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Abstract. In this paper, a closed-loop optimal line-of-sight guidance law for �rst-order
control systems is derived for stationary targets. The problem is solved for the one-
dimensional case using normalized equations to obtain normalized guidance gains and
performance curves. Three sets of normalized equations are introduced and discussed
using di�erent normalizing factors. The performances of the guidance laws are compared
in normalized forms with zero-lag optimal guidance and a �rst-order optimal scheme
with steady-state gains using a second-order control system. Normalized miss distance
analysis shows that the miss distance of the �rst-order guidance law is smaller than the
two mentioned schemes for small total 
ight times.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Guidance laws are categorized into two-point and
three-point guidance schemes [1]. The three-point
guidance is sometimes referred to as Line-Of-Sight
(LOS) guidance, in which the vehicle maneuvers to
keep itself on the line between a reference point and a
target point, i.e. reference-to-target line-of-sight [1,2].
This type of guidance law is used in the trajectory
design of moving vehicles, especially aerial vehicles,
such as missiles [2,3] and unmanned aircraft. LOS
guidance can be considered a special case for trajectory
tracking and terrain following. In other words, the
three-point guidance scheme can be extended when the
reference line is not straight, e.g. in a terrain following
problem [4,5].

Modern control theory and estimation are utilized
to develop three-point guidance laws and trajectory
tracking control strategies, such as feedback lineariza-
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tion [6], fuzzy-logic [7-9], robust [10], adaptive [11],
variable-structure [12], linear model predictive con-
trol [13] and optimal control [14-16]. The genetic
algorithm [17], ant colony optimization [18], and neural
network [19] may also be used in the design and
development of this class of guidance and control laws.

These control methods are also used in two-point
guidance schemes. For example, two-point Optimal
Guidance Laws (OGLs) in closed-loop are available
for �rst-, second-, and high-order control systems [20].
Analytical approaches for three-point guidance are
more di�cult than two-point guidance, because of
the additional constraint on the vehicle trajectory
for keeping it near the reference-to-target LOS. Only
simple cases are solved analytically in closed-form for
three-point guidance, e.g. as treated in [21,22] for a case
of idealized LOS trajectory.

Derivation of optimal three-point guidance laws
is also more complex than the two-point strategies,
because of the above-mentioned additional constraint
on vehicle trajectory. The general formulation of the
optimal LOS guidance, deterministic [23] or stochas-
tic [23,24] approach for linear systems can be derived
simply from linear optimal control theory. However,
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the solutions of the resulting relations in closed-form
are of most interest in guidance theory and application.
The optimal solutions for perfect control system of
linearized LOS problem have been obtained in [14,15]
for stationary targets; however, their performance
indices are slightly di�erent. The guidance gains of [15]
have also been derived for a steady-state solution.
Increasing the order of the control system highly
increases solution di�culties in the closed-form. The
optimal solution of the �rst-order system has been
presented in [25] for speci�ed values of parameters,
without obtaining explicit relations for guidance gains
in terms of time constant, time-to-go, and LOS weight-
ing factor.

In this paper, the optimal solution of LOS guid-
ance is derived for a �rst-order control system and
guidance gains are obtained explicitly in terms of time
constant, time-to-go until the �nal time, and LOS
weighting factor. The relations are also normalized
to give more insight into the design and performance
analysis of the guidance law.

The rest of the paper is organized as follows:
Section 2 presents the governing equations of motion in
normalized form. Section 3 formulates the optimal line-
of-sight guidance in closed-form. Section 4 presents
the simulation results and comparison of the proposed
�rst-order OGL with other guidance laws, followed by
conclusions in Section 5.

2. Normalized equations of motion

The governing equation of motion of a vehicle, P , as
a point mass for a one-dimensional case is �h = a,
where h is the distance of the vehicle from the line
between reference point O and the target position, as
shown in Figure 1. Also, a is the vehicle acceleration
assumed in the direction normal to the reference-to-
target LOS. The overdot indicates di�erentiation with
respect to time. The control system is taken as a �rst-
order transfer function from commanded acceleration u
to achieved commanded acceleration a, that is:

a
u

(s) =
1

1 + Ts
; (1)

where T is the time constant of the control system. The

Figure 1. Geometry of one-dimensional problem.

state space representation of the problem is given by:8><>:
_h = v
_v = a
_a = (u� a)=T

(2)

where v is the velocity component of vehicle P normal
to LOS (along the h axis in Figure 1). The state space
equations are normalized using the following change of
variables:

� =
t
T
; �f =

tf
T
; �go =

tgo
T
; (3)

ĥ =
h

AT 2 ; v̂ =
v
AT

; (4)

â =
a
A
; û =

u
A
; (5)

where A is a normalizing parameter in m/s2. Here,
the normalizing factor in [26] is generalized using
parameter A. Also, tf is the �nal time and tgo = tf � t
is the time-to-go until the �nal time. The normalized
state space form is then given by:8><>:ĥ

0 = v̂
v̂0 = â
â0 = û� â

(6)

where ()0 denotes di�erentiation with respect to the
nondimensional time, � .

When the control system is given in the form of:

a
u

(s) =
1�

1 + T
2 s
�2 ; (7)

similar to our simulation, the last equation of the state
equations is replaced by the two following equations:8<: _x1 = 2

T (u� x1)

_a = 2
T (x1 � a)

(8)

or, in the normalized form, as:8<:x̂1 = 2 (û� x̂1)

â0 = 2 (x̂1 � â)
(9)

where x1 is the additional state variable due to increas-
ing the order of the control system, and x̂1 = x1=A.

The second-order control system (Eq. (7)) de-
scribed by the preceding relations is used for the
performance analysis of LOS guidance laws in the
implemented simulation code. Since the �rst-order
OGL is obtained assuming a �rst-order control system,
the performance analysis is carried out for the higher-
order control system; otherwise the comparison will not
be justi�ed.
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3. Optimal guidance problem

The problem is to �nd the commanded acceleration, u,
as the input control that minimizes the performance
index:

J =
1
2

Z tf

t0
(bh2 + u2)dt; (10)

subject to state space Eq. (2), where b > 0 is the
weighting coe�cient for the vehicle deviation from the
LOS. The initial and �nal conditions are:8>><>>:

h(t0) = h0

v(t0) = v0

a(t0) = a0

8>><>>:
h(tf ) = 0

v(tf ) = free

a(tf ) = free

(11)

where subscript \0" indicates the initial value, and the
�nal time, tf , is speci�ed.

The problem is now restated in the normalized
form to obtain the normalized commanded acceler-
ation, û, that minimizes the following performance
index:

J
TA2 =

1
2

Z �f

0

�
b̂ĥ2 + û2

�
d�; b̂ = bT 4; (12)

subject to the normalized state space Eq. (6). The
nondimensional initial and �nal conditions are:8>><>>:

ĥ(�0) = ĥ0

v̂(�0) = v̂0

â(�0) = â0

8>><>>:
ĥ(�f ) = 0

v̂(�f ) = free

â(�f ) = free

(13)

The �nal nondimensional time, �f , is also speci�ed.
The Hamiltonian of the normalized problem is given
by:

H =
1
2
b̂ĥ2 +

1
2
û2 + �hv̂ + �vâ+ �a (û� â) : (14)

The optimality condition gives:

@H
@û

= 0! û = ��a: (15)

Costate vector ~� is simply obtained as:

_~� = �@H
@~x
!
8><>:

_�h = �b̂ĥ
_�v = ��h
_�a = ��v + �a

(16)

where ~x =
�
ĥ v̂ â

�T
and ~� =

�
�h �v �a

�T . Since
the �nal values for v̂(�f ) and â(�f ) are free, we have:(

�v(�f ) = 0

�a(�f ) = 0
(17)

To solve the problem, the state and costate equations
are combined as follows [27]:

d
d�

�
~x
~�

�
= Ap

�
~x
~�

�
; (18)

where:

AP =

26666664
0 1 0 0 0 0
0 0 1 0 0 0
0 0 �1 0 0 �1
�b̂ 0 0 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 1

37777775 : (19)

From Eqs. (13) and (17), the nondimensional initial
and �nal conditions are:8>><>>:

ĥ(�0) = ĥ0

v̂(�0) = v̂0

â(�0) = 0

8>><>>:
ĥ(�f ) = 0

�v(�f ) = 0

�a(�f ) = 0

(20)

The solution of state space equation (18) in terms of
the initial conditions has the form:�

~x(�)
~�(�)

�
6�1

= �(� � �0)
�
~x(�0)
~�(�0)

�
6�1

; (21)

where � is the state transition matrix for the system
matrix, Ap. Therefore, we have:

�(� � �0) = L�1 �(sI �Ap)�1	
���0 ; (22)

where I is a 6�6 identity matrix, s is the Laplace trans-
form variable, and L�1 denotes the inverse Laplace
transform. The state transition matrix elements can be
solved analytically for the problem (see Appendix A).
Eq. (21) may be written from the current nondimen-
sional time, � , to �f , as follows:�

~x(�f )
~�(�f )

�
6�1

= �(�go)
�
~x(�)
~�(�)

�
6�1

: (23)

Applying the �nal conditions, ĥ(�f ) = 0, �v(�f ) = 0,
and �a(�f ) = 0, for the �rst, �fth, and sixth rows of
the preceding relation, yields:

�11(�go)ĥ(�) + �12(�go)v̂(�) + �13(�go)â(�)

+�14(�go)�h(�)+�15�v(�)+�16�a(�)=0; (24a)

�51(�go)ĥ(�) + �52(�go)v̂(�) + �53(�go)â(�)

+�54(�go)�h(�)+�55�v(�)+�56�a(�)=0; (24b)

�61(�go)ĥ(�) + �62(�go)v̂(�) + �63(�go)â(�)

+�64(�go)�h(�)+�65�v(�)+�66�a(�)=0: (24c)
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The three preceding equations are rewritten in the
following matrix form:

P1(�go)~x(�) + P2(�go)~�(�) = ~0; (25)

where:

P1(�go) =

264�11(�go) �12(�go) �13(�go)
�51(�go) �52(�go) �53(�go)
�61(�go) �62(�go) �63(�go)

375 ; (26)

P2(�go) =

264�14(�go) �15(�go) �16(�go)
�54(�go) �55(�go) �56(�go)
�64(�go) �65(�go) �66(�go)

375 : (27)

If P2(�go) is invertible, ~�(�) can be obtained from
Eq. (24) as:

~�(�) = �P2(�go)�1P1(�go)~x(�): (28)

Costate �a, from the preceding relation, is written as
follows:

�a(�) = Ĉh(�go)ĥ+ Ĉv(�go)v̂ + Ĉa(�go)â; (29)

where:8>><>>:
Ĉh = �f1�11 � f2�51 � f3�61

Ĉv = �f1�12 � f2�52 � f3�62

Ĉa = �f1�13 � f2�53 � f3�63

(30)

and:

f1 =
�54(�go)�65(�go)� �55(�go)�64(�go)

jP2(�go)j ; (31a)

f2 = ��14(�go)�65(�go)� �15(�go)�64(�go)
jP2(�go)j ; (31b)

f3 =
�14(�go)�55(�go)� �15(�go)�54(�go)

jP2(�go)j ; (31c)

jP2j =�14(�55�66��56�65)+�54(�16�65��15�66)

+ �64(�15�56 � �16�55): (32)

For brevity, argument �go in �ij() and P2 was omitted
from Eqs. (30) and (32). Therefore, the normal-
ized commanded acceleration can be obtained from
Eqs. (14) and (29) as:

û(�) = �Ĉh(�go; b̂)ĥ� Ĉv(�go; b̂)v̂ � Ĉa(�go; b̂)â: (33)

For the purpose of clarity, the constant b̂ is added to the
arguments of the normalized guidance gains. Hence,
the optimal commanded acceleration is written in the

following form:

u(t) = Aû(�) = �Chh� Cvv � Caa; (34)

where the guidance gains, Ch, Cv, and Ca, are given
by:8>><>>:

Ch = 1
T 2 Ĉh

Cv = 1
T Ĉv

Ca = Ĉa

(35)

Similarly, the history of the commanded acceleration is
obtained as (�0 = 0):

û(�) =
��N1(�) +N2(�)P2(�f )�1P1(�f )

�
~x(0); (36)

where:8>><>>:
N1(�) =

h
�61(�) �62(�) �63(�)

i
N2(�) =

h
�64(�) �65(�) �66(�)

i
:

(37)

The behavior of the normalized guidance gains is shown
in Figure 2 for di�erent values of b̂ = 0:01; 0:05; 0:1.
As can be seen in the �gure, the guidance gains reach
the steady-state values when �go approaches in�nity,
which, in practice, is for �go = 10 � 12 for the
mentioned values of weighting coe�cients. These
steady-state values are displayed in Figure 3 versus the
normalized weighting coe�cient (b̂).

The steady state normalized guidance gains can
also be obtained directly from the following algebraic
Ricatti equation:

0 = �SAs �ATs S �Q+ SBR�1BTS; (38)

where As is the system matrix of the state equation (6),
B =

�
0 0 1

�T is the input matrix, R = 1, and Q is
the weighting matrix of the state vector for a standard
quadratic form:

As =

240 1 0
0 0 1
0 0 �1

35 ; Q =

24b̂ 0 0
0 0 0
0 0 0

35 : (39)

The costate vector is then given by ~�(�) = S~x(�). Since
only the third element of the costate, �a, is required for
calculation of the commanded acceleration, only the
third row of matrix S is needed, that is:

S31 =
p
b̂; (40a)

S32 =
py1

2
+

r
�y1 + 2

q
y2

1 + 16b̂

2
; (40b)

S33 =
p

1 + 2S32 � 1; (40c)
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Figure 2. Normalized guidance gains pro�les.

where:
y1 = Z1 + Z2; (41)

Z1;2 =

 
32b̂2 � 32

p
12b̂3 + 81b̂4

9

! 1
3

: (42)

The normalized commanded acceleration is then given
by:

û(�) =� Ĉh
�1; b̂� ĥ� Ĉv �1; b̂� v̂

� Ĉa
�1; b̂� â; (43)

where:

Ĉh
�1; b̂� = S31;

Ĉv
�1; b̂� = S32;

Ĉa
�1; b̂� = S33: (44)

Figure 3. Steady-state normalized guidance gains vs.
weighting coe�cient.

Figure 4. Normalized commanded acceleration vs.
normalized time for di�erent values of b̂ = 0:01; 0:05; 0:1
(v0 = 0).

4. Simulation results and discussions

Here, the performance analysis of the First-Order
Optimal Guidance (FOOG) strategy is investigated
and compared with its steady-state solution and Zero-
Lag Optimal Guidance (ZLOG) law. First, consider a
�rst-order transfer function described by Eq. (1) for
the vehicle control system. The acceleration initial
condition is set to zero. Three di�erent normalizing
factors are introduced for the problem, i.e. A = h0=T 2,
A = v0=T , and A = asat, where asat is the acceleration
limit of the vehicle. Each normalizing factor is useful
for a speci�c class of scenarios.

In the �rst class of scenarios, the initial vertical
velocity is set to zero, i.e. v0 = 0 without considering
the acceleration limit. For this class, A = h0=T 2

is chosen as the normalizing factor. Therefore, the
behavior for the commanded acceleration and deviation
from LOS can be solved numerically, once for all
values of initial deviation from LOS and the control
system time constant, as shown in Figures 4 and 5.
As expected, increasing the weighting factor increases
the required acceleration commands, as depicted in
Figure 4, resulting in a more rapid decrease in LOS
deviation, as shown in Figure 5.

In the second class of scenarios, the initial devi-
ation from LOS is assumed to be zero. In this class,
A = v0=T may be chosen as a normalization factor.
Similarly, increasing the weighting factor increases the
required acceleration commands in order to decrease
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Figure 5. Normalized deviation vs. normalized time for
di�erent values of b̂ = 0:01; 0:05; 0:1 (v0 = 0).

Figure 6. Normalized commanded acceleration vs.
normalized time for di�erent values of b̂ = 0:01; 0:05; 0:1
(h0 = 0).

Figure 7. Normalized deviation vs. normalized time for
di�erent values of b̂ = 0:01; 0:05; 0:1 (h0 = 0).

the LOS deviation more rapidly, as shown in Figures 6
and 7. Therefore, there is a tradeo� to select an
appropriate value for the weighting factor.

The mentioned normalization can be used for
other situations, e.g. ĥ0 = 10, as in Figures 8
and 9, when A = v0=T . We are now to compare
the performance of the First-Order Optimal Guidance
(FOOG), FOOG with steady-state gains labeled by
FOOG (tf = 1) in related �gures, and the Zero-
Lag Optimal Guidance (ZLOG) in normalized form
(Appendix B). The comparison of the three guidance
laws is carried out for a second-order control system
described by Eq. (7). The acceleration commands and
LOS deviation are shown in Figures 8 and 9, respec-
tively, for the three guidance laws without acceleration
limit, when b̂ = 0:01 and ĥ0 = 10. The acceleration
commands for FOOG and FOOG (tf =1) are almost

Figure 8. Normalized commanded acceleration vs.
normalized time for three guidance laws (h0=v0T = 10,
b̂ = 0:01).

Figure 9. Normalized deviation vs. normalized time for
three guidance laws (h0=v0T = 10, b̂ = 0:01).

Figure 10. Normalized miss distance vs. normalized �nal
time for three guidance laws (v0T=h0 = 5, b̂ = 0:05).

close together, as seen in Figure 8, but the acceleration
commands for ZLOG are quite di�erent, especially for
the last instants (about the system time constant).
Further simulations show that the di�erences between
the performances of FOOG and its steady-state version
increase for smaller tf=T , and vice versa. The steady-
state FOOG gives a similar performance, like FOOG
for �f > 20. Figure 9 shows that FOOG (tf = 1)
produces more miss distances than those of the two
other guidance laws.

To investigate more precisely, the normalized Miss
Distances (MD) are compared for di�erent total 
ight
times in Figures 10 and 11 for di�erent normalization
factors, without an acceleration limit. The normalized
miss distance of FOOG is smaller than that of the two
others. In addition, as shown in Figure 12, the miss
distance of zero-lag optimal guidance can be 
uctuated
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Figure 11. Normalized miss distance vs. normalized �nal
time for three guidance laws (h0=v0T = 10, b̂ = 0:05).

Figure 12. Normalized miss distance vs. normalized �nal
time for three guidance laws (h0=v0T = 10, b̂ = 0:8).

Figure 13. Normalized miss distance vs. normalized
weighting factor (b̂) for three guidance laws (h0=v0T = 10,
�f = 10).

versus normalized �nal time, like an undamped oscil-
lation, if large values of weighting factor are needed to
satisfy the miss distance requirements. To investigate
more precisely, the normalized miss distance is plotted
versus the weighting factor in Figure 13 for �f = 10,
showing the poor performance of the ZLOG when the
weighting factor is increased. It is worth noting that
point �f = 10 gives a relatively good result, with
respect to other normalized �nal times for ZLOG, as
shown in Figure 12.

Up to now, the performance analysis has been
carried out with no acceleration limit. The e�ect
of acceleration saturation is investigated here in Fig-
ures 14-17. The normalized miss distance for the
three guidance laws is depicted in Figure 14 using the
normalizing factor A = asat. The three guidance laws
produce similar miss distances for small normalized

ight time, depending on initial errors, because the

Figure 14. Normalized miss distance vs. normalized �nal
time for three guidance laws (h0=asatT 2 = 2,
v0=asatT = 0:5, b̂ = 0:05).

Figure 15. Normalized miss distance vs. normalized
weighting factor (b̂) for three guidance laws (h0=v0T = 10,
�f = 10, asatT=v0 = 2).

Figure 16. Normalized miss distance vs. normalized
acceleration limit (Rsat) for three guidance laws
(h0=v0T = 10, �f = 15, b̂ = 0:05).

accelerations of all three guidance strategies are sat-
urated. If we have su�cient �nal time (or a larger
acceleration limit), the acceleration comes o� the limit
and the performances of the guidance laws become
di�erent, resulting in a smaller miss distance for FOOG
than the other two. For example, the miss distance
at point �f = 10 is analyzed in Figure 15 versus
weighting factor. This �gure can be compared with
the case without an acceleration limit, as shown before
in Figure 13. The normalized miss distance versus
normalized acceleration limit is depicted in Figure 16,
for �f = 15 and ĥ0 = 10. As seen in this �gure,
the performance of FOOG is superior to ZLOG in the
middle range of showed normalized acceleration limit.

To investigate further the e�ect of weighting
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Figure 17. Normalized miss distance contours:
normalized weighting factor vs. normalized �nal time for
(a) ZLOG, (b) FOOG (�f =1), and (c) FOOG
(h0=v0T = 10, asatT=v0 = 2).

factor in miss distance, the normalized miss distance
contours, constant MD=v0T , for the three guidance
laws are plotted in Figure 17, when h0=v0T = 10
and asatT=v0 = 2. The �gure is not shown for
tf=T < 5 because the e�ect of the acceleration limit
is dominant for prescribed initial errors and parame-
ters. For ZLOG, a clear trend cannot be observed in
Figure 17(a); however, for larger values of normalized
�nal time, such a trend can be seen. The plotted
contours for steady-state FOOG display a regular trend
in Figure 17(b). Comparing Figure 17(a) and (b),
shown for 10 �MD=v0T , determines in which regions
the steady-state FOOG produce less miss distance
than that of ZLOG. The normalized miss distance
contour for FOOG is shown in Figure 17(c) plotted for
1000 �MD=v0T to show better the very small values
of normalized miss distance.

The allowable minimum �nal time to achieve a

Figure 18. Normalized minimum �nal time vs.
normalized initial distance to LOS (b̂ = 0:1, asatT=v0 = 2).

Figure 19. Normalized minimum �nal time vs.
normalized initial distance to LOS (b̂ = 0:1, asatT=v0 = 5).

Figure 20. Miss distance vs. target maneuvering time to
the �nal time for three guidance laws (b = 5, T = 0:5,
h0 = 0, v0 = 0, asat = 10g).

predetermined miss distance is depicted in Figures 18
and 19 for the three guidance laws in normalized form.
In these �gures, the allowable normalized miss distance
is chosen less than 0.02, i.e. MD=v0T < 0:02. As
expected, the �rst-order optimal guidance law can work
in smaller �nal times, compared to the others. The

uctuation in Figure 18 is due to an acceleration limit
of asatT=v0 = 2. Increasing the acceleration limit
decreases the 
uctuation, as seen in Figure 19.

Although the formulations have been developed in
one dimension, they can be utilized in two dimensions
(two channels), in practice. In addition, we are now to
evaluate the performance of the three mentioned guid-
ance laws in two-dimensional geometry for a special
case of target maneuvers. In Figure 20, a stationary
target moves from rest with a speed of 5 m/s normal
to the initial LOS in the last instants, and the vehicle
having a speed of 250 m/s launches without initial
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errors. The target maneuvering time to the �nal time
is denoted by tgoM in the �gure. As shown in Figure 20,
the miss distance of the �rst-order guidance law is less
than the others for the mentioned case of maneuvering
target.

5. Conclusions

An optimal three-point guidance law has been derived
in a closed-loop for a �rst-order control system with-
out acceleration limit. The �nal position and total

ight time are both �xed. The optimal commanded
acceleration has been developed in one dimension;
however, it can be used in two channels separately in
the same formulation. In the closed-loop formulation,
the optimal gains are in terms of normalized time-
to-go and normalized weighting factor; therefore, the
time-to-go may be, in practice, estimated by vehicle-
to-target closing velocity and range-to-go. Moreover,
the formulation is normalized in three forms to give
normalized guidance gains and also normalized miss
distance curves. Each of the normalizations has advan-
tages for a normalized parametric study of the problem.
The performance of the guidance laws is compared
in normalized forms with zero-lag optimal guidance
and a �rst-order optimal scheme with steady-state
gains using a second-order control system with/without
acceleration limit. The preliminary study shows that
the miss distance of the �rst-order guidance law is
smaller than the two mentioned schemes for small total

ight times; however, a complete study with state
estimation in the presence of noise and disturbance is
suggested in a six-degree-of-freedom 
ight simulation.

Nomenclature

a Vehicle acceleration
A Normalizing parameter
b Weighting coe�cient
Ch; Cv; Ca Guidance gains
h Distance from line-of-sight
H Hamiltonian
L�1 Inverse Laplace transform
J Performance index
s Laplace domain variable
tf Final time
tgo Time-to-go until the �nal time
T Time constant
u Commanded acceleration
v Velocity component of vehicle normal

to LOS
~x State vector
~� Costate vector

� Nondimensional time
� State transition matrix
(_) d()=dt

()0 d()=d�
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Appendix A: Derivation of state transition
matrix

The state transition matrix for system matrix (19) is
obtained by Eq. (22). For calculation of the state
transition matrix, �rst, the characteristic equation and
its roots are obtained. The characteristic equation is
found to be:

jsI �Apj = s6 � s4 � b̂ = 0: (A.1)

The roots of the characteristic equation can be found by
the general solution of a cubic algebraic equation [28].
Therefore, we have:

X3 �X2 � b̂ = 0; (A.2)

where X = s2. According to [28], when D = Q3
1+Q2

2 >
0, we have one real and one conjugate pair of roots:

Q1 = �1
9
; Q2 =

1
27

+
b̂
2
) D =

b̂
27

+
b̂2

4
> 0:

(A.3)

As seen in the preceding inequality, D is positive when
b̂ > 0. In this case, the characteristic equation (A.1)
can be factorized in the following form:

(s2 � �2)(s2 + 2�!s+ !2)(s2 � 2�!s+ !2): (A.4)

The real root of Eq. (A.2) is represented by �2, and is
given by:

� =
r
Z1 + Z2 +

1
3
; (A.5)

where:

Z1;2 =
�
Q2�pD

� 1
3
=

 
1
27

+
b̂
2
�
p

12b̂+81b̂2

18

! 1
3

:
(A.6)

After some manipulation, ! and � are obtained as:

! =

 
b̂
�2

!1=4

; (A.7)

� =
1p
2

�
1� �2 � 1

2!2

�1=2

: (A.8)

The behavior of �, ! and � versus b̂ can be viewed in
Figure A.1. It can be shown that the expressions under
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Figure A.1. The behavior of �; ! and � vs. b̂ = bT 4.

the radical sign in Eqs. (A.5) and (A.8) are positive for
our problem (b̂ > 0) and also �2 < 1=2.

From Eq. (22), the state transition matrix can be
written as:

�(s) =
M1s5+M2s4+M3s3+M4s2+M5s+M6

s6 � s4 � b̂ ;
(A.9)

where:8>>>>>>>>>><>>>>>>>>>>:

M1 = I6�6

M2 = Ap
M3 = A2

p � I
M4 = Ap(A2

p � I)

M5 = A2
p(A2

p � I)

M6 = A3
p(A2

p � I)

(A.10)

Using Eq. (A.4), the partial fraction form of the state
transition matrix may be written as in Eq. (A.11) as
shown in Box I.

Using the following Laplace transform formulas
(! > 0; �2 < 1):

�r(t)=L�1
�
C1s+C2

s2��2

�
=C1 cosh(�t)+

C2 sinh(�t)
�

;
(A.18)

�pc(t) = L�1
�

C3s+ C4

s2 + 2�!s+ !2

�
=e��!t

�
C3 cos(!dt)+

(C4�C3�!) sin(!dt)
!d

�
;

(A.19)

�nc(t) = L�1
�

C5s+ C6

s2 � 2�!s+ !2

�
=e�!t

�
C5 cos(!dt)+

(C6+C5�!) sin(!dt)
!d

�
;
(A.20)

where:

!d = !
p

1� �2: (A.21)

The state transition matrix is �nally obtained as

follows:

�(t) = �r(t) + �pc(t) + �nc(t): (A.22)

Appendix B: Normalized perfect LOS guidance

The optimal guidance solution to minimize perfor-
mance index (10), subject to the di�erential equation
constraint, �h = a, and the initial conditions, h(0) = 0,
v(0) = 0, and the �nal conditions, h(tf ) = 0 and
v(tf ) = free, is obtained as follows [14]:

u(�) = �Ch(tgo; b)h� Cv(tgo; b)v; (B.1)

where:

Ch =

�2�2 [sin(�tgo) cos(�tgo)+sinh(�tgo) cosh(�tgo)]
sin(�tgo) cos(�tgo)�sinh(�tgo) cosh(�tgo)

;
(B.2a)

Cv =

� 2�
�
sin2(�tgo)+sinh2(�tgo)

�
sin(�tgo) cos(�tgo)�sinh(�tgo) cosh(�tgo)

; (B.2b)

� = b
1
4 =
p

2: (B.2c)

Although the preceding commanded acceleration is
optimal for a perfect control system, the commanded
acceleration should be normalized for our performance
analysis when the control system is taken as a second-
order transfer function, that is:

û(�) = �Ĉh
�
�go; b̂

�
ĥ� Ĉv

�
�go; b̂

�
v̂; (B.3)

where:

Ĉh =

�2�̂2
h
sin
�
�̂�go

�
cos
�
�̂�go

�
+sinh

�
�̂�go

�
cosh

�
�̂�go

�i
sin
�
�̂�go

�
cos
�
�̂�go

��sinh
�
�̂�go

�
cosh

�
�̂�go

� ;
(B.4a)

Ĉv =

� 2�̂
h
sin2

�
�̂�go

�
+sinh2

�
�̂�go

�i
sin
�
�̂�go

�
cos
�
�̂�go

��sinh
�
�̂�go

�
cosh

�
�̂�go

� ;
(B.4b)

�̂ = T� = b̂
1
4 =
p

2: (B.4c)

The normalized commanded acceleration and guidance
gains are de�ned as before, i.e., similar to Eqs. (33)-
(35).
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M1s5 +M2s4 +M3s3 +M4s2 +M5s+M6

s6 � s4 � b̂ =
C1s+ C2

s2 � �2 +
C3s+ C4

s2 + 2�!s+ !2 +
C5s+ C6

s2 � 2�!s+ !2 ; (A.11)

where:

C1 =
�2M1 + �M3 +M5

2!4 + �4 ; (A.12)

C2 =
�2M2 + �M4 +M6

2!4 + �4 ; (A.13)

C3 =
1
4

4�!7M1 + (�2!4 � 2!6)M2 � 2�2�!3M3

!3�(2!4 + �4)
+

1
4

(!4 + �2!2)M4 � 2�!3M5 + (4�2!2 � !2 � �2)M6

!3�(2!4 + �4)
;
(A.14)

C4 =
1
4

(2!8 � �2!6)M1 + 2�2�!5M2 � (!6 + �2!4)M3 + 2�!5M4

!3�(2!4 + �4)

+
1
4

(!4 � 4�2!4 + �2!2)M5 + 2�!(4�2!2 � 2!2 � �2)M6

!3�(2!4 + �4)
(A.15)

C5 =
1
4

4�!7M1 + (2!6 � �2!4)M2 � 2�2�!3M3 � (!4 + �2!2)M4

!3�(2!4 + �4)
+

1
4
�2�!3M5 + (!2 � 4�2!2 + �2)M6

!3�(2!4 + �4)
;

(A.16)

C6 =
1
4

(�2!6 � 2!8)M1 + 2�2�!5M2 + (!6 + �2!4)M3 + 2�!5M4

!3�(2!4 + �4)

+
1
4

(4�2!4 � !4 � �2!2)M5 + 2�!(4�2!2 � 2!2 � �2)M6

!3�(2!4 + �4)
: (A.17)

Box I
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