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Abstract. In this study, we develop a neural network with a time shifting approach
to forecast time series patterns. We investigate the impact of di�erent layer-weight
con�gurations to capture the trends in seasonal, chaotic, etc. forms. We also hypothesize
the combined e�ect of the delayed inputs and the forward connections to introduce a
dynamical structure. The e�ect of over�tting issue is procedurally monitored to gain
the resistance property from the early stoppage of training process and to reduce the
error of predictions. Finally, the performance of the proposed network is challenged
by six well-known deterministic and non-deterministic time series and compared by the
autoregression (AR), Arti�cial Neural Network (ANN), Adaptive K-nearest Neighbors
(AKN), and adaptive neural network (ADNN) models. The results show that the proposed
network outperforms the conventional models, particularly in forecasting the chaotic and
seasonal time series.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction and orientation

Neural Networks have shown to be e�ective in areas
like forecasting, economy, bankruptcy prediction, risk
assessment, �nancial evaluation, and so on. The
outputs of these predictions are used to take strategic
decisions about the processes. Di�erent statistical
and technical tools have been historically used to
predict the trends in time series and aid decisions to
be made. Due to the criticality of these decisions,
there are substantial interests in the modi�cation and
advancement of prediction methodologies.

Di�erent types of neural network-based systems
were employed in the past to predict di�erent time se-
ries. The main motivation behind the vast utilization of
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neural networks is their non-parametric properties and
data driven approximation of nonlinear functions [1,2].
In general, the architecture of networks is determined
by using special heuristics [3]. The �rst challenge
in our study is to identify a robust and consolidated
framework for our network.

Traditional methods like the polynomial estima-
tion, spline, smoothing techniques, trigonometric ex-
pansion, etc. make use of many parameters to achieve a
convincible estimation of the process [4]. For example,
consider the recognition of a trend using a conventional
Fourier series method. If the length of available
data is assumed to be 100, then it requires a high
number of arithmetic calculations with a myriad of
linear coe�cients. One of the main properties of a
neural network is the ability to learn any complex
relationships between input and output vectors, which
is very di�cult to be embodied in the conventional
algorithmic methods [5,6].

There exist many novel trends towards the struc-
tural modi�cation of neural networks in the literature.
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Many researchers implemented the adaptive forms of
neural networks to forecast complex benchmarks (see,
for example [3,5,7-13]). An adaptive network must self-
adapt its structure and self-adjust its parameters over
time as changes are sensed. Self-adaptation plays a
central role in the dynamically changing environments.
It is concerned with the capability of the system to
responsively self-adjust upon occurrence of a change in
the environment [10].

Unlike a static neural network, a dynamic neu-
ral network employs extensive feedback between the
neurons of a layer and/or between the layers of the
network. This feedback implies that the network has
also local memory characteristics. The node equations
of a dynamic network are described by di�erential
equations. Since they contain the feedback paths from
their outputs to the inputs, the response of a dynamic
neural network is recursive; the local memories store
the recursive information. For a stable network,
successive iterations produce smaller output changes
until the outputs eventually become constant [14].

Forecasting time series data patterns by the arti�-
cial neural networks has recently gained much interest
as compared to the other methods. Researchers are
almost unanimous that neural networks could be a very
practical tool for analyzing time series forecasting mod-
els. Traditional models like exponential smoothing,
time series regression, autoregressive moving average,
and splines are almost constructed on the linearity and
the dependency premises. The real instances in many
cases do not follow these suppositions; this would be
a major drawback in detecting relationships by the
analytical methods [15].

In the study by Zhang & Qi [6], an investigation
was conducted based on the issue of how to e�ectively
describe time series models in terms of both the
seasonal and the trend patterns. In their study, the
e�ectiveness of data preprocessing on the basis of
forecasting performance and neural network modeling
was queried, including deseasonalizing and detrending
factors (for a brief introduction of these two elements,
please see the next section). The prediction results
were examined and compared to those acquired from
the Box{Jenkins seasonal autoregressive moving aver-
age models. The preponderance of evidence suggested
that the neural networks were not capable of capturing
the seasonal or trend variations, e�ectively, by feeding
unpreprocessed raw data.

Kulesh et al. [7] made use of adaptive metrics to
produce acceptable predictions. In the study, a special
adjustment of the nearest neighborhood method is pro-
posed in order to improve the accuracy of forecasting a
time series. The modi�cations are conducted according
to the following schema: First, all de�ned subsets of
time series are compared with the last subsets and
then a subset is chosen, i.e. the closeness measure of

the last subset with other subsets is calculated [7,8].
Selection of the closeness function accounts for a major
step in obtaining a good prediction accuracy. Note that
closeness is de�ned in terms of the distance metric on
the Euclidean space.

Khashei & Bijari [4] presented a novel hybrid
framework of an arti�cial neural network and an
ARIMA model in order to overcome the restriction of
ANNs in time series forecasting and to yield more accu-
rate forecasting results than those of the conventional
hybrid ARIMA-ANNs models. In their study, a linear
ARIMA model is developed to recognize and magnify
the linear structure in the dataset. Furthermore, a
neural network model is constructed to capture the
underlying data process by using the preprocessed
data. The empirical results with three well-known
real data sets are presented and the proposed model
is compared with the traditional hybrid models.

Some other addressable research has challenged
Dynamical Recurrent Neural Networks (DRNN) for
time series forecasting (for example, see [16]). Since the
recurrent synapses, connections, are represented by a
\Filtering Impulse Response (FIR)", the DRNN is a
state-based model in which all hidden layers obtain
local memories like the state variables. The model
is trained by a temporal recurrent backpropagation
algorithm (TRBP); hence, exponential decay of the
temporal reverse gradient is exploited for the training
procedure with a minimal computational e�ort. Any
economic DRNN model is capable of extracting the ap-
propriate internal relationships between various chaotic
processes from a subset of state variables [16]. We
summarize important research, known to the authors,
on forecasting by ANNs in Table 1.

In order to determine the best structure of the
network, we use a framework of functions to generate
the training, evaluation, and test sets. The framework
is built on MATLAB software to customize the Neural
Network Toolbox. Moreover, in order to evaluate the
overall performance of the methodology, we will also
compare it with the various forecasting models.

The rest of the paper is organized as follows:
Section 2 introduces the structure and the development
process of the proposed network. In Section 3, the pro-
posed network is examined through 6 numerical bench-
marks including deterministic and non-deterministic
data patterns. Section 4 presents the analysis and
comparison of the proposed model with the others via
six time series data patterns. Our concluding remarks
are presented in the �nal section.

2. Proposed neural network

The node equations in dynamic networks are described
by di�erential equations. It is possible to develop
a static network which processes time series data by
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Table 1. Comparison based on forecasting features of various neural networks in the literature.

Authors Network
type

Sinusoidal
trend

detection

Chaotic
behavior
detection

Nonlinear
behavior
detection

Pseudo-
oscillations
detection

Over�tting
consideration

Temporal
delay

& type

Feedback
(forward

& backward)

[3] Clustering-based
and NARX

No No Yes No No Yes
(�xed)

Backward

[4] Hybrid
(with ARIMA)

Yes No Yes No No No No

[5] Modular No No Yes Yes No
Yes

(�xed
period)

Both

[6] Static Yes No Yes No No No No

[8] Adaptive Yes Yes Yes No Yes No No

[12] Adaptive Yes No Yes Yes No Yes
(�xed)

Both

[15] Dynamic Yes No Yes No No No Backward

[16] Dynamic No Yes Yes No No Yes
(�xed)

Backward

Proposed
network

Dynamic Yes Yes Yes Yes Yes Yes
(varying)

Both

simply converting the temporal connections into the
dynamic patterns by assigning the sequence over a
�nite training period. The latter is processed by
suspending some of the input sequences when feeding
the network. This architecture is often seen as a Delay
Neural Network (DNN) i.e. the DNN gains the dynamic
behavior { delay { by means of backward connection.

In this study, a dynamic neural network with
forward and backward with interactive data shifting
approach is proposed. The delay concept enables the
networks to recognize the trends and unusual patterns.
Trends in time series are slow and make gradual
changes in some properties of a series over the entire
interval. Trends are sometimes loosely de�ned as the
long term changes in the process mean. Moreover,
detrending is a statistical or mathematical operation
of removing trends from the series. On the other
hand, what we might like to do is just removing the
seasonal e�ect and leaving any trends and random ups
and downs back in the data. The resulting series give
us what is known as deseasonalized data, oscillations,
which may give us a clearer picture of the patterns.

To illustrate the accuracy of the proposed net-
work, several deterministic and chaotic time series and
real observations are prepared. The Mean Absolute
Percentage Error (MAPE) statistic is implemented to
evaluate the prediction performance of the model. In
the literature, MAPE is regarded as one of the standard
statistical performance measures which is given in

Eq. (1):

MAPE(%) =
100
M

MX
i=1

����yi � ~yi
yi

���� ; (1)

where yi is the source point, ~yi is the predicted point,
and M is the number of forecasted points. The
Normalized Mean Square Error (NMSE) is also used
as the error criterion [8], which is the ratio of the mean
squared error to the variance of time series. It is de�ned
by Eq. (2):

NMSE =

MP
i=1

(yi � ~yi)
2

MP
i=1

(yi � �yi)
2
; �yi =

1
M

MX
i=1

yi; (2)

where �yi is the mean of observations in time series. It
is clear that resistance of the over�tting issue requires
the number of epochs for training the network to be
small. In contrast, it should be large enough to train
the network with any monotonous string of patterns.

We deploy the step by step strategy to construct
a fully-connected network. The state-space diagram of
the proposed network is illustrated in Figure 1. Exclud-
ing input and output data elements, a three-hidden-
layers network is used. Through empirical analyses, we
suggest that Tf1 (Transfer Function) and Tf3 should
process data by logistic transfer function (1=(1 + e�x))
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Figure 1. State-space diagram of the proposed network.

and a linear transfer function be employed in the
intermediate hidden layer. A feedback connection is
used from output of Tf2 to L1W3 (layer-weight) for
detrending purpose and the connection between Tf3
and L1W2 incorporates deseasonalizing concept. Also,
in order to detect the hidden oscillations, especially in
the chaotic patterns, the output of Tf3 is connected
to layer-weight L3W3 with the varying data pattern.
Also, we empirically experiment that the forward
connections in forms of I1W1 to I3W1, I2W2 to I3W1,
and I1W1 to I2W1 marginally reduce the over�tting
e�ect so that the �rst form substantially accounts
for the reduction. This connection is necessary for
avoiding early stop of the training process. Further,
we place temporal delay Dij before the layer-weights
and input-weights in order to appropriately detect
the time series behaviors. The procedure constructs
the proposed Dynamic Delayed Neural Network with
Forward connections (DDNNF).

The proposed topology faces two types of the data
either processed or unprocessed:

� Present and past values of the inputs, I(t); I(t �
1); � � � ; I(t � n + 1), which represent exogenous
inputs;

� Delayed values of the outputs, y(t), y(t � 1); � � � ,
y(t� n+ 1), on which the model output y(t+ 1) is
regressed.

We sketch out the procedure by presenting the tran-
sitional equations for each state upon transferring the
data from one module to another. Note that we are
only interested in the delay form of the equations
which a�ects the dynamicity. Since the delay pattern
is variable, we use ~dij representing the delay form in
the corresponding layer. (In order to keep the state
equations as simple as possible, we use conjunction
symbol � to represent the mixed forms of the outputs
as processed data in the training phase.)

State 1:

D11(I(t)) = I
�
t� ~d11

�
;

D12(y(t)) = y
�
t� ~d12

�
:

State 2:

D31

�
I
�
t� ~d11

��
= I

�
t� ~d11 � ~d31

�
;

D33(y(t)) = y
�
t� ~d33

�
;

D13(!1) = !1

�
Tn � ~d13

�
:

State 3:

!1(Tn) = �
n
I
�
t� ~d11

�
; !1

�
Tn � ~d13)

�
;

y
�
t� ~d12

�o
;

D32(!1) = !1

�
Tn � ~d32

�
:

State 4:

!2(Tn) = �
n
I
�
t� ~d11 � ~d31

�
; !1

�
Tn � ~d32

�
;

y
�
t� ~d33

�o
;

D33(y(t)) = y
�
t� ~d33

�
:

where !i(Tn) is the amalgamated form of the input
values of the corresponding delayed module. ~d31, ~d32,
and ~d33 are important delay parameters, because they
have explicit inuence on !2(Tn) and, consequently,
control the SSE (Sum Square Error) function.

Then, a static backpropagation algorithm based
on error function in Eq. (3) can be applied:

SSE =
X

Tn2t;t�1;��� ;t�n+1

[!2(Tn)� y(Tn)]2: (3)
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Table 2. Parameter con�guration for simulation.

Benchmark type
Total number
of neurons in

all layers

Temporal
suspension

Seasonal dependence time series 26 2
High-frequency time series 20 2
Du�ng chaotic time series 15 Max(5)
Mackey-Glass chaotic time series 16 Max(5)
Sunspot time series 14 Max(6)
Tra�c time series 26 Max(7)

3. Numerical examples

In order to justify e�cacy of the presented network,
we compare it with Auto-Regression (AR), Arti�cial
Neural Network (ANN), Adaptive k-nearest Neighbors
(AKN), and adaptive neural network (ADNN) models.
The parameters of the AKN, ADNN, and AR(m)
models are taken from the study of Wong et al. [8].
Our proposed network is analyzed by some well-known
test beds in the literature. In this section, we generate
six data patterns based on two deterministic and
seasonal benchmarks with a certain amplitude and
trend, two chaotic time series, and two sets of the real
time series based on the observations and the newly
recorded statistics with the signi�cant errors. Table 2
presents the benchmarks with the number of neurons
in each layer of the network and the time delay value.
Obviously, there exists no simple prescribed strategy to
determine the number of neurons and the time delays;
hence, we arbitrarily choose them by the try-and-error
method. However, it is axiomatic that there is a classic
correlation between the number of neurons and the size
of feeding data.

3.1. Deterministic data pattern
The �rst synthetic time series is characterized by
the seasonal attributes like trend changes and linear
increase:

TS1(t) = cos
�
t
�

�
sin
�
t

4�

�
+

t
40�

+
10
�
; (4)

where t is the time element in a range from 0 to 2200
and � is the trend parameter with value of 10. As it was
mentioned previously, the amplitude of the seasonal
element does not vary assuming that the period of sinu-
soidal signal is known in advance. A Fourier spectrum
of the series identi�es the component frequencies in
data processing. Clearly, a modulation phenomenon,
which is the consequence of multiplication of two
sinusoidal signals, exists in the data (Figure 2). The
�rst 2200 lengths are used for training, and the last 200
sources are reserved for prediction.

The simulation results show that the proposed
model is able to predict this time series, accurately.

Figure 2. Time series with seasonal dependency (vertical
line shows the prediction start) with error versus time plot.

Since the synthetic time series has a feature of extreme
orderliness, the result of ADNN is not better than that
of the AR model. However, DDNNF outperforms AR
in both measures and it must be noticed that the static
ANN is incapable of detrending, because its structure
is vulnerable to the oscillations.

The second time series formulates a high-
frequency dataset with a seasonal periodicity and
smoothly increasing amplitude:

TS2(t) =
t

50�

����sin� t������+
����cos

�
t

10�

����� ; (5)

where t is the time interval between 0 and 550 and
parameter � is equal to 2. The complexity of this
synthetic series can be envisioned by plotting a Fourier
spectrum. It is concluded that the interaction between
the trends, amplitude, and seasonality renders this
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Table 3. The summary of predictions of deterministic data patterns.

Seasonal dependence data pattern

AKN AR ANN ADNN DDNNF

MAPE 4.38e-7 3.43e-17 0.02 3e-3 3.6495e-22

NMSE 6.35e-11 2.53e-30 1.16e-3 1.3e-10 2.4281e-43

High frequency data pattern

AKN AR ANN ADNN DDNNF

MAPE 5.52 1.18 1.09 1.17 0.7553

NMSE 9.14e-4 3.54e-5 7.01e-10 1.78e-4 4.1741e-15

Figure 3. Time series with a high-frequency (vertical line
shows the prediction start) with error versus time plot.

benchmark di�cult to be handled with standard neural
network models (Figure 3). The �rst 10/11 of the data
is used for training the network and the rest is reserved
for the prediction purpose.

According to Table 3, it can be claimed that
DDNNF, which contributes to very small amounts
in both measures, has the highest capability of de-
trending and deseasonalizing. Also, Table 3 shows
that the performance of ADNN is better than that
of the ANN and AR models in terms of MAPE for
which ANN scores the best prediction. Also, the
performance of ADNN is closer to that of AKN in
terms of NMSE, and the performance of AR and ANN
is closer to that of ADNN with respect to MAPE.
The above simulation results indicate that the ADNN
model bene�ts from the metrics provided by ANN and
AKN.

3.2. Non-deterministic data pattern
In this section, we draw an explicit analogy between our
proposed network and other models. The comparison
is based on two chaotic time series data patterns and
two observed datasets. The chaotic data patterns are
generated from the Du�ng equation and the Mackey-
Glass delay-di�erential equation. It should be noted
that these time series do not constitute any global
amplitude or trends.

The �rst non-deterministic time series we intro-
duce is the Du�ng equation chaotic time series [8].
The generated data based on the system of di�erential
equations is given as follows (we use only the horizontal
component of this series):

dy
dx

= �y + x� x3 + � cos(�t);

dy
dx

= y: (6)

This system is characterized by two factors: the
driving force and the damping phenomenon by which
the chaotic behavior is determined. The amplitude
parameter �, frequency parameter �, and parameter
k are assumed to be 6, 1.33, and 0.1, respectively, to
explicitly produce the chaotic behavior. Note that the
resulting system of equations is di�cult to be treated
either analytically or numerically.

Instead, the medium order interactive Runge
Kutta technique with the simulation-state method is
employed to simulate the chaotic series (Figure 4).
Table 4 indicates that the DDNNF has better per-
formance than the AR and AKN models, and it has
almost the same performance as that of ANN. This
fact can be seen as a moderate capability of DDNNF
at deseasonalizing the pattern. In this case, the ANN
illustrates a surprising performance at detrending and
detecting the chaotic pattern such that it outperforms
other models in the NMSE measure.

The previous time series had some controllable
chaotic characteristics, however, the chaotic behavior
attributed to the Mackey-Glass equation is not known
and de�ned to map the complex pattern to itself. The
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Table 4. The summary of predictions of data patterns and real observations

Du�ng chaotic data pattern
AKN AR ANN ADNN DDNNF

MAPE 7.2999 0.6483 0.2806 0.3361 0.2744
NMSE 0.0034 2.4143e-5 2.5246e-6 7.4141e-6 3.6857e-6

Mackey-Glass chaotic data pattern
AKN AR ANN ADNN DDNNF

MAPE 1.0484 0.4941 0.0373 0.0655 0.0210
NMSE 2.1431e-3 7.1211e-5 2.8314e-7 8.1435e-7 9.3829e-08

Sunspot observations
AKN AR ANN ADNN DDNNF

MAPE 50.3 31.2 30.8 28.45 15.8078
NMSE 0.0034 2.4143e-5 2.5246e-6 7.4141e-6 3.7586e-8

Tra�c ow observation
AKN AR ANN ADNN DDNNF

MAPE 17.39 26.98 17.97 14.31 15.987
NMSE 0.0193 0.0267 0.0818 0.0206 0.0202

Figure 4. Chaotic time series of Du�ng equation (vertical line shows the prediction start) with trajectory and error
versus time plot.

Mackey-Glass benchmark is known for its di�culty
in the evaluation by the state-of-the-art prediction
methods [8]. The equation is given as follows:

dy(t)
dt

= ��y(t) +
�x(t� �)

1 + xc(t� �) ; (7)

where � = 17, c = 10, � = 0:2 and � = 0:1. The length
of the data generated by this function is assumed to be
2050. The �rst 95 percent of the time series length is

used for training the network. Note that the dataset
is generated using the simulation-state method with a
numerical simulator, as illustrated in Figure 5. Table 4
indicates that DDNNF almost outperforms all models
in both measures. Table 4 also indicates that ADNN
has almost the same performance as that of the new
model and ANN.

In the literature, it is often seen that the networks
which are competent at predicting the chaotic behavior
often fail in the other data series collected from hourly,
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Figure 5. Chaotic time series of Mackey-Glass delay di�erential equation (vertical line shows the prediction start) with
trajectory and error versus time plot.

daily, weekly, monthly, and yearly observations, say
real time series. It is a common practice to ascribe
any well-suited patterns and trends to some natural
phenomena inclined to estimable repetitions. How-
ever, there exist some other events with unnatural
trends, e.g., the sunspot dataset. This time series
has been famous for a pseudo-period of 11 years,
which is collected from the annual activities of the
dark spot visible from the face perspective of the sun
(Figure 6). The logic behind testing this dataset
is that it is nonlinear; it cannot be �tted by any
statistical distributions, and the type of correlation
is unknown; therefore, it has traditionally been used
to examine the e�ectiveness of nonlinear and neural
network models. In our study, we submit 221 points
(1700-1920) for training the network and 35 points
(1921-1956) for the forecasting purpose. The results
suggest that DDNNF has the best quality in forecasting
this benchmark in comparison with the other models.
The results also imply that the over�tting problem has
been successfully treated in spite of a severe shortage
of the test data.

The next and last real time data set is the tra�c
ow data form an hourly vehicle counting observation
for Monash Freeway, outside Melbourne, Australia.
The dataset comprises 1690 observations during 11
weeks gathered in 1995 (the dataset is illustrated in
Figure 7). The results show that our proposed model
has a medium quality in comparison with the other
models for this case. Regarding the MAPE measure,

ADNN scores the �rst stage but in case of the NSME
measure, AKN has the best performance among others.
Again, the excellent capability of AR at detrending is
obvious.

4. Conclusion

In this paper, we developed a network based on
two aspects: the forward and backward connections
for capturing di�erent patterns and the time shift-
ing inputs. Our explanation for why feed-backing
helps is that the seasonal and trend variations of
a time series might account for the convergence of
its total variation. The models that ignore these
seasonal or trend patterns will eventually result in a
high variation with poor forecasting accuracy. The
prediction results are examined and compared to those
acquired from the Box{Jenkins seasonal autoregres-
sive moving average models. The preponderance
of evidence suggests that neural networks with un-
shifted data are not capable of capturing seasonal or
trend variations; either detrending or deseasonalizing
techniques can drastically decline the prediction er-
rors.

The e�cacy of the presented network is validated
by two sets of complex time series, say, the determin-
istic and the non-deterministic time series including
the chaotic time series and the real observations. In
addition, the predicted results generated by DDNNF
were also compared with those by the ADNN, ANN,



M. Namakshenas et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 711{720 719

Figure 6. Real sunspots observation dataset (vertical line
shows the prediction start) with error versus time plot.

Figure 7. Tra�c ow dataset (vertical line shows the
prediction start) with error versus time plot.

AR, and AKN models. It was indicated that the
proposed model outperforms these conventional tech-
niques, particularly in forecasting chaotic and seasonal
time series. Moreover, we found that by the empirical
analyses, the forward connections in dynamic networks

with time delays have a signi�cant impact on the
reduction of over�tting issues.
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