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Abstract. This study presents a numerical analysis of 
uid-structure interaction, the
structure of which is a 
exible piezoelectric material. Piezoelectric materials are widely
used in aero-elasticity and turbomachinery �elds for vibration, 
utter, and noise control. In
this work, a FSI benchmark is revised to contain the piezoelectric materials. The in
uence
of piezoelectricity on the oscillation of the structure and 
uid 
ow is considered. For
validation, two benchmark problems are solved and the results of the present code are
compared with those of previous work. Current results show that the piezoelectric behavior
of a plate signi�cantly in
uences the oscillation of the plate and the 
uid 
ow properties.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Fluid-Structure Interaction (FSI) plays an important
role in many engineering applications, such as suspen-
sion bridges, aero-elasticity and 
utter, bio-mechanics,
oil platforms, power lines, aircraft wings, and turbo-
machinary.

There are two main computational categories
for the modeling of FSI problems; the monolithic
approach [1,2] and the partitioned (segregated) ap-
proach [3,4]. In the monolithic approach, the same
primitive variables (usually velocity and pressure) are
used for both the 
uid and solid domains; therefore,
the governing equations of the 
uid and structure are
solved simultaneously with a single solver. On the
other hand, in the partitioned approach, the 
uid

ow and the movement of the structure are solved
separately by two distinct solvers. Since, in the
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monolithic approach, the nonlinear resulting equations
arising from the coupled discretisation of the 
uid and
the structure are solved as a whole, use of a coupling
algorithm is not required, and is the main advantage
of this approach. However, the monolithic solvers are
computationally expensive and sometimes the matrix
of the resulting algebraic system can be ill-conditioned,
leading to di�culties in solving these equations. The
advantage of the partitioned approach is that it can
precisely solve 
ow and structure equations by using
di�erent e�cient techniques for each of them. Also, this
approach uses separate meshes for the structure and
the 
uid, which often require di�erent mesh resolutions.
On the other hand, in the partitioned simulations,
development of stable and accurate coupling algorithms
is required.

Piezoelectric materials have been extensively used
as sensor and actuator devices in aeroelasticity and tur-
bomachinery �elds for vibration, noise, bu�et-induced
vibration and 
utter controls. In these problems,
structural vibrations are produced as the result of
interaction between the 
uid 
ow and the structure.
Therefore, all these problems are a type of FSI prob-
lem.
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Based on the authors' knowledge, regarding previ-
ous studies in FSI problems with orthotropic piezoelec-
tric materials, only piezoelectric and structural govern-
ing equations are solved, and the 
uid 
ow is considered
a pressure load [5] or calculated by the piston theory [6-
9]. Therefore, 
uid structure interaction was not taken
into account.

Bolzmacher et al. [10] introduced a novel micro-
mechanical ampli�cation unit for increasing the stroke
of piezoelectric micro-actuators. In their study, only
the equation of structure was numerically solved. In
order to obtain a better estimate for the actuator per-
formance and to optimize its design, they proposed that
the 
uid-structure interaction between the piezoelectric
actuator and the air
ow should be considered in the
simulations.

Recently, piezoelectric materials have been used
as energy harvesters, which convert aero-elastic vi-
brations to electric energy [5,11-16]. Although these
problems are of a FSI type, they were investigated
by experimental analysis or a prede�ned vibration was
assumed in numeric simulation. A full FSI analysis has
not yet been undertaken.

By development of FSI codes and software, it is
possible to solve these problems without simpli�cation
in the 
uid 
ow and investigate them as a FSI problem.
In this work, an FSI benchmark is revised to contain
the piezoelectric materials. The in
uence of di�erent
electric potentials on deformation of the structure and
the 
uid 
ow is considered.

2. Governing equations

2.1. Fluid equations
The governing equations of the 
uid 
ow are the
incompressible Navier-Stokes equations. Since, in the
Arbitrary Lagrangian Eulerian method (ALE) formu-
lation, the mesh nodes of the 
uid domain could be
in motion, Navier-Stokes equations on a moving mesh
should be used in the following form [17,18]:

r:v = 0;

�
@v
@t

+ � (v � v̂)r:v = �rp+ �r2v; (1)

where �, v, p, � and t are density, velocity, pressure,
viscosity, and time, respectively, and v̂ represent the
mesh node velocity.

2.2. Piezoelectric equations
Some materials have the ability to convert mechanical
energy into electrical energy and vice versa. This
property is known as piezoelectricity. The direct
piezoelectric e�ect is known as producing voltage by
a material when it is subjected to stress. The inverse
piezoelectric e�ect is that the crystal deforms when a
voltage di�erence is applied across it.

The momentum equation for a solid material is:

�
@2u
@t2

= r:T; (2)

where T is the stress vector and u is the displacement
of the solid material.

The electric displacement (electric 
ux density)
vector, Di, satis�es Gauss law as:
Di;i = 0: (3)

The constitutive relations for a linear piezoelectric
material are de�ned as:
Tij = cEijklSkl � ekijEk;
Di = eiklSkl + "SijEk; (4)

where S is the strain vector, E is the electric �eld
vector, c is the elasticity matrix, e is the piezoelectric
stress matrix, and " is the dielectric matrix (evaluated
at constant mechanical strain), respectively.

By substituting these constitutive relations in the
momentum equations and Gauss law and using the
following equations:
Ei = �';i; (5)

Sij =
1
2

(ui;j + uj;i); (6)

the �nal set of partial di�erential equations with me-
chanical displacement and electric potential as primary
dependent variables is obtained as:
��u = r:[c : ru] +r:[e:r']; (7)

r:[e : ru]�r:[":r'] = 0; (8)

which can be shown in the following index notation for
constant material properties:

��ui = cEijkluk;lj + ekij';kj ; (9)

ekijui;kj � "Skj';kj = 0: (10)

By using �nite element discretization, the following
system of coupled equations are derived for each ele-
ment [9]:�

[M ] [0]
[0] [0]

��f�ug
f �'g

�
+
�
[C] [0]
[0] [0]

��f _ug
f _'g

�
+
�

[K] [Kz]
[Kz]T [Kd]

��fug
f'g

�
=
�fFg
fLg

�
;
(11)

where [M ], [C], and [K] are the element mass matrix,
the element structural damping matrix, and the ele-
ment sti�ness matrix, respectively; Kz is the piezo-
electric coupling matrix, Kd is the element dielectric
permittivity coe�cient matrix, fug is the displacement
vector and f'g, fFg, and fLg are the electric potential
(voltage), structural and electrical load vectors, respec-
tively.
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2.3. Fluid-structure coupling and mesh motion
Usually, Lagrangian formulation, where each individual
node of the computational mesh moves with the asso-
ciated material particle during the motion, is used in
solid mechanics. The Lagrangian description permits
an easy tracking of free surfaces and interfaces among
di�erent materials. However, it requires remeshing
processes for large distortions of the computational
mesh.

Flow solvers often use an Eulerian description, in
which the computational mesh is �xed and the 
uid
moves relative to the grid, and large distortions in the

uid motion are handled by this description. In the
geometrically �xed 
uid domain, this approach works
well, but, di�culties arise when the boundaries of the

uid domain change. Fluid structure interaction is
the most well-known example for moving boundaries
in the 
uid domain. In FSI problems, deformation in
the solid material moves the 
uid mesh points at the

uid-structure interface.

Various techniques have been proposed for sim-
ulation of the moving boundaries in the 
uid domain.
ALE is the most popular method employed for tracking

uid moving boundaries [17,19]. In an ALE method,
some parts of the mesh can be moved with the
associated material particles, such as the Lagrangian
approach. Other parts of the mesh are �xed similar
to the Eulerian approach. Although this method
has low computational cost and it is accurate, for
large deformations or movement of solid material, 
uid
elements tend to become ill-shaped and the solution
accuracy reduces. Some alternatives to the ALE
method are the immersed boundary method [20,21],
�ctitious domain method [22], and the mortar �nite
element method [23]. In contrast to the ALE technique,
other methods use �xed 
uid meshes, and, hence, can
simulate large deformation of solid material without
mesh folding in the 
uid domain. However, since
the ALE method captures the 
uid-structure interface
accurately, it has the ability to maintain high-quality
meshes near the structure's interface. In the current
study, a partitioned FSI solver with ALE formulation
for the 
ow solver is used.

At the interface of the 
uid and structure do-
mains, interaction is considered by transferring the

uid 
ow stress to the structure and the structural
displacements to the 
uid 
ow. Also, it is assumed that
the 
uid always remains in contact with the structure.
Therefore, the compatibility of the displacement and
no-slip condition requires that:

TS :n = TF :n; (12)

uS = uF : (13)

In the ALE approach, the 
uid internal mesh should
be deformed in response to the 
uid-structure interface

displacements. However, the deformation of the 
uid
domain is unknown and it should be found in terms
of structural deformation. In the present work, the
Laplacian operator is used for mesh motion in the 
uid
domain. In this method, mesh velocity, v̂, is computed
by solving the Laplacian equation as:

r: (
rv̂) = 0; (14)

where 
 is the di�usion coe�cient. The boundary
conditions for this equation are:

v̂ =

( du
dt for 
uid solid interface boundary

0 for other boundaries

)
:

(15)

3. Results and discussion

Validation of the present work is achieved by analyzing
two benchmark problems. The �rst is a piezoelectric
problem and the other a 
uid structural interaction
problem. The results show that in the current study,
the piezoelectric problem and the FSI problem are
solved correctly. In order to investigate the e�ect of
piezoelectricity on the 
uid 
ow and deformation of the
structure, the elastic material in the FSI benchmark is
replaced by a piezoelectric material.

3.1. Piezoelectric bimorph actuator plate
The geometry of a piezoelectric bimorph plate is shown
in Figure 1.

In this case, an electric potential equal to 50
voltages is applied to the bottom and top faces of
the plate, and the intermediate surface is set to zero
voltage. The length (L), width (l) and thickness of this
rectangular plate are 25 mm, 12.5 mm, and 2.5 mm,
respectively. Boundaries are considered to be simply
supported. Also, its material constants are [24]:

c =

26666664
139 77:8 74:3 0 0 0
77:8 139 74:3 0 0 0
74:3 74:3 115 0 0 0

0 0 0 25:6 0 0
0 0 0 0 25:6 0
0 0 0 0 0 30:6

37777775 GPa;

Figure 1. Piezoelectric bimorph geometry.
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Figure 2. Through-the-thickness variation of the
de
ection, W , at the plate center.

Figure 3. Contour of the through-the-thickness variation
of the de
ection, W , at the center of plate.

e =

26666664
0 0 �5:2
0 0 �5:2
0 0 15:1
0 12:7 0

12:7 0 0
0 0 0

37777775 C
m2 ;

" =

2413:06e� 9 0 0
0 13:06e� 9 0
0 0 15:1e� 9

35 F
m
:

In Figure 2, the through-the-thickness variation of
de
ection, W , at the plate center is shown and the
results are compared with those of Wang [24]. From
this �gure, it is clear that in the present analysis,
modeling of the piezoelectric material is done properly.
Figure 3 shows the contours of de
ection, W .

3.2. Oscillation of a vertical 
exible plate in a
cavity

The FSI part of the current work is validated by
analyzing the oscillations of a vertical 
exible plate in
a cavity �lled with 
uid. The geometry of this case is
shown in Figure 4.

Figure 4. The geometry of FSI benchmark problem.

Figure 5. Comparison between the current study and
previous results.

The length, thickness and width of the plate are
1.0 m, 0.06 m and 0.4 m, respectively. Young's modulus
of elasticity (E) and the density of the plate (�s) are
2:5� 106 Pa and 2550 kg/m3, respectively.

The 
uid has the following material properties:

uid density, �f = 1 kg/m3, and dynamic viscosity of
the 
uid, �f = 0:2 kg/m3. The plate is excited with a
uniformly distributed load of 30 N/m within the �rst
0.5 sec. Namkoong et al. [25] and Gluck et al. [26]
solved this problem with a time step equal to 0.1 sec.

In Figure 5, the horizontal displacement of the
free end of the plate obtained by Namkoong et al. and
the current solver are compared. From this �gure,
it is evident that when the time step is chosen the
same as that in the work of Namkoong et al., the
results of the current study agree with those obtained
by them. But, this time step is very large for this
problem. By reducing the time step, the results change
and we propose that for later studies, results should be
compared with a time step of 0.02 sec or less.

3.3. Oscillation of a vertical piezoelectric plate
in a cavity

For investigation of the e�ect of piezoelectricity on
structural deformation and the 
ow �eld, the elastic
plate in the previous FSI problem is replaced by a plate
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Figure 6. Horizontal displacement of the free end of the
piezoelectric plate for di�erent voltages.

made of piezoelectric material. The problem geometry,
length, width and thickness of the piezoelectric plate
and the 
uid parameters are chosen similar to those
of the preceding case. The material constants of the
piezoelectric plate are considered to be:

c =

26666664
139 77:8 74:3 0 0 0
77:8 139 74:3 0 0 0
74:3 74:3 115 0 0 0

0 0 0 25:6 0 0
0 0 0 0 25:6 0
0 0 0 0 0 30:6

37777775 MPa;

e =

26666664
0 0 �5:2
0 0 �5:2
0 0 15:1
0 12:7 0

12:7 0 0
0 0 0

37777775 C
m2 ;

" =

2413:06e� 9 0 0
0 13:06e� 9 0
0 0 15:1e� 9

35 F
m
:

In this problem, the voltage at the right face of the
plate is set to zero, but, various voltages are applied at
the left face of the plate.

Figure 6 presents the horizontal displacement of
the free end of the piezoelectric plate for di�erent
voltages (0, 100, 200 and 300 volts). By applying
these voltages to the piezoelectric plate, the maximum
de
ection of the plate in the positive x direction
is reduced, but, no signi�cant e�ect on maximum
de
ection in the negative x direction is seen. The
reason for this phenomenon is that the applied voltages
tend to deform the plate in the negative direction of x.

For electric potential equal to 200 V, the deforma-
tions of the left face of the plate are shown for di�erent
times in Figure 7. This �gure reveals that this high
voltage does not activate the higher mode shapes in
the plate.

Figure 7. Deformations of left face of the plate at electric
potential equal to 200 V for di�erent times.

Figure 8. Velocity contours for electric potential of 200 V
and time of 0.6 sec.

Figure 9. Pressure contours for electric potential of
200 V and time of 0.6 sec.

Figures 8 and 9 show the velocity and pressure
contours for electric potential of 200 V and time of
0.6 sec, respectively. As shown in Figure 8, at the top
of the plate, the induced velocity in the 
uid domain
has its maximum value.

4. Conclusion

In the present work, an FSI benchmark problem was
revised to contain the orthotropic piezoelectric mate-
rial. In this problem, di�erent electric voltages were
applied to the piezoelectric material and the vibration
of this plate at di�erent times was considered. It
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was observed that by increasing the electric potential
from zero, maximum displacement in the positive x
direction is reduced. However, the in
uence of the
electric potential on the plate de
ection is decreased
by increasing the electric potential. Therefore, the
piezoelectric actuator suppresses the vibration of the
plate, which is caused by 
uid 
ow.
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