35] studied the reliable facility location problems in
which facilities are subject to unexpected failures, and
customers may be reassigned to facilities other than
their regular facilities. The objective of these problems
is to minimize the total expected costs in normal and
failure scenarios.

A stochastic mathematical formulation is pro-
posed for designing a network of multi-product sup-
ply chains comprising several capacitated production
facilities, distribution centers, and retailers in markets
under demand-side and supply-side uncertainties. The
supply-side uncertainty includes possible disruptions
in manufacturers, distribution centers, and the con-
necting links of the network [36]. Babazadeh and
Razmi [37] present an e�cient Mixed Integer Linear
Programming (MILP) model that is able to consider
the key characteristics of agile supply chain, which
is the best competitive strategy for high turbulent
environments, such as direct shipments, outsourcing,
di�erent transportation modes, discount, alliance (pro-
cess and information integration) between the opened
facilities and the maximum waiting time of customers
for deliveries. Additionally, the robust stochastic
programming approach is applied to handle both op-
erational and disruption risks of the agile supply chain
network. Garcia-Herreros et al. [38] proposed a two-
stage stochastic programming framework to design
supply chains under the risk of facility disruptions
by simultaneously considering decisions on the facility
location and the inventory management.

However, the current literature on forward-reverse
logistics network design with reliability consideration
is relatively limited. In this line of research, Vah-
dani et al. [39-41] propose various models for reliable
design of a closed-loop logistics network in an iron
and steel industry. Various solution approaches are
proposed to solve the concerned problem. In these
studies, the reliability concepts are considered for the
collection centers with unlimited capacities. The r-
level assignment approach introduced by Snyder and
Daskin [25] is also adopted to deal with disruptions
occurred at collection centers. Hate� and Jolai [42]
introduced a scenario based model for designing an
integrated forward-reverse logistics network in which
the customer demand is considered as an uncertain
parameter and facilities are subject to the threat of
disruptions. A scenario planning approach and a p-
robustness criterion are developed to handle facility
disruptions and control reliability of the network. Their
proposed model can just protect the logistic networks

against complete facility disruptions. To deal with this
problem, Hate� and Jolai [43] utilized a scenario plan-
ning approach and a robust optimization developed
by Bertsimas and Sim [44,45] to model both partial
and complete facility disruptions. In this paper, we
introduce several reliability strategies to mitigate the
impacts of disruptions.

This paper o�ers a mixed integer linear program-
ming for robust and reliable design of an integrated
forward-reverse logistics network where facilities may
be randomly disrupted, and network parameters are
uncertain. Our main contributions, which distinguish
our work from those of relevant published works, are
listed as follow:

� O�ering a robust and reliable model for designing
a capacitated forward-reverse logistics network with
hybrid facilities, which can tackle random facility
disruptions as well as the uncertainties embedded in
the input data;

� Considering random disruptions at hybrid facilities,
which play a critical role in the forward and reverse
ows, concurrently;

� Imposing capacity restrictions on hybrid facilities
and other facilities embedded in the concerned
logistics network;

� Incorporating two reliability strategies in the devel-
oped model:

{ Locating two types of facilities, namely, reliable
and unreliable hybrid ones;

{ Employing a sharing strategy which allows prod-
ucts to be shipped from reliable hybrid facilities
to unreliable ones for their lost capacities to be
compensated.

� Considering partial and complete capacity disrup-
tions at unreliable hybrid facilities. The capacity
of unreliable facilities may be lost partially due to
the threat of disruptions. Therefore, they can serve
their customers by the remaining of their available
capacities;

� Applying robust optimization approach to handle
uncertainties in input data, i.e. demands, returned
products, �xed opening costs, and capacities.

The rest of the paper is organized as follows. In Sec-
tion 2, the studied problem is de�ned and the proposed
reliability-based model is elaborated. In Section 3,
the robust optimization approach is briey explained
and the robust counterpart of the proposed reliability-
based model is developed. Several computational
experiments and related numerical results along with a
sensitivity analysis are reported in Section 4. Finally,
concluding remarks are discussed in Section 5.
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Figure 1. Integrated forward-reverse logistics network.

2. Problem de�nition and formulation

We consider a single product, multi-echelon forward-
reverse logistics network consisting of production and
distribution centers with limited capacities in the for-
ward ow and collection, recovery and disposal centers
with limited capacities in the reverse ow. The Hybrid
Production-Recovery (HPR) and Hybrid Distribution-
Collection (HDC) facilities are considered in the In-
tegrated Forward-Reverse Logistics (IFRL) network,
which has several advantages such as cost saving and
pollution reduction [2,4,46]. The HPR facilities play
the role of production centers in the forward ow and
recovery centers in the reverse ow. Similarly, HDC
facilities act as the distribution and collection centers
in the forward and reverse ows, respectively. The
structure of the concerned IFRL network is depicted
in Figure 1.

As it is depicted in Figure 1, new products are
shipped from HPR centers to customer zones through
HDC centers in order to satisfy customer demands in
the forward ow. In the reverse ow, the returned
products are collected in the HDC centers for inspec-
tion purpose. After testing, they are divided into
the recoverable and scrap products. The recoverable
products are shipped to the HPR centers for recovery
processes. Then, they are entered to the forward
network as new products. The scrap products are
shifted to the disposal centers. The average disposal
rate reects the quality of returned products; since
high quality returns have a capability for recovery
process (remanufacturing and de-manufacturing) and
low quality returns must be entered to a safe disposal
process. It is also assumed that the customer zones are
prede�ned and �xed. The goal is �nding the optimal
number of required facilities (i.e., HPR, HDC, and
disposal centers) and their best locations as well as the
optimal quantity of material ows between them, while
minimizing the total costs of the designed network.
Gaining this goal highly depends on the way that
uncertainty and reliability issues are handled when
con�guring the IFRL network. HPR and HDC facilities
play an important role in both forward and reverse
networks. However, for the sake of simplicity and
without loss of generality, we assume that just HDC
facilities are subject to random disruptions. Therefore,
the reliability issues are taken into account for HDC
facilities. However, similar reliability concepts can be

considered for HPR facilities when they are subject to
the threat of disruptions.

At each node, j, an unreliable HDC facility can
be located at a �xed cost of ~FUj , which may fail with
probability:
qj(0 < qj < 1)

or a reliable HDC facility at a cost of ~FRj which never
fails. Disruptions occur at unreliable facilities, while
reliable facilities are protected against disruptions.
The reliable HDC facilities never fail, since we can
strengthen them against disruptions by a �nancial
investment and hence, disruptions do not a�ect them.
In other words, the network can be made signi�cantly
more reliable to disruptions with additional investment
in the infrastructure, which makes planning for disrup-
tions more attractive from a managerial prospective.
Obviously, the cost of opening reliable HDC facilities
is more than that of unreliable ones (i.e., ~FRj >
~FUj ; 8j). At the HDC facility, j, the distribution
and collection capacities are denoted by ~j and ~�j ,
respectively. The previous studies addressing the
facility reliability problem assume unlimited capacities,
while we consider a capacitated IFRL network model.
Furthermore, these studies suppose that the disrupted
facilities completely fail after disruptions and cannot
serve their assigned customers. However, we assume
unreliable HDC facilities may lose a part of their
distribution/collection capacities when a disruption
strikes. Therefore, in the forward ow, they can
serve the assigned customers with the remaining of
their available distribution capacities. Notably, in the
reverse ow, they can serve the HPR and disposal
centers with the rest of their collection capacities. In
this regard, the capacity failure fraction is de�ned for
an unreliable HDC facility, which shows the percent-
age of the lost capacity during disruption situations.
The notations pj and p0j , respectively, denote the
percentages of distribution and collection capacities at
unreliable HDC facility, j, which are lost as a result of
disruption.

A sharing strategy is also considered in the for-
ward ow, which allows reliable HDC facilities to share
new products to unreliable HDC facilities to compen-
sate their lost capacities. In this manner, new products
can be trans-shipped from reliable HDC facilities to
unreliable ones whose capacities have been partially
disrupted. Therefore, customers of a disrupted HDC
center are not necessarily assigned to other HDC
centers, since the lost capacity of a disrupted HDC
center will be amended by reliable HDC facilities. It is
worthy to mention that without loss of generality, the
sharing strategy is only applied on distribution capacity
of HDC facilities in the forward ow. To develop
the mathematical programming model, the following
notations are used.
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2.1. Notations
Sets:

I : Number of potential HPR centers,
indexed by i;

J : Number of potential HDC centers,
indexed by j;

K : Number of potential disposal centers,
indexed by k;

L : Number of �xed customer zones,
indexed by l.

Parameters:

dl : Demand of customer zone l;
rl : Amount of returned products from

customer zone l;
Ad : Average disposal fraction;
cab : Transportation cost per unit of

products from a center a to a
center b or a customer zone b for
a; b 2 I; J;K;L;

'i : Production capacity of HPR center i
in the forward ow;

�i : Recovery capacity of HPR center i in
the reverse ow;

j : Distribution capacity of HDC center j
in the forward ow;

�j : Collection capacity of HDC center j in
the reverse ow;

!k : Disposal capacity of disposal center k;
Fi : Fixed cost of opening HPR center i;
FRj : Fixed cost of opening reliable HDC

center j;
FUj : Fixed cost of opening unreliable HDC

center j;
FDk : Fixed cost of opening disposal center

k;
cpfi : Production cost per unit of product at

HPR center i;
cpri : Recovery cost per unit of product at

HPR center i;
cdfj : Distribution cost per unit of product

at HDC center j;
cdrj : Collection cost per unit of product at

HDC center j;
cpk : Disposal cost per unit of scrapped

product at disposal center k;
qj : Disruption probability in unreliable

HDC center j;
pj : Percentage of disrupted distribution

capacity at opened unreliable HDC
center j;

p0j : Percentage of disrupted collection
capacity at opened unreliable HDC
center j.

Variables:

Uij : Quantity of products shipped from
HPR center i to HDC center j;

Vji : Quantity of recoverable products
shipped from HDC center j to HPR
center i;

Wjk : Quantity of scrapped products shipped
from HDC center j to disposal center
k;

Tj0j : Quantity of products trans-shipped
from reliable HDC center j0 to
unreliable HDC center j at a disrupted
situation (j0 6= j);

Xi : Binary variable; equals 1 if HPR center
i is opened, 0 otherwise;

Y Rj : Binary variable; equals 1 if reliable
HDC center j is opened, 0 otherwise;

Y Uj : Binary variable; equals 1 if unreliable
HDC center j is opened, 0 otherwise;

Zk : Binary variable; equals 1 if disposal
center k is opened, 0 otherwise;

ARjl : Binary variable; equals 1 if customer
zone l is assigned to reliable HDC
center j in the forward ow, 0
otherwise;

AUjl : Binary variable; equals 1 if customer
zone l is assigned to unreliable
HDC center j in the forward ow, 0
otherwise;

BRjl : Binary variable; equals 1 if customer
zone l is assigned to reliable HDC
center j in the reverse ow, 0 otherwise;

BUjl : Binary variable; equals 1 if customer
zone l is assigned to unreliable HDC
center j in the reverse ow, 0 otherwise.

2.2. Problem formulation
The developed model is a mixed integer linear program-
ming model, which is formulated as follows:

P (I) : min
X
i

FiXi +
X
j

FRjY Rj +
X
j

FUjY Uj

+
X
k

FDkZk +
X
i

X
j

(cij + cpfi)Uij

+
X
j

X
l

(cjl + cdfj)dl(ARjl +AUjl)
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+
X
l

X
j

(clj + cdrj)rl(BRlj +BUlj)

+
X
j

X
k

(cjk + cpk)Wjk +
X
j

X
i

(cji + cpri)Vji

+
X
j0

X
j 6=j0

qjcj0jTj0j ; (1)

s.t.
X
j

ARjl +
X
j

AUjl = 1 8l; (2)

X
j

BRlj +
X
j

BUlj = 1 8l; (3)

X
j

Y Rj � 1; (4)

Y Rj + Y Uj � 1 8j; (5)

ARjl � Y Rj 8j; l; (6)

BRlj � Y Rj 8j; l; (7)

Tj0j �MYRj0 8j0; j 6= j0; (8)

Tj0j � jY Uj 8j0; j 6= j0; (9)X
j0
Tj0j + j(1� pj)Y Uj �X

l

dlAUjl 8j; (10)

X
j

Tj0j +
X
l

dlARj0l � j0Y Rj0 8j0; (11)

X
i

Uij +
X
j0
Tj0j �X

l

dlAUjl 8j; (12)

X
i

Vji =
X
l

(1�Ad)rl(BRlj +BUlj) 8j; (13)

X
k

Wjk =
X
l

Adrl(BRlj +BUlj) 8j; (14)

X
i

X
j

Uij �X
l

dl; (15)

X
j

Uij � 'iXi 8i; (16)

X
j

Vji � �iXi 8i; (17)

X
i

Uij � j(Y Uj + Y Rj) 8j; (18)

X
l

dlAUjl � jY Uj 8j; (19)

X
l

rlBUlj � (1� p0j)�jY Uj 8j; (20)

X
l

rlBRlj � �jY Rj 8j; (21)

X
j

Wjk � !kZk 8k; (22)

Xi; Y Rj ; Y Uj ; Zk; ARjl; AUjl; BRlj ; BUjl 2 f0; 1g;
8i 2 I; 8j 2 J;8l 2 L; 8k 2 K; (23)

Uij ;Wjk; Vji; Tj0j � 0;

8i 2 I; 8j; j0 2 J;8l 2 L; 8k 2 K; (24)

where M is a large positive number. The aim of
the objective function of Relation (1) is to minimize
the total costs, including the �xed costs of opening
facilities, processing and transportation costs, and
the expected costs of sharing products from reliable
HDC facilities to unreliable HDC facilities. The 1st
to the 4th terms show the costs of locating HPR
facilities, reliable and unreliable HDC facilities, and
disposal centers, respectively. The 5th term represents
transportation costs from HPR to HDC centers and
production processing costs at HPR centers. The
6th term indicates the costs of assigning customers
to reliable and unreliable HDC centers in the forward
network, respectively, and distribution processing costs
at HDC facilities. The 7th term presents the costs
of assigning customers to reliable and unreliable HDC
centers in the reverse ow, respectively, and collection
processing costs at HDC facilities. The 8th and
9th terms show the transportation costs from HDC
centers to disposal and HPR centers, and the disposal
and recovery processing costs at disposal and HPR
facilities, respectively. The last term presents the
expected disruption costs, which is the expected cost of
sharing products from reliable HDC centers to reliable
HDC centers during disruptions.

Constraints (2) and (3) ensure that each customer
zone should be exactly assigned to one HDC facility
in the forward and reverse ows, respectively. Con-
straint (4) shows that at least one reliable HDC center
must be opened to enforce the sharing strategy in a
disruption situation. Constraint (5) indicates that both
reliable and unreliable HDC facilities cannot be opened
simultaneously at a potential node j. Constraints (6)
and (7) enforce the creation of a reliable HDC center
at potential node j, if a customer is assigned to it
in both forward and reverse ows. Constraint (8)
guarantees that in a disruption situation, if a reliable
HDC facility is located at potential node j0, products
can be trans-shipped from it to unreliable HDC facil-
ities. Constraint (9) ensures that during disruption
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situation, products cannot be shipped to potential
node j, unless an unreliable HDC facility is located
at it. Constraint (10) states that for an unreliable
HDC center located at node j, the sum of products
trans-shipped from reliable HDC facilities to it and its
available capacity after disruption should be greater
than or equal to the total demands of its assigned
customers.

Constraint (11) indicates that for a reliable HDC
center opened at potential node j0, the sum of products
trans-shipped from this facility to unreliable HDC fa-
cilities and the total demands of its assigned customers
should not exceed its capacity. Constraint (12) states
that the sum of ows entered to an unreliable HDC
center located at node j cannot be lower than the total
demands of its assigned customers. Constraints (13)
to (15) address the balance constraints. Constraints
(16) and (17) enforce restrictions on the production
and recovery capacities at HPR centers, respectively.
Constraints (18) to (21) enforce restrictions on the
distribution and collection capacities at HDC facilities
in the forward and reverse ows, respectively. Notably,
the lost distribution capacity occurred at unreliable
HDC centers can be amended by the means of sharing
strategy which is integrated in the forward ow. This
issue is reected in Constraints (10) and (19). Con-
straint (22) enforces the capacity restrictions at dis-
posal centers. Finally, Constraints (23) and (24) denote
the binary and ow variables and their corresponding
restrictions.

3. Robust optimization model

Soyster [47] is the �rst who introduces the idea of Ro-
bust Optimization (RO), but his idea turns to be very
pessimistic, which makes it unfavorable among prac-
titioners. Furthermore, the RO approach was devel-
oped independently by El-Ghaoui and Lebert [48], El-
Ghaoui et al. [49], and Ben-Tal and Nemirovsky [50,51].
The Ben-Tal and Nemirovsky approach [50,51] provides
less conservative solutions than earlier worst-case solu-
tions provided by robust mathematical programming
approaches (e.g., [47]) by trading o� some of the
conservatism for improvement in the objective function
by bounding the set of values uncertain parameters
could achieve. A key feature of the RO approach is
its tractability, which depends on the structure of the
uncertainty set. Bertsimas and Sim [44,45] develop
di�erent robust optimization techniques in an attempt
to keep the structure of the original problem. The
optimal solution is more optimistic than the robust
optimization approach introduced by Soyster [47]. Fur-
thermore, Bertsimas and Sim [44,45] develop a new
robust methodology, wherein the optimal solution is
more optimistic. In this paper, we follow the robust
optimization approach developed by Ben-Tal and Ne-

mirovski [50-52]. The signi�cant advantages of this
approach are as follow:

a) The robust formulation of the problem is tractable
when the uncertainty set is described as a box or
an ellipsoid. Furthermore, the structure of the �nal
robust method remains the same as the nominal
problem in the case of box uncertainty;

b) It is less conservative rather than the robust opti-
mization introduced by Soyster [47] and Bertsimas
and Sim [44,45] which makes it more favorable;

c) It allows us to control the level of conservatism in
the solution set by changing uncertainty level.

Nowadays, robust optimization method is embedded
into the mathematical programming problems to deal
with the uncertainty in the model parameters. Robust
optimization technique could provide a solution that
is guaranteed to be good for all or most of the
possible realizations of the uncertain parameters. To
explain the robust optimization technique, consider the
following linear programming problem, in which the
parameters c, A, and b belong to a given uncertainty
set U :

Min cx;

s.t. Ax � b; (25)

where x is the vector of decision variable. The
concerned uncertain linear optimization model contains
a series of linear optimization models whose parameters
vary in the uncertainty set U [50-53]. According to
Ben-Tal and Nemirovski [50-53], the robust counterpart
(RO) of the model (Relation (25)) can be formulated
as follows:

Min

(
sup

(c;d;A;b2U)
[cx] : Ax � b; 8c; d; A; b 2 U

)
: (26)

A vector x is a `robust feasible' solution, if it satis�es
all realizations of the constraints according to the
uncertainty set U . Furthermore, it is a `robust optimal'
solution when there is no other feasible solution with
better objective function value. In the case where
uncertainty set is in the form of box uncertainty (Ubox),
the robust counterpart can be converted to a tractable
equivalent model in which the extreme points of the
box uncertainty are substituted instead of Ubox [54].
Under box uncertainty, each uncertain parameter such
as ~aij is unknown, but bounded in a box of the form
Ubox = faij 2 R : jaij � �aij j � �aGaijg, where �aij ; �a,
and Gaij denote the nominal value, the uncertainty
level, and scale uncertainty, respectively. Notably, Gaij
is a positive number and 0 < �a � 1. If we set
Gaij = aij , then the relative deviation from the nominal
value is at most �a. According to Ben-Tal et al. [54]
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and Pishvaee et al. [16], the tractable equivalent model
of the RO problem (26) can be written as follows:

Min z;

s.t.
X
j

(�cjxj + �j) � z;

�cGcj � �j ; 8j;
�cGcj � ��j ; 8j;X
j

(�aij + �aGaij)xj � �bi � �bGbi ; 8i: (27)

The supply chain decisions can be categorized into
three types according to their signi�cance and the
length of the planning horizon considered. First,
decisions associated with the place, volume, and tech-
nology of facilities are often regarded as strategic
with a planning horizon of several years. Second,
supplier evaluation and selection, distribution channel,
and transportation mode selection are the tactical
decisions which can change every few months. Finally,
operational decisions that are easily revised in the short
term contain the decisions about raw material and
semi-�nished and �nished product ows in the supply
chain network. There are both single-period and multi-
period supply chain network design problems in the
concerned literature. Multi-period planning horizon
models have been proposed for situations in which
parameters change over time in a predictable way.
Thereby, a planning horizon, divided into several time
periods, is usually considered [55]. However, the pro-
posed model is a single-period planning horizon model
in which some parameters are uncertain. To develop
the robust counterpart of the proposed reliability model
and its tractable form, it is supposed that opening costs
( ~Fi; ~FRj ; ~FUj ; ~FDk), demands ( ~dl), returned products
(~rl), and capacities ( ~'i; ~�i; ~j ; ~�j ; ~!k) are uncertain and
can vary in their corresponding box uncertainty sets.

Consequently, the robust counterpart of the pro-
posed model can be formulated as the following equiv-
alent tractable model:

P (II) : min z
X
i

� �FiXi + �Fi
�

+
X
j

� �FRjY Rj + �FRj
�

+
X
j

� �FUjY Uj + �FUj
�

+
X
k

� �FDkZk + �FDk
�

+
X
i

X
j

(cij + cpfi)Uij

+
X
j

X
l

(cjl + cdfj)
� �dl(ARjl +AUjl) + �dl

�

+
X
l

X
j

(clj + cdrj) [�rl(BRlj +BUlj) + �rl ]

+
X
j

X
k

(cjk + cpk)Wjk +
X
j

X
i

(cji + cpri)Vji

+
X
j0

X
j 6=j0

qjcj0jTj0j � z; (28)

s.t. �FGFi Xi � �Fi 8i; (29)

�FGFi Xi � ��Fi 8i; (30)

�FRGFRj Y Rj � �FRj 8j; (31)

�FRGFRj Y Rj � ��FRj 8j; (32)

�FUGFUj Y Uj � �FUj 8j; (33)

�FUGFUj Y Uj � ��FUj 8j; (34)

�FDGFDk Zk � �FDk 8k; (35)

�FDGFDk Zk � ��FDk 8k; (36)

�dGdl (ARjl +AUjl) � �dl 8j; l; (37)

�dGdl (ARjl +AUjl) � ��dl 8j; l; (38)

�rGrl (BRlj +BUlj) � �rl 8l; j; (39)

�rGrl (BRlj +BUlj) � ��rl 8l; j; (40)X
j

ARjl +
X
j

AUjl = 1 8l; (41)

X
j

BRlj +
X
j

BUlj = 1 8l; (42)

X
j

Y Rj � 1; (43)

Y Rj + Y Uj � 1 8j; (44)

ARjl � Y Rj 8j; l; (45)

BRlj � Y Rj 8j; l; (46)

Tj0j �MYRj0 8j0; j 6= j0; (47)

Tj0j � ��j � �Gj �Y Uj 8j0; j 6= j0; (48)X
j0
Tj0j +

�
�j � �Gj � (1� pj)Y Uj

�X
l

� �dl + �dGdl
�
AUjl 8j; (49)
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X
j

Tj0j +
X
l

� �dl + �dGdl
�
ARj0l

� ��j0 � �Gj0
�
Y Rj0 8j0 (50)X

i

Uij +
X
j0
Tj0j �X

l

� �dl + �dGdl
�
AUjl 8j;

(51)X
i

Vji=
X
l

(1�Ad)(�rl+�rGrl )(BRlj+BUlj) 8j;
(52)X

k

Wjk =
X
l

Ad (�rl + �rGrl ) (BRlj +BUlj) 8j;
(53)X

i

X
j

Uij �X
l

� �dl + �dGdl
�
; (54)

X
j

Uij � ( �'i � �'G'i )Xi 8i; (55)

X
j

Vji � (��i � ��G�i )Xi 8i; (56)

X
i

Uij � ��j � �Gj � (Y Uj + Y Rj) 8j;
(57)X

l

� �dl + �dGdl
�
AUjl � ��j � �Gj �Y Uj 8j;

(58)X
l

(�r+�rGrl )BUlj � (1� p0j) ���j���G�j�Y Uj 8j;
(59)X

l

(�rl + �rGrl )BRlj � ���j � ��G�j�Y Rj 8j; (60)

X
j

Wjk � (�!k � �!G!k )Zk 8k; (61)

Xi; Y Rj ; Y Uj ; Zk; ARjl; AUjl; BRlj ; BUjl 2 f0; 1g;
8i 2 I; 8j 2 J;8l 2 L; 8k 2 K; (62)

Uij ;Wjk; Vji; Tj0j ; �Fi ; �
FR
j ; �FUj ; �FDk ; �dl ; �

r
l � 0;

8i 2 I; 8j; j0 2 J;8l 2 L; 8k 2 K: (63)

4. Computational experiments and sensitivity
analysis results

In this section, several numerical experiments are
conducted to show the signi�cance and performance
of the proposed deterministic and robust models, i.e.
P (I) and P (II), respectively. To this end, two test
problems, whose details are presented in Table 1, are

taken into account and the results are provided under
four uncertainty levels, i.e. � = 0:25; 0:5; 0:75; 1.
Furthermore, nominal data is randomly generated from
the uniform distributions presented in Table 2.

To provide numerical results, the determinis-
tic and robust models are �rst solved under nomi-
nal data. Then, under each uncertainty level, �ve
random realizations are generated from the corre-
sponding uncertainty set (i.e., � [nominal value �
��G��; nominal value +��G��]) to investigate the behav-
ior of the solutions provided by the proposed deter-
ministic and robust models. The models can update
their tactical decision variables, namely, ow quan-
tities between facilities, i.e. the continuous variables,
and assignment variables indicating the assignment
of customer zones to the hybrid facilities under each
realization. Due to the strategic nature of the decisions
regarding the number and location of facilities, and
since they cannot be changed in the short time [16,56],
the corresponding location variables are �xed and can-
not be changed under various realizations. However,
the violation of chance constraints under realizations
should be considered as a penalty in the objective
function of the deterministic and robust models [57].
Both models are coded in GAMS 23.5/CPLEX 12.2 op-
timization software and all numerical experiments are
solved using a Pentium dual-core 2.10 GHz computer
with 3 GB RAM.

The deterministic and robust models are �rst
solved under nominal data. Notably, all uncertainty
levels, i.e. �F = �FR = �FU = �FD = �d = �r = � =
�' = �� = �� = �!, are equally varied. The respected
results are reported in the third and fourth columns
of Table 3. Furthermore, the computational times are
also reported for two test problems in Table 3.

According to these results, it can be a�rmed that
the total cost of the concerned forward-reverse network
problem under uncertainty is greater than that of the
respective deterministic model as expected. On the
other hand, with additional costs in the infrastruc-
ture, the forward-reverse network will be signi�cantly
more stable against uncertainties. Furthermore, by
augmenting the supply chain uncertainty level, total
costs of the supply chain network increase due to
the conservative nature of the robust optimization
approach to uncertainty level.

Both deterministic and robust models are also
solved under random realizations data. The mean
and standard deviation of the objective function val-
ues under various realizations are considered as two
performance criteria to evaluate these models. The
computational results under random realizations are
reported in the �fth to the eighth columns of Table 3.
The entire results are also shown in Table 4. The
results presented in Table 3 a�rm that the robust
model generates the solution with both higher quality
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Table 1. Details of numerical experiments.

Problem
no.

No. of
potential

HPR centers

No. of
potential

HDC centers

No. of
potential

disposal centers

No. of
customer

zones

No. of
binary

variables

No. of
constraints

1 5 5 3 8 218 225

2 7 10 5 15 632 631

Table 2. The sources of random generation of model parameters.

Parameter Related random
distribution

Parameter Related random
distribution

~dl � Uniform (150, 220) c~pfi � Uniform (3, 6)
~rl � Uniform (90, 140) c~pri � Uniform (3, 5)
~'i � Uniform (550, 800) c ~dfj � Uniform (1.5, 4)
~�i � Uniform (300, 400) c ~drj � Uniform (1.5, 3)
~j � Uniform (350, 550) ~cpk � Uniform (2, 4)
~�j � Uniform (280, 400) ~Fi � Uniform (320000, 480000)
~�k � Uniform (150, 250) ~FUj � Uniform (180000, 260000)
qj � Uniform (0.025, 0.15) ~FDk � Uniform (150000, 220000)

pj ; p0j � Uniform (0.1, 0.5) Gdl ; Grl � Uniform (10, 15)
Ad 0.2 G'i ; G

�
i ; G


j ; G

�
j ; G!k � Uniform (15, 25)

~dab � Uniform (4, 10) GFi ; GFRj ; GFUj ; GFDk � Uniform (5000, 10000)
~FRj = 1:2 � ~FUj

Table 3. Computational results of comparing performances of deterministic and robust models.

Test
problem

no.

Uncertainty
level

Objective function
value under

nominal data

Mean of objective
function values

under realizations

Standard deviation
of objective

function values
under realizations

Deterministic
(CPU time)

Robust
(CPU time)

Deterministic Robust Deterministic Robust

1

0.25 2065415.7 (1.19) 2112869.3 (1.41) 2068861.6 2096922.0 5903.1 2127.9

0.5 2129360.6 (1.63) 2068132.0 2093077.5 5381.8 2240.6

0.75 2146656.8 (1.56) 2077768.0 2099923.3 14351.3 6589.4

1 2163368.6 (0.90) 2078139.7 2099571.9 25035.0 8727.8

2

0.25 3413102.3 (3.01) 3482435.8 (3.25) 3392808.6 3408827.1 12223.6 6741.5

0.5 3674012.4 (3.42) 3416929.0 3568150.6 8209.6 5049.9

0.75 3707211.2 (3.21) 3457480.9 3563381.9 32151.6 11353.6

1 3780839.3 (3.37) 3505673.8 3656574.5 38294.0 3101.5

and lower standard deviation. Furthermore, in two test
problems except test problem 2 with uncertainty level
of 0.25, the robust model dominates the deterministic
one in terms of the mean of objective function values.
Moreover, with respect to standard deviation, the
robust approach dominates the deterministic one with
a high di�erence in two test problems. Finally, by
comparing the columns 4 and 6 in Table 3, it can
be concluded that the mean values of the objective

function obtained by the robust optimization model
under realizations are lower than those provided under
nominal values. The reason for this matter can be in-
terpreted as follows. The robust optimization protects
the network against the worst case values of uncertain
input data. In this manner, the total cost of the
network (i.e., the objective function value) signi�cantly
increases. Therefore, the objective function values
obtained under nominal data (i.e., column 4) are larger
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Table 4. Computational results of solving deterministic and robust models under realizations.

Uncertainty
level

Objective function value
of test problem 1

Objective function value
of test problem 2

Deterministic
model

Robust
model

Deterministic
model

Robust
model

0.25

2073941.8 2095163.0 3397128.0 3407425.5
2068080.8 2099367.6 3377570.2 3400200.4
2075620.7 2097972.3 3382655.1 3405412.3
2065084.6 2097846.2 3400052.8 3416850.5
2061580.3 2094261.2 3406637.0 3414246.7

0.5

2076900.1 2092975.6 3420669.6 3569850.7
2067783.7 2094582.5 3405743.9 3565026.9
2067095.7 2093771.0 3417193.4 3564497.6
2066733.7 2094779.4 3427752.4 3576307.1
2062146.7 2089279.0 3413285.6 3565070.5

0.75

2100149.6 2107830.0 3427752.4 3580027.7
2062487.0 2090989.2 3451445.0 3553243.1
2078472.1 2098781.2 3430072.4 3560741.5
2068460.3 2097287.2 3473769.4 3553660.9
2079271.0 2104729.0 3504365.3 3569236.5

1

2110251.8 2107153.4 3536774.0 3654595.0
2055914.5 2094387.1 3526927.1 3660368.6
2094812.8 2107041.2 3462342.7 3659533.4
2078110.2 2102250.6 3465606.4 3654270.8
2051609.2 2087027.0 3536719.0 3654104.6

than those obtained under realizations (i.e., column
6).

The computational times are reported in the
third and fourth columns in Table 3. They show
the computational time in seconds for solving the
deterministic and robust models. According to these
results, it can be a�rmed that both deterministic and
robust models are solved in a reasonable time.

4.1. Sensitivity analysis
After validating the proposed robust model, we con-
ducted a sensitivity analysis to show the usefulness of
incorporating the reliability concepts into the proposed
model to mitigate the impacts of disruptions. We study
the impact of the size of capacity disruptions (i.e., by
changing the corresponding capacity failure fraction at
unreliable HDC facilities) on the location of reliable
and unreliable HDC facilities and their numbers, total
network costs, transportation costs, costs of sharing
strategy, and the amount of products trans-shipped
from reliable HDC facilities to unreliable ones after
disruption. To do so, the capacity failure fractions (i.e.,
pj = p0j) are equally varied. It should be mentioned

Figure 2. Capacity disruptions vs objective function.

that the sensitivity analysis is carried out on test
problem 1 with uncertainty level of 0.25. The details
of the results are reported in Table 5 and graphically
depicted in Figures 2-4.

The �rst column of Table 5 presents the per-
centage of capacity disrupted at unreliable HDC fa-
cilities. The second and the �fth columns illustrate
the objective function value and the �xed opening
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Table 5. Results of sensitivity analysis.

pj = p0j
Objective
function

Y R(j) = 1 Y U(j) = 1 Opening
costs

Transportation
costs

Disruption
costs

Amount of
shipped
products

0.1 2112723.6 2 3 4 5 2071621 41042.6 747.0 124.5
0.2 2112723.6 2 3 4 5 2071621 41042.6 747.0 124.5
0.3 2153180.2 2 3 4 5 2112164 40991.7 414.8 48.5
0.4 2158605.7 2 5 3 4 2116685 41828.3 1542.2 219.7
0.5 2198695.8 2 3 5 4 2157228 41437.6 999.5 126.6
0.6 2198712.3 2 3 5 4 2157228 41441.9 1407.2 175.1
0.7 2199148.9 2 3 5 4 2157228 41865.3 1843.4 223.6
0.8 2199469.7 2 3 5 4 2157228 42173.1 2279.7 272.1
0.9 2206403.5 2 4 5 3 2164957 41227.2 2738.8 335.3
1 2246208.5 2 3 4 5 - 2205500 40708.2 0 0

Figure 3. Capacity disruptions vs transportation costs.

Figure 4. Capacity disruptions vs disruption costs.

costs, respectively. The third and fourth columns
show the location of the reliable and unreliable HDC
facilities and their opened numbers. The sixth column
indicates the transportation costs between facilities and
customers. The seventh column reports the disruption
costs (

P
j0
P
j 6=j0 ~dj0jTj0j) associated with the sharing

strategy, which are the costs of trans-shipping products
from reliable HDC facilities to unreliable ones in a
disruption situation. Furthermore, the last column
shows the amounts of trans-shipped products between
reliable and unreliable HDC facilities (

P
j0
P
j 6=j0 Tj0j)

when capacities are disrupted.

According to the results reported in the �rst
two columns of Table 5, the objective function value
increases, when the percentage of capacity disruption
is increased. This issue is also depicted in Figure 2.
Furthermore, by increasing the capacity failure frac-
tions, the model determines that more reliable HDC
facilities must be located. However, when the capacity
disruptions are small, most of the located HDC facili-
ties are unreliable. This matter illustrates the impact
of capacity disruptions on the location of reliable and
unreliable HDC facilities as well as their numbers (see
columns 3 and 4 of Table 5).

The �xed opening costs are not changed or in-
creased when capacities are increasingly disrupted. In
the cases where the location of reliable and unreli-
able HDC facilities is not changed by increasing the
percentage of capacity disruptions (for example, see
rows 6-9 in Table 5), the amount of products trans-
shipped from reliable HDC facilities to unreliable ones
and the corresponding costs, i.e. disruption costs, are
increased. In these cases, the transportation costs are
also increased. Figures 3 and 4 depict the behavior
of the disruption costs and transportation costs at
di�erent levels of capacity disruptions, respectively.
The above discussions approve the application of capac-
ity disruptions, sharing strategy, and other reliability
concepts in our proposed model.

5. Concluding remarks

This paper o�ers a robust and reliable model to
protect an integrated forward-reverse logistics network
against random facility disruptions and, at the same
time, to cope with existing uncertainties in the model
parameters. To capture random facility disruptions,
several reliability strategies and assumptions are taken
into account. Random disruption at hybrid HDC
facilities is taken into consideration. In this manner,
two types of facilities, reliable or unreliable HDC
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facilities, are allowed to be located in the concerned
network. Furthermore, partial and complete capacity
disruptions and a sharing strategy are also considered,
which can improve the service level after occurrence
of disruptions. To deal with the uncertainty in the
parameters of the network, a robust optimization
approach is applied to the original deterministic model.
The e�ect of capacity disruptions on the objective
function, opening and transportation costs, disruption
costs, and the amount of shared products between HDC
facilities are also investigated through a sensitivity
analysis.

Finally, some directions are stated for future
research. It is possible to incorporate the reliability
concepts into the transportation and inventory deci-
sions to design a more reliable supply chain network.
Modeling the di�erent types of disruption (caused
by natural, man-made, or technological threats) and
their impacts on facilities and/or transportation links
through a scenario-based approach would be of partic-
ular interest.
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