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Abstract. In certain types of biomimetic surgery systems, micro robots inspired by
Paramecium are designed to swim in a capillary tube for gaining access to internal organs
Gaining insight into the mechanics of Paramecium swimming
in a capillary tube is vital for optimizing the design of such systems. There are two

Modified boundary

element.

approaches to modeling the physics of micro swimming. In the envelope approach, which
is widely accepted by researchers, Paramecium is approximated as a sphere, self-propelled
by tangential and normal surface distortions. However, not only is this approach incapable
of considering the specific geometry of Paramecium, but it also neglects short range
hydrodynamic interactions due to beating cilia, thus, leading to dissimilarity between
experimental data and simulation results. The aim of this study is to present a sub
layer approach to modeling Paramecium locomotion that is capable of directly applying
hydrodynamic interactions due to beating cilia onto the Paramecium boundary. In this
approach, the Paramecium boundary is discretized to hydrodynamically independent
elements and, at each time step of swimming, a specific function is fit to the Paramecium
boundary. Then, element coordinates are extracted and fluid dynamic equations are solved
to model the physics of micro swimming.

(© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In flow regimes pertinent to Paramecium locomotion,
viscous forces dominate inertial forces; consequently,
specific symmetry breaking events are needed to cause
successful propulsion [1]. Paramecium propulsion is
achieved via coordinated motion of as many as 4000
non-symmetrically moving organelles called cilia [2].
So, accurate simulation of hydrodynamic interactions
between cilia is invaluable in determining the mech-
anism of Paramecium locomotion. Micro swimming
requires complex mechanisms of propulsion which can-
not be understood by modeling the symmetry breaking
events due to beating cilia via a sub layer approach. In
the case of micro robots used for minimally invasive
medicine, optimization of the locomotion mechanism
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could help reduce energy consumption, which is of great
interest among researchers [3].

Attempts to find a mathematical or numerical
model for swimming micro organisms date back to the
early 1950s. In a pioneering work, Lighthill derived a
closed mathematical form for modelling low-Reynolds
number locomotion, called the squirmier model [4].
Later, in 1971, Blake did some corrections to the closed
form derived by Lighthill and developed the spherical
envelope approach for modeling the squirming mo-
tion [5]. In this approach, a micro swimmer is modelled
as a sphere able to propel itself using wave-like surface
deformations. These wave-like surface deformations
originate from the coordinated motion of cilia tips
called the metachronal wave. The metachronal wave
is nonsymmetric as a result of nonsymmetric deforma-
tions of beating cilia. The ciliary beat is divided into
effective and recovery strokes. The effective stroke is
for propelling the fluid in a forward direction, while
the recovery stroke, which lasts longer, returns the
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cilium to its initial condition with minimum backward
propulsion [6]. Many analytical and numerical studies
have been undertaken for improving the accuracy of
the squirmer model. For example, one of the most
recent contributions to this model is the work of Wang
and Ardekani who solved the problem of unsteady
squirming motion [7]. Their great contribution to the
squirming model made this model capable of consider-
ing added mass and rotation along the swimming axis,
a feature that is observed in experimental studies [8].

The most efficient stroke of surface deformations
for propulsion was characterized by defining an effi-
ciency function for surface deformations and maximiz-
ing this function [9]. The specific surface deformation
stroke for optimal feeding of micro organisms was
characterized by finding the stroke pertinent to the
optimal flow of nutrients towards the cell surface [10].
Also, it has been identified that only hydrodynamic
interactions cause Paramecium to swim in a helical
trajectory in a capillary tube [11].

Another trend in numerical simulation of low-
Reynolds swimming was inspired by the pioneering
work of Gueron and Liron [12]. Due to the development
of computers with high computational capacity in the
1990s, this class of model, termed a sublayer model,
was implemented by direct measurement of all hydro-
dynamic interactions due to beating cilia [13]. The
problem with this approach is its high computational
cost [14].

Although it has been proved that for modeling
a densely packed arrangement of cilia, the envelope
model is the best approach, this method has some
problems with the specification of boundary conditions
pertinent to the motion of cilia tips; therefore, it
has been unable to correctly predict the maneuvering
mechanism of ciliates with densely packed arrangement
of cilia. In order to overcome this problem, a modified
boundary element method for simulation of Parame-
cium swimming seems to be appropriate.

In the current work, it is intended to present a
modified boundary element method for simulation of
Paramecium locomotion in two dimensions. In this
approach, Paramecium is discretized to boundary ele-
ments which are hydrodynamically independent from
each other. In other words, because hydrodynamic
interactions in low-Reynolds number regimes are short
ranged [15], it is possible to increase element length so
that the boundary elements become hydrodynamically
independent of each other. As a result, creeping flow
equations can be solved for each element independently.
This leads to great reductions in computational cost.
In the modified boundary element method, instead
of considering a wavy surface for Paramecium and
specifying boundary conditions pertinent to a travelling
wave [16], its membrane, at many time steps, is
discretized to boundary elements that contain 5 cilia

beating together. The data for the ciliary beat are
extracted from the bio-inspired fluid lab at Virginia
Tech, which consist of the coordinates and velocities of
each point on Paramecium at each time step (see Fig-
ure S2 and associated table in Supplementary Material
(Section 6)) [16]. For each boundary element, at each
time step, normal and tangential components of viscous
forces are extracted via a creeping flow simulation.
Integrating the normal and tangential viscous forces
on the Paramecium boundary leads to extraction of
propulsive force at each time step. This leads to
extraction of the swimming velocity at each time step,
and, thus, the swimming trajectory can be defined.
The swimming trajectory obtained in this study is the
result of time dependent simulation of Paramecium
swimming in a capillary tube and is in agreement
with experimental data, proving that hydrodynamic
interactions play a key role during the swimming of
Paramecium in a capillary tube.

2. Modeling cilium

With regard to previous studies [6], the cilium, at eight
time steps of beating (see Figure 1(a)), is modeled as
a set of rigid elements. For minimizing computational
cost, it is initially needed to find the minimum number
of rigid elements for approximation of the cilium’s
structure with the least possible error. In order

\i]

AL

]::2 i /\d%
/=8

—d3j
Cilium geometry
e [lement geometry|
(b)

2.5.
log(F")
2.0
£ 15
o0
S 1.0
0.5
0.0
—~ N [e¢] [aed (= =2} © (=1 w0 (=}
o o I~ o o ~ < o 0 o
==} o [o=] fenl i ~— ~— ] i i

log (number of elements)
(e

Figure 1. Modeling each cilium: (a) Cilium geometry at
specific time steps. Four of these time steps pertain to the
effective, and four of them to the recovery, strokes; (b) d1;,
ds; and ds; show the normal distance between cilium
geometry and rigid elements by which a cilium is
approximated; and (c) approximation error in a
logarithmic scale, which shows that five rigid elements can
lead to an accurate approximation of cilium geometry.
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to quantify the approximation error, each cilium is
discretized to sections with similar lengths in 8 time
steps (Figure 1(b)). In Figure 1(b), cilium geometry
at time step 7 is discretized to three rigid elements.
The approximation error can be characterized by sum-
ming the maximum normal distances between cilium
sections and the rigid elements, which are shown as
dyj, d2; and dg;. Initially, it is aimed to find the
minimum number of elements which can give the best
approximation (i.e. the least approximation error) of
the cilium profile. Thus, a function was defined to
show the sum of the maximum distances between
cilium sections and the approximating elements. This
function (F) is numerically quantified using Eq. (1)
and plotted in Figure 1(c). This plot shows that for
more than five elements, the quantity of function (F')
remains unchanged. Considering that computational
cost is linearly proportional to the number of these
elements, the minimum number of elements that gives
an acceptable approximation for modeling cilia (five
elements) was chosen for further simulations. The F'
function is defined as:

Fzzzdm (1)

where ¢ shows the element number, 7 shows the step
number and d;; shows the normal distance between the
1th section on the cilium and its corresponding element,
in the jth time step of simulation.

3. Numerical simulation

In order to characterize different physical parameters
of micro swimming, the Boundary Element Method
(BEM) is widely used [17,18]. According to the
methodology introduced by Pozrikidis [19], in the
BEM, boundaries are discretized and elements are
constructed based on discretization of the boundaries.
Lauga and Riley developed a theoretical framework
for modeling micro swimming in low Reynolds number
flow regimes in complex fluids [20,21]. Their results
have been verified by new methods for measuring
flow characteristics presented by Valarde et al. [22].
Based on this framework, it has been shown that
implementing the boundary element method for mod-
eling the physics of micro swimming is one of the
suitable available options [23-25]. In the current work,
the Paramecium boundary is discretized to boundary
elements containing a specific number of cilia, and fluid
equations are solved for each element independently.
Modification of the BEM in this study originates from
this independence, which is due to the fact that element
dimensions are chosen to be so long that hydrodynamic
interactions between adjacent elements are negligible.

One of the main challenges in modeling the
ciliary beat in Paramecium is determining the element

length for discretizing the Paramecium boundary. In
fact, it is vital to determine the maximum possible
element length, because longer elements lead to lower
computational cost.

An important feature in low-Reynolds fluid me-
chanics is that hydrodynamic interactions are effective
at low ranges. Gueron et al. showed that hydro-
dynamic interactions between two cilia, at a distance
of about 1.2 times cilium length, are negligible [12].
Accordingly, it is possible to discretize the Paramecium
boundary to elements that are hydrodynamically inde-
pendent. In other words, we have to find the minimum
possible element size for which low-Reynolds equations
can be solved independently from other elements. The
procedure for determining maximum possible element
length is presented in Section 3.2.

Discretizing the Paramecium membrane to hy-
drodynamically independent elements leads to a con-
siderable decrease in computational cost. In this
method, low-Reynolds equations for each element can
be solved separately, and the required parameters, such
as drag force, can be integrated onto the Parame-
cium boundary. By integrating the viscous drag on
the Paramecium boundary, it is possible to calculate
the propulsive force and swimming velocity. After
characterizing the element length, a time dependent
simulation was conducted in order to determine the
swimming trajectory of Paramecium, its speed, and
the efficiency of swimming. Simulation results were
then compared to experimental data [16] for validating
the numerical method. Figure 2(a) shows the flow
chart for the numerical simulation used in determining
these parameters. The first step in the simulation of
each time step of swimming is to read the coordinates
and velocities of the cilium at each time step (see
Supplementary Material, Figure S2. and associated
table (Section 6)). The second step is the construction
of boundary elements and determination of their coor-
dinates in the co-moving reference frame. Then, the
fluid dynamic solver gives the normal and tangential
components of the viscous force, which are integrated
over the Paramecium boundary for extraction of the
propulsive force and swimming velocity. Finally, in
order to combine the different time steps and achieve
a time dependent simulation, the swimming velocity
calculated during the previous time steps is specified
as an initial condition by defining an inlet and an
outlet for simulating each boundary element. In other
words, if we consider each boundary element on a
swimming Paramecium, the fluid passing close to each
element could be replaced by an inlet and an outlet
(see Section 3.3).

3.1. Svmulation of ciliary beats
In our simulations, the fluid is regarded as viscous
and incompressible, and the filaments that comprise
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cilia on each element at each time step

1]

Discretize Paramecium to boundary elements and
determine the parameters y and 6 for each one

1

Run time dependent creeping flow simulations
for 0.214 ms in effective stroke and 0.62 ms in
recovery stroke and extract the normal and
tangential viscous forces applied on each element

L

Fit a function on Paramecium boundary and
integrate the viscous forces over it. Then,
calculate the propulsion force and the swimming
velocity at the end of each time step.

1

Set the calculated velocity at the end of previous
times step as an initial condition for the next time

conditions

(2)

Read the coordinates and velocities of the five |

step by defining an inlet and outlet boundary —

Surface velocity magnitude= ] (e-4

(b)

Figure 2. Numerical simulation: a) The simulation flow chart; and b) fluid velocity distribution at a specific time step of

swimming.

nine microtubule pairs of the axoneme are considered
rigid boundaries immersed within the fluid. In order
to find the velocity and pressure distribution in the
fluid domain, Navier-stokes equations for creeping flow
are solved. For the case of low-Reynolds swimming,
Navier-stokes equations can be simplified to Stokes
equations. Eq. (2) shows the momentum and conti-
nuity equations in creeping flow:

~Vp + uViu =0, V.o =0, (2)

where g is fluid viscosity, u represents the velocity
vectorized field, and p accounts for the pressure scalar
field. After solving the Stokes equations on the fluid
domain, we can find the pressure distribution for
different fluid nodes. In order to characterize the
average hydrodynamic force per length applied onto
the cilia as a function of time (S(t)), we can integrate
the viscous stress (o) over the cilia deformed surface:

s =2, @
o=—pl+pu[Vu+ (Vu)'], (4)

where p is the fluid pressure, n is the unit normal vector
to the cilia, s is the length parameter on the moving
walls, and I is the identity matrix [11]. Simulation
is time dependent by considering the variation of
variables with time. Parameters for the mathematical
model for Paramecium swimming and their references
are presented in Table 1 in the Supplementary Material
(Section 6).

In this study, it is required to find the largest
amount of time scale that can ensure numerical con-
vergence. If the time scales are chosen too small,

13.334
10.00 In these critical
regions, the effects
6.66 of correct time step

choice is quite clear

Time (ms)

-3.33

-6.66 —_— 16 tilne steps

21 time steps
= 28 time steps
-10.00 —— 42 time steps
= 84 time steps

Effective stroke~9 ms [14] Recovery stroke~26 ms [14]

Figure 3. Simulation data (horizontal stress component).
These plots show that 84 time steps are enough for
convergence in simulation. In other words, in the critical
regions around which a circle has been drawn, we see that
the plot is not smooth for 21 time steps (the yellow plot);
however, the plot is smooth for smaller time steps (84 time
steps - the blue plot). This shows the increased chance of
convergence for smaller time steps.

the computational cost is increased drastically. Hence,
simulations at 16, 21, 28, 42, and 84 time steps were
undertaken, and the plots for the hydrodynamic force
per length versus time were obtained.

In Figure 3, the vertical axis shows the average
horizontal component of the stress applied to the
cilium, which is defined as:

[ ouds
= (5)

where o, is the horizontal component of the viscous
stress applied to the cilium, ds is the length of the
element, and I. is equal to the cilium length. Ac-
cording to this figure, the diagrams of total stress

S(t)



662 A.N. Sarvestani et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 658-667

at different time steps can be considered a measure
for the convergence of the simulation. From this
figure, it is obvious that at some critical regions of the
effective and recovery strokes, the results of simulations
at different time steps, in which cilia are located at
different positions, are significantly different from each
other. The diagram in Figure 3 shows that if we
discretize duration of the ciliary beat to 84 time steps,
the measured hydrodynamic properties at each time
step are so close to the data for the next time step
that each time step can be an initial condition for the
next time step. This means that 84 time steps can be
considered an optimum number for our simulations. In
the simulation of objects moving in fluids, the object
has different positions at different time steps. If, in the
simulation procedure, time is not discretized to small
enough steps, the moving object may be at positions
far from each other in different time steps. This leads
to inaccurate results which may not be in agreement
with experimental data.

3.2. Coordinate system and characterization
of element length

In order to model Paramecium locomotion, it is re-
quired to discretize its boundary so that hydrodynamic
interactions between discrete elements are negligible.
Hydrodynamic interactions between each beating cil-
ium and its neighbors are significant in a finite domain
called the cilium influence range. Gueron and Liron.
proved that this influence range is 1.2 times cilium
length [12]. In this study, this influence range is
investigated by measuring the viscous stress applied
by each cilium onto its neighbors. In other words,
simulations with one to eight beating cilia are con-
ducted and time averaged drag is applied to one of them
(the first from the left is measured using Eqs. (3) and
(4), and plotted in Figure 4(a)). This figure indicates
that hydrodynamic effects are negligible between five

7

6}

F (u.N)

1 2 3 4 5 6 7

Number of cilia

(2)

adjacent cilia. Because ciliary spacing is 3 pm and
cilium length is 15 pm, the cilium influence range
is calculated as 1.11 times cilium length. Therefore,
according to Figure 4(a) and (b), we chose five cilia on
each boundary element.

3.3. Simulation of ciliary propulsion in
Paramecium

The numerical simulation procedure (Figure 2(a))
begins with the construction of boundary elements
and determination of their coordinates in a Cartesian
reference frame that is attached to the capillary tube
wall (this is the simulation input data which depends on
the diameter of the capillary tube and the dimensions
of the chosen Paramecium) (see Figure 5). Each
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Figure 5. Time dependent simulation of Paramecium
swimming. In various time steps of swimming, functions
representing the geometry of the Paramecium boundary
are extracted. These functions lead to determination of
boundary element coordinates at each time step.
Coordinates for boundary elements are then transformed
to the co-moving reference frame by defining the two
parameters, Y and 0. Y is the normal distance between
the element and the corresponding tube wall, and @ is the
angle of rotation of the specific boundary element with
respect to its corresponding wall. Parameters, Y and 0,
are used to simulate the ciliary beat in each specific
element by setting them as input parameters for the
COMSOL model pertinent to each element.
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Figure 4. Methodology for determining the element length: a) In this figure, the viscous force applied on the first cilium
from the left is plotted for configurations of one to eight cilia beating together. For configurations of more than five cilia,
slight variations in the measured force are observed. In other words, hydrodynamic interactions between the first and fifth
cilium are negligible; and b) each element on the Paramecium membrane contains five cilia; consequently, elements are
hydrodynamically independent of each other.
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boundary element contains 10340 tetrahedral elements
in COMSOL. The chosen solver is the time dependent
SPOOLES, which is based on direct LU factorization
of the sparse matrix. Direct LU factorization is usually
chosen for modeling fluid flow within microfluidics
due to its stability and good convergence rate. In-
deed, because we intended to simulate Paramecium
that changes its geometry while swimming, we should
determine the coordinates of different points on its
membrane at each time step. Coordinates of different
points on the Paramecium membrane are extracted
from the video of a swimming Paramecium taken
from the bio-inspired lab at Virginia Tech. Also, for
investigating propulsive force and swimming velocity,
coordinates of different points on its boundary are
essential. The swimming velocity is calculated by
integrating the function pertinent to the propulsive
force and using zero initial conditions.

The next step starts by transferring boundary
element coordinates from the Cartesian reference frame
(z,y) to the moving reference frame (V,0). For tube
diameter Diype = 200 pm, at the initial time step
(t = 0), if we choose a point on the Paramecium’s
upper boundary with coordinates (z¢, Youp), it can be
observed that 34 < zy < 304 pm. Then, it is possible
to fit function f(xg) on the upper boundary, so that

we have, for each point, Yo., = f(x¢) and % =
% = f(x0). In the moving reference frame, Y is

the normal distance between each boundary element
and its corresponding tube wall. Therefore, in order
to calculate the normal distance, the equation for the
line normal to an element with coordinates (xg, Youp)
is given in:

up _ —dx
v _df(fﬁo)

(x — x0). (6)

for calculating the normal distance, the coordinate of
the point at which this line intersects with the upper
boundary (z1,200) can be calculated from Eq. (7):

—(200 — f(.%'o))f(ibo) — Xy =21. (7)

Hence, the normal distance is equal to the distance
between the two points, (x¢, Youp) and (z1, 200), which
is given in Eq. (8):

Y = /(a1 — 20)? + (200 - 47)2. ®)

The second component in the element coordinates in
the moving reference frame is 8, which is characterized
from Eq. (9):

200 — yo*
6y = cos™* (yo Yo ) . (9)

After adjusting the element coordinates to the moving
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Figure 6. The COMSOL model for extraction of pressure
distribution around each boundary element. As previously
discussed, boundary elements are hydrodynamically
independent; consequently, for each individual element, it
is possible to conduct an independent CFD
(computational fluid dynamics) analysis by which we can
extract the functions pertinent to the normal and
tangential components of viscous force on each element,
which is specified by special parameters, Y and 6. By
integrating these functions over the Paramecium
boundary, we can calculate the propulsion force, which
could be shown by a set of two time dependent functions;
one function for quantity and another for the direction of
propulsion force. Also, it may be possible to derive
functions for the propulsion torque, which is of interest for
further research.

reference frame, cilia coordinates, and velocities at
different time steps, along with transferred coordinates
(see Figure S1 and its associated table in the “Sup-
plementary material” (Section 6)), the details of which
were extracted from the experimental data provided by
the bio-inspired fluid lab at Virginia Tech, [16]), were
inserted into the COMSOL model for calculating the
viscous force applied onto each boundary element (see
Figure 6). Then, functions representing the normal
and tangential components of the viscous force as a
function of the element coordinates were extracted
for calculating the propulsive force and swimming
velocity (see Figure S1 in the Supplementary Material
(Section 6)). At the beginning of unsteady swimming,
the velocity of the organism is equal to zero. For
modeling the initial time step of the swimming, the
mentioned procedure is accurate enough. However,
for modeling swimming at time steps in which the
Paramecium has a bulk velocity, the fluid near each
boundary element is moving at a specific velocity. The
physics of this process could be investigated by defining
an inlet and an outlet boundary condition for the
COMSOL model (see Figure 6).

For validation of the simulation procedure, the
experimental data of Ishikawa and Hota. were
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Figure 7. Comparison of the simulation data with
experimental data of Ishikawa and Hota [18]. This plot
shows the velocity distribution around a swimming
Paramecium. Each element of the Paramecium boundary
has its unique angle; therefore, the horizontal label depicts
the angle of each boundary element with respect to
horizontal axes attached to the capillary tube wall.

used [18]. Ishikawa measured the fluid velocity dis-
tribution around a swimming Paramecium. We found
that our simulation results were in agreement with
these data. Figure 7 shows the fluid velocity around
a swimming Paramecium versus surface angle. For
both simulation and experimental data, fluid velocity
limits to zero for the anterior and posterior sections
of the swimming Paramecium. For the middle section
of the Paramecium, fluid velocity reaches its maxi-
mum size. In the middle sections, a slight difference
between simulation results and experimental data is
observed. This slight difference is due to the fact that
they have considered an axisymmetric geometry for a
swimming Paramecium, whereas its geometry is not
axisymmetric. Their method for obtaining the fluid
velocity is particle velocimetry. In this method, the
exact geometry of Paramecium could not be taken
into consideration and an approximate geometry is
investigated.

Also, simulation results of the Paramecium swim-
ming in a capillary tube are compared to Jana’s
experimental data [16]. These data include swimming
velocity, swimming trajectory and swimming efficiency.
Discussions about these data are presented in the
results and discussions section.

4. Results and discussions

Recently, Jana et al. (Bio-inspired fluid lab at Virginia
Tech) presented a paper in which they intended to
investigate the hydrodynamic effects of confinement
on the Paramecium swimming trajectory [16]. For
this purpose, they prepared capillary tubes of various
diameters and observed the helical trajectory followed
by Paramecium swimming in them. Since we are
interested in developing a numerical model for explain-

ing hydrodynamic effects on Paramecium propulsion,
their accurate experimental data were used for our
benchmark test.

In order to run the benchmark test, simulations
were run for different capillary tube diameters. In the
simulation procedure, initially, boundary elements are
constructed and their coordinates are extracted. Then,
for each time step of swimming, the propulsive force
and swimming velocity and trajectory are extracted.
Results were compared to Jana’s experimental results.

4.1. Discussions on Paramecium swimming in
a capillary tube
The Paramecium swimming trajectory is a helix which
may be characterized by its wavelength and amplitude
(see Figure 8). In this work, only a specific section
of this helix is extracted. Jana et al. observed that
the amplitude of the introduced helix increases nearly
linearly with an increase in capillary tube diameter
(Figure 8(a) and (b)). Thus, the numerical simulation
algorithm can be validated if its results are in good
agreement with the experimental data presented by
Jana et al. The wavelength and amplitude could be
determined by measuring the distance between two
points of the wave corresponding to the swimming
trajectory, with the slope parallel to the capillary tube
wall. According to Figure 8(b), there is good agreement
between the experimental data and simulation results.
Figure 8(c) depicts the results of another bench-
mark test. In this test, swimming velocity, which
is non-dimensionalized by the velocity calculated by
Blake [5], is measured. In this figure, the black line
shows the swimming velocity from the experimental
data. From this figure, it is evident that for R/c < 2.1,
simulation and experimental results show increasing
trends and converge with each other for very large R/c
values [16].

4.2. Swimming efficiency

There are various definitions for swimming efficiency.
The traditional definition for low-Reynolds swimming
efficiency is presented in the following equation. This
definition is widely used to determine the most efficient
swimming kinematics:

_<U>T
T <P>

In the above equation, T denotes the force needed to
pull a rigid body with similar geometry to Paramecium
at constant time-averaged velocity, < U >, while
< P > is the mean energy dissipation while pulling
the body. In different studies, different methods for
calculating T have been presented. Michelin and
Lauga [9] derived T* = 67 < U > from Stokes’ formula
for the specific case of a squirmer. However, Jana et
al. [16] considered the following equation for calculating
T* for the specific case of Paramecium:

7 (10)
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Figure 8. Time dependent simulation of Paramecium swimming: a) Schematic representation of helical swimming
parameters: c¢ is the Paramecium width, A is the amplitude of the swimming trajectory, R is the radius of the capillary
tube, and A is the wave length of the swimming trajectory; b) plot of the non-dimensional amplitude of the swimming
trajectory versus the non-dimensional radius of the capillary tube. Simulation data are in agreement with experimental
data and show an almost linear increase of amplitude with the increase in capillary tube radius; and c) comparison of
results from simulation using a modified boundary element method with experimental data described by Jana et al. [16].
The horizontal axes show the non-dimensional radius of the capillary tube, and vertical axes show the normalized

swimming velocity.

T* — ’MUSV)\Vlm7 (11)
where p denotes the fluid viscosity, and A denotes the
wavelength of the metachronal wave propagated by
cilia. In order to compare our simulation results with
the experimental results of Jana et al. [16], we used
Eq. (10) for calculating the swimming efficiency.

Figure 9 shows a comparison of Jana et al.’s exper-
imental data [16] with our simulation results. In fact,
Jana et al. presented different data for the efficiency
of anterior and posterior parts of Paramecium. In
our simulation results, we only extracted efficiency for
the swimming trajectory of the Paramecium’s center
of gravity, which is the average of anterior and pos-
terior efficiencies. Simulation results reveal that the
swimming efficiency is limited to 4%, while increasing
the diameter of the capillary tube in silico. Michelin
and Lauga proved that the theoretical efficiency for the
squirmer limits to 22.22% [9]. This is in contrast to our
simulation results, indicating that the efficiency of real
Paramecium is far different from a squirmer. Thus,
the trajectory of a swimming Paramecium may not be
calculated by optimizing the efficiency of the squirmer.

5. Discussion

In this study, it is primarily intended to develop a sub
layer approach for modeling Paramecium locomotion

== Experimental data of Jana et al. [16]
Modified boundary element method

0.02f simulation results

0.01fp

R/c
Figure 9. Swimming efficiencies of various trajectories
followed by anterior and posterior portions of Paramecium
compared to swimming efficiency obtained from numerical
simulation. In numerical simulations, ratio of R/c was
varied from 1.3 to 3.6. Simulation results are in good
agreement with experimental results of Jana et al. [16].

with less computational cost. In fact, the presented
methodology is capable of coupling the internal mecha-
nisms of cilia with external fluid dynamics, which is not
only vital for investigating Paramecium locomotion,
but may also be useful in determining the causes of
cilia related diseases, such as primary cilia dyskinesia.
For modeling Paramecium locomotion, its boundary
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was discretized into elements with lengths of 15 pm.
This length was chosen because it enabled us to simu-
late Paramecium with hydrodynamically independent
elements and a reduced computational cost. In fact, it
is an inherent property of low-Reynolds fluid mechanics
that hydrodynamic interactions are effective at low
ranges. This is the key distinction of low-Reynolds
swimming, which enables application of computational
models with comparatively less computational cost.
Hydrodynamical independence of adjacent elements
is, of course, an approximation. However, results
of the developed method depict that this approxima-
tion is more close to reality than analytical meth-
ods.

At each time step of swimming, the coordinates
of each boundary element were extracted as a function
of ¥ (normal distance between each element and its
corresponding wall) and 6 (angle of rotation of element
with respect to its corresponding wall). These two
parameters, as well as the other parameters describ-
ing cilia coordinates (see Figure S2 and associated
table in Supplementary Material (Section 6)), and
the element velocities, were given to our numerical
model for extracting the normal and tangential com-
ponents of viscous forces applied onto each boundary
element. By integrating these functions over the
Paramecium boundary, propulsion force, swimming
velocity and swimming trajectory were determined.
The results of this study can be useful for determin-
ing Paramecium locomotion subjected to fluid mo-
tion within specific confinements. For example, data
for a swimming trajectory can be useful in utilizing
Paramecium as a micro robot for minimally invasive
therapies.

6. Supplementary materials

Supplementary material of this article can be found at:
https://jumpshare.com/v/pxrIRH8vinU20nBRN32r{
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