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Abstract. In this paper, we study scheduling of R&D projects in which activities may
to be failed due to the technological risks. We consider two introduced problems in the
literature referred to as R&D Project Scheduling Problem (RDPSP) and Alternative Tech-
nologies Project Scheduling Problem (ATPSP). In both problems, the goal is maximization
of the expected net present value of activities where activities are precedence related
and each of them is accompanied with a cost, a duration, and a probability of technical
success. In RDPSP, a project payo� is obtained if all activities are succeeded, while in
ATPSP, if one of activities is implemented successfully, the project payo� is attained.
We construct a solution representation for each of these problems and construct two
population-based metaheuristics including scatter search algorithm and genetic algorithm
as solution approaches. Computational experiments indicate scatter search outperforms
genetic algorithm and also available exact solution algorithms.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In a lot of industries, projects are subject to con-
siderable uncertainty due to various causes. Factors
inuencing the completion date of a project include
activities that are required but were not identi�ed
beforehand, activities taking longer than expected,
activities that need to be redone, resources being
unavailable when required, late deliveries, etc. In
Research and Development (R&D) projects, activities
may also fail altogether, for instance because the new
technology under study does not perform as anticipated
or because a toxicity test is not passed (in case of drug
development). This risk is often referred to as technical
risk. We consider the main sources of uncertainty
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in R&D projects, namely, the possibility of activity
failure.

De Reyck et al. [1] introduced the modular R&D
project scheduling as an R&D project consisting of
several modules. In this problem, each module contains
one or more activities that pursue a homogeneous
target, for instance, representing repeated trials or
technological alternatives. Each activity has a cost,
a duration, and a Probability of Technical Success
(PTS). It should be mentioned that in some references,
such as [2], the term \alternative" has been used in-
stead of \activity" in the ATPSP, but we use \activity"
in this research. A module is successful when at
least one of its included activities succeeds. Successful
completion of the whole project requires successful
completion of all the modules; project success equates
with receiving a project payo� (cash inow). In their
model, they made a number of simplifying assump-
tions, including unlimited resources and no explicit
consideration of the uncertainty in activity durations
or project cash ows.
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In this paper, we consider two problems: the
RDPSP and the ATPSP. These two problems were
introduced by De Reyck and Leus [3] and each of
them is a special case of the modular R&D project
scheduling problem. The goal is maximization of
the expected Net Present Value (eNPV) in both the
aforementioned problems. The RDPSP is a single-
activity-module project scheduling problem in which
each module consists of only one activity and successful
completion of the whole project requires successful
completion of all the activities. The ATPSP is a
single-module project scheduling problem in which the
project consists of one module and technical success of
an activity leads to obtaining the project payo�.

The literature on project scheduling is vast and
interested readers are referred to recent literature sur-
veys in this �eld (e.g. [4,5]). In this study, we focus only
on R&D project scheduling problems. The main topic
of interest in the literature surveys on the scheduling
under uncertainty is duration uncertainty, sometimes
complemented with uncertain resource availabilities [6-
8]. In this paper, we incorporate the concepts of
activity success or failure into the scheduling decisions.
A branch-abound (B&B) algorithm was developed for
the RDPSP by De Reyck and Leus [3]. A similar
model is tackled by [9,10] in which the scheduling of
failure-prone new-product-development testing tasks is
studied when non-sequential testing is admitted. The
concept of modular projects is hinted at [1], but the
authors do not develop any solution procedure. This re-
search work has been continued by Creemers et al. [11]
in which modular projects by considering the impact
of activity duration variability on the project's value
are studied. Also, Ranjbar and Davari [2] develops a
B&B algorithm for the ATPSP. In all of the foregoing
references, the resource constraint has not been taken
into account, but recently, Coolen et al. [12] considered
scheduling modular projects on a bottleneck resource.
They described various policy classes, established the
relations among them, and developed exact algorithms
to optimize two di�erent classes.

Closely related to the model developed in this
paper is the work on sequential testing, in which a series
of tests is to be performed to diagnose a system (i.e.,
to know its state, which usually is either `working' or
`failing'). A solution in this setting is an inspection
strategy, which is speci�ed on the basis of the state of
the already inspected components. Each component is
to be inspected next, or halts if it is able to recognize
the correct state of the system. Reviews of this body of
literature can be found in [13,14]. The main di�erences
with our scheduling problem is that the inspections
will continue as long as the state of the system is not
known, whereas we allow the project to be aborted
preliminarily if this is better for the project's value.

One of the most important weaknesses in the

previous research works on R&D project scheduling
problems is that the developed solution approaches are
applicable only for small-scale test instances. Thus,
developing solution approaches which can solve large-
scale and practical problems is really a research gap.
To overcome this crisis, in this research, we construct
e�cient solution approaches.

The contributions of this article are twofold:

1. We develop representations of two solutions for the
RDPSP and ATPSP, respectively;

2. We develop two population-based metaheuristic
algorithms including two di�erent combining meth-
ods and customized repairing and local search
procedures to solve both problems.

The remainder of this paper is organized as follows.
Section 2 contains formal de�nition and formulation of
the RDPSP and ATPSP. Our scatter search algorithm
along its components is described in Section 3 and
computational performance is evaluated in Section 4.
Finally, Section 5 contains a summary, some conclu-
sions, and ideas for further research.

2. Formulation of the problems

The objective of RDPSP and ATPSP is to maxi-
mize eNPV of the project by constructing a project
schedule specifying when to execute each activity.
In the RDPSP (ATPSP), the �nal project payo� is
only achieved when all activities are (one activity is)
successful, and the project is terminated as soon as
an activity fails (succeeds). Activity success or failure
is revealed at the end of each activity. Consequently,
in the RDPSP (ATPSP), each activity will start only
if all the activities scheduled to �nish earlier have a
positive (negative) outcome and hence, in the objective
function, the activity cash ows are weighted by the
probability of joint success (failure) of all its scheduled
predecessors. We do not consider resource constraints
and duration uncertainty, and consider the PTS of the
di�erent tasks as independent. The parameters that
are used throughout the paper are de�ned in Table 1.

Without loss of generality, we assume activity 0 to
be a dummy activity representing project initiation and
be the predecessor of all other activities with c0 = d0 =
0 and p0 = 1. Activity n+ 1 is also a dummy activity
representing project completion and is a successor of
all other activities. We assume that di > 0 for all non-
dummy activities. A deadline � is imposed on project
completion because we require that sn+1 � �. This
deadline is needed because optimization will try to push
the start times of activities to in�nity if the optimal
eNPV of a particular problem instance is negative.

A schedule s is feasible if it respects the con-
straints imposed by A. In the RDPSP (ATPSP), the



376 M. Ranjbar et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 374{386

Table 1. De�nitions of parameters.

Parameter De�nition

N Set of activities, N = f0; 1; :::; n+ 1g

ci
Cost of activity i 2 N , a non-positive
integer incurred at the start of the
activity

C End-of-project positive payo�, integer

di
Duration of activity i 2 N , a positive
integer

pi PTS of activity i 2 N
r Continuous discount rate

A
(Strict) partial order on N , an irreexive
and transitive relation imposing the
constraints si + di � sj for all (i; j) 2 A

� The project deadline

objective is to maximize the project's eNPV , so the
cost of each activity is weighted by the probability of
joint success (failure) of the already �nished activities.
We represent each schedule by a vector of start times
s = (s0; s1; :::; sn+1) where si is a non-negative integer
and indicates the start time of activity i. We also
consider f = (f0; f1; :::; fn+1) as the vector of �nish
times, where fi = si + di, indicates the �nish time of
activity i.

The RDPSP can now be formulated as the follow-
ing non-linear integer programming model:

max g1(s) =
nX
i=1

�
ci exp(�rsi)Yj2FBA(si)

pj
�

+ C exp(�rsn+1)
Yn

j=1
pj ;

subject to:

si + di � sj 8(i; j) 2 A;
sn+1 � �;
si 2 Z+ 8i 2 N:

In the objective function g1(s) which indicates eNPV
of schedule s, FBA(si) indicates the set of activities
which are �nished before or at the start time of activity
i. g1(s) includes two main terms in which exp(:) shows
exponential function. The �rst term indicates the
expected value of costs while the second term shows
the expected value of revenue. The �rst constraint
of the model indicates the �nish-to-start precedence
relations among activities imposed by set A. The
second constraint implies that dummy end activity
n+ 1 must be �nished before or at the given deadline.

The last constraint shows that all start times are non-
negative integers (Z+ indicates the set of non-negative
integers).

The formulation of ATPSP is similar to that of
RDPSP, but instead of g1(s), we use g2(s), where:

g2(s) =
nX
i=1

0@exp(�rsi)ci Y
j2FBA(si)

(1� pj)
1A

+C
X

t2NUF

0@exp(�rt)
0@1�Y

k2FA(t)

(1�pk)

1A Y
j2FB(t)

(1�pj)
1A

+C
X

i:fi =2NUF

0@exp(�r(si + di))pi
Y

j2FB(si+di)

(1� pj)
1A :

In g2(s), FB(fi) shows the set of activities which are
�nished before �nish time of activity i. In addition,
NUF shows the set of non-unique �nish times such that
every t 2 NUF is equivalent to the �nish time of at least
two activities. The set of activities, which are �nished
at t 2 NUF, are shown by FA(t). In addition, FB(t)
shows the set of activities which are �nished before time
instant t. g2(s) includes three main terms in which
the �rst term represents the expected costs in whichQ
j2FBA(si)(1 � pj) indicates the probability of joint

failure of all activities �nished before or at the start
time of activity i. We assume that if in a schedule for
two activities, j 2 N , we have fj = si, then activity
i will start if activity j fails. The summation of two
other terms in g2(s) indicates the expected revenue.
The second term displays the expected revenue for the
activities whose �nish times belong to NUF. In this
formula, (1�Qk2FA(t)(1� pk)) shows the probability
of succeeding at least one of the activities �nished at
time instant t. Moreover,

Q
j2FB(t)(1 � pj) indicates

the probability of joint failure of all activities �nished
prior to the time instant t. Finally, the last term
speci�es the expected revenue for the activities with
unique �nish times. In this formula,

Q
j2FB(si+di)(1�

pj) represents the probability of joint failure of all
activities �nished prior to the completion time of
activity i.

3. Schedule representation

Our heuristic algorithms use a schedule representation
to encode a schedule. Although there are various
approaches for schedule representation of the clas-
sic resource-constrained project scheduling problem
(see [15]), there is not any solution representation for
RDPSP and ATPSP in the literature. We develop two
schedule representations for the RDPSP and ATPSP
based on the solution approaches made by [2,3], re-
spectively.
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3.1. Schedule representation for the RDPSP
Based upon solution of [3], RDPSP is solved in two
phases. In the �rst phase, a feasible extension E of
A, which updates sets FBA(si) for some i 2 N , is
produced. Then, function g1(:) is optimized subject
to new precedence constraints, which constitutes the
second phase. If all feasible extensions of A will be
implicitly or explicitly enumerated, �nding an optimal
schedule for RDPSP is guaranteed. The second phase
(optimization for the given new precedence constraints)
amounts to project scheduling with eNPV objective
without resource constraints (see [16]). We consider
the case in which all activity cash ows during the
development phase are negative, which is typical for
R&D projects. In this case, the scheduling problem
is easily solved because all intermediate cash ows are
non-positive: Each activity can be scheduled to end
at the earliest of the start times of its successors in
E. Depending on whether the corresponding eNPV
is positive or negative, we set s0 = 0 or sn+1 = �,
respectively. Based upon this solution approach, we
represent each schedule of the RDPSP by a set of pairs
f(i; j) : 8(i; j) =2 Ag. In other words, we consider
pairs of activities for which there is not any directed
path between them in the project network. For each
(i; j) =2 A, we consider three di�erent scenarios: (i !
j); (i j), and (ijjj), where (i! j) implies sj � si+di
and (ijjj) implies jointly relations si + di > sj and
sj + dj > si. In other words, relation (i! j) indicates
that activity j can start after the end of activity i due
to the information ow from i to j. Also, relation
(ijjj) designates that activities i and j will overlap in
execution. Each schedule representation is feasible i�
there is no cycle in the corresponding project network.
When a feasible schedule representation is generated,
we schedule all activities based on their latest possible
start times, calculated based on the Critical Path
Method (CPM). Now, if there is a pair (i; j) =2 A for
which we have (ijjj) in our schedule representation,
but we know sj � si + di on the basis of start times
values obtained from the Latest Start Schedule (LSS),
we change (ijjj) into (i! j).

As an example, we consider a project with 11
activities as represented in Figure 1.

Other project data are given in Table 2. In this
example, we assume a discount rate of 5% per month
and the project deadline is 67 months. Consider the
following feasible schedule representation:

f(1! 2); (1jj4); (1jj5); (1jj6); (1jj8); (2jj3);

(2 5); (2jj6); (2jj8); (2jj9); (3jj4); (3jj5); (3jj6);

(3jj7); (3jj8); (4jj5); (4jj6); (4jj8); (4jj9); (5jj6);

(5jj7); (5jj9); (6jj7); (6jj9); (7jj8); (7jj9); (8jj9)g:

Table 2. Project data.

Activity Cost ($) PTS Duration (months)
0 0 1.000 0
1 -5 0.811 11
2 -34 0.833 12
3 -38 0.915 4
4 -2 0.958 1
5 -8 0.857 9
6 -40 0.951 2
7 -1 0.893 9
8 -42 0.863 8
9 -15 0.972 11
10 802 1.000 0

Figure 1. Network of the example project.

Figure 2. Optimal schedule of the RDPSP.

The corresponding LSS of this representation is pre-
sented in Figure 2, which is also optimal schedule with
eNPV of $11.37. Using information obtained from the
LSS, this representation will be changed as follows:

f(1! 2); (1! 4); (1jj5); (1! 6); (1! 8); (2jj3);

(2 5); (2! 6); (2! 8); (2jj9); (3! 4); (3 5);

(3! 6); (3! 7); (3! 8); (4 5); (4jj6); (4! 8);

(4jj9); (5! 6); (5! 7); (5! 9); (6jj7); (6jj9);

(7jj8); (7jj9); (8jj9)g:
This change implies that the relation between solution
space and solution representation space is not one
to one, because several solution representations may
correspond to an identical schedule.
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Figure 3. Optimal schedule of the ATPSP.

3.2. Schedule representation for the ATPSP
In the ATPSP, we use a direct representation and
show each schedule by its vector of start time s =
(s0; s1; :::; sn+1). Ranjbar and Davari [2] de�ne the
concurrency property and prove that there is an op-
timal solution for each instance of the ATPSP which
is concurrent. Based on this property, the start
time or �nish time of each activity, which is de�ned
as an event, is concurrent with the start time or
�nish time of at least another activity. Thus, our
solution representation for the ATPSP is subject to the
concurrency property. Figure 3 presents the optimal
schedule of the ATPSP with eNPV of $671.77 based on
the example project depicted in Figure 1. We represent
this schedule as s = (0; 2; 28; 13; 40; 2; 0; 41; 17; 17; 50).

4. Solution approaches

In this section, we develop two metaheuristics including
scatter search and genetic algorithm. These two
algorithms are both population-based and we have
considered some similar or common operators for them,
but their overall structures are di�erent.

4.1. A scatter search algorithm
Scatter Search (SS) was developed by Glover and
Laguna [17] as a heuristic algorithm for integer pro-
gramming models. In this algorithm, solutions are
generated randomly such that they cover most parts of
the solution space. Similar to tabu search algorithm,
SS has diversi�cation and intensi�cation procedures to
enhance its e�ciency [18]. For a brief and general
introduction to SS, we refer the readers to [19]. Scatter
search algorithm has been used in previous research on
scheduling problems, such as [20-23].

Figure 4 shows the main structure of our SS algo-
rithm as a owchart for both the RDPSP and ATPSP
in which some operators have di�erent procedures for
each problem. In the �rst step, an initial population P
containing jP j solutions is generated using the initial
population generation method, described in Section 4.1.
If the termination criterion, a given time limit, is met,
the SS algorithm stops; otherwise, it continues. In
the second step, the reference set RefSet, including b
elite solutions of P , is constructed using the reference
set building method, described in Section 4.2. The
solutions of RefSet are called reference solutions. Next,
the NewSubsets, each of them containing two reference
solutions, are generated.

In this stage, the best solution of the current

Figure 4. Flowchart of the SS algorithm.

population is kept and the other solutions are removed.
Subsequently, two solutions of each subset, called
parents solutions and shown by (sf ; sm), are selected
and the combining operator, described in Section 4.3,
is applied to them. We consider sf and sm as the father
and mother solutions, respectively. Since it is possible
that generated schedules ss and sd are infeasible, we
apply the repairing operator, described in Section 4.5,
to them. Then, the objective functions of schedules
ss, and sd are evaluated and the better schedule is
selected to be improved by the local search operator,
described in Section 4.6, with probability of pls. The
selected schedule will be added to the population P
after improvement by the local search operator. After
selection of all pairs (sf ; sm) in NewSubsets, the size of
population P will be 2jP j. In this stage, population P
will be updated by removing jP j worse schedules from
P .
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Figure 5. Pseudo-code of the initial population
generation method for the ATPSP.

4.1.1. Initial population generation method
Each member of the initial population P in the RDPSP
is generated randomly. For this purpose and for each
pair of activities (i; j) =2 A, we select one of the three
cases (i ! j); (i  j), or (ijjj), randomly. Since the
generated project network may include cycle and be
infeasible, we use the repairing procedure expressed in
Section 4.4.

Also, each member in the initial population of
ATPSP is a random solution and is created by the
method, illustrated in Figure 5, by pseudo-code. In
this approach, activities are added one by one to a
partial schedule s. EA(s) indicates the set of eligible
activities, initialized by all activities which do not have
any predecessor. Also, SA(s) represents the set of
scheduled activities initialized as an empty set.

After the initialization step, we follow an iterative
while-loop to construct a random solution. In each
iteration, an individual activity is added to the partial
schedule s. At step 3, one of the eligible activities,
shown by j, is selected randomly. Next, eligible start
times for activity j in schedule s, noted by ESj(s), are
calculated based upon concurrency property. Next, one
of the eligible events for the start time of activity j is
chosen, randomly, and activity j starts in that time. It
should be noticed that for each activity j which does
not have any predecessor (successor), t = 0(t = � �
dj) is always a valid start time. However, in the next
step, sets EA(s) and SA(s) are updated. In order to
update set EA(s), activity j should be removed from
EA(s) and all activities i 2 Suc(j) for which Pred(i) �
SA(s) should be added to EA(s), where Suc(j) and
Pred(j) indicate the set of successors and predecessors
of activity j, respectively. Also, set SA(s) is updated
simply as SA(s) = SA(s) [ j.
4.1.2. Reference set building and subset generation

methods
The reference set, RefSet, is a collection of both high
quality solutions and diverse solutions that are used to
generate new solutions by way of applying the combin-
ing, repairing, and local search operators. We construct
RefSet based on the method applied for construction
of RefSet1 of scatter search in [22]. We select the
solution with the smallest objective function, shown

as s1, as the �rst member of RefSet and remove it from
P . The next best solution s in P is chosen and added
to RefSet only if Dmin(s) � th dist, where Dmin(s) is
the minimum of the distances of solution s to the all
solutions currently in RefSet. Also, th dist indicates
a threshold distance. In the RDPSP, the di�erence
between two solutions equals the number of di�erent
ordered activities (i; j) =2 A in two solutions divided
by the number of unordered pairs of activities. Also,
in the ATPSP, the di�erence between two solutions
equals the number of di�erent start times for identical
non-dummy activities in two solutions divided by the
number of non-dummy activities. Thus, the di�erence
between every two solutions changes in range [0,1].
This process is repeated until b members are chosen for
RefSet. Whenever no quali�ed solution can be found in
the population, the RefSet is completed with random
solutions generated based on the initial population
generation method. For these members of RefSet, the
condition of minimum threshold distance is ignored.

In the next step, NewSubsets are generated con-
sisting of all pairs of reference solutions. The pairs in
NewSubsets are selected at a time in lexicographical
order and the combining, repairing, and local search
operators are applied to generate one trial solution.
Thus, the size of P will be always (b2� b)=2 + 1, where
one more solution shows the best solution so far.

4.1.3. Combining operators
After the selection of parents sf and sm from New-
Subsets, a combining operator combines these two
schedules to generate children ss and sd, respectively.
We use two di�erent methods as combining operators.
We consider the Combining Operator 1 (CO1) as
the well-known two-point crossover operator in which
the crossing points are determined randomly. If we
consider cp1 and cp2 as the crossing points where cp1 <
cp2, the elements of ss are identical to the elements of
sf , except those placed in positions [cp1; cp2] for which
elements of sm are used to construct ss. Generation of
sd is similar to generation of ss but with exchanging
the roles of sf and sm. For example, consider the two
following schedule representations sf and sm for the
RDPSP and assume cp1 = 8 and cp2 = 19.

sf = f(1jj2); (1! 4); (1jj5); (1! 6); (1! 8);

(2! 3); (2! 5); (2! 6); (2! 8); (2! 9);

(3jj4); (3jj5); (3! 6); (3! 7); (3! 8);

(4jj5); (4! 6); (4! 8); (4! 9); (5! 6);

(5! 7); (5jj9); (6jj7); (6jj9); (7jj8); (7jj9);

(8jj9)g;
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sm = f(1jj2); (1jj4); (1jj5); (1 6); (1! 8);

(2! 3); (2! 5); (2 6); (2! 8); (2! 9);

(3 4); (3jj5); (3 6); (3jj7); (3! 8);

(4! 5); (4 6); (4! 8); (4! 9); (5 6);

(5jj7); (5jj9); (6! 7); (6! 9); (7! 8);

(7! 9); (8jj9)g:
By applying the two-point crossover operator to sf and
sm, the two following schedule representations sm and
ss are obtained.

ss = f(1jj2); (1! 4); (1jj5); (1! 6); (1! 8);

(2! 3); (2! 5); (2 6); (2! 8); (2! 9);

(3 4); (3jj5); (3 6); (3jj7); (3! 8);

(4! 5); (4 6); (4! 8); (4! 9); (5! 6);

(5! 7); (5jj9); (6jj7); (6jj9); (7jj8); (7jj9);

(8jj9)g;
sd = f(1jj2); (1jj4); (1jj5); (1 6); (1! 8);

(2! 3); (2! 5); (2! 6); (2! 8); (2! 9);

(3jj4); (3jj5); (3! 6); (3! 7); (3! 8);

(4jj5); (4! 6); (4! 8); (4! 9); (5 6);

(5jj7); (5jj9); (6! 7); (6! 9); (7! 8);

(7! 9); (8jj9)g:
For the ATPSP, if we refer to parents as s0f and s0m
and assume cp1 = 4 and cp2 = 7, by applying the
two-point crossover operator to s0f and s0m, we obtain
o�spring schedules s0s and s0d as follows.

s0f = (0; 0; 11; 18; 23; 2; 23; 24; 25; 22; 33) and

s0m = (0; 2; 0; 17; 21; 13; 0; 24; 25; 22; 35);

s0s = (0; 0; 11; 17; 21; 13; 0; 24; 25; 22; 33) and

s0d = (0; 2; 0; 18; 23; 2; 23; 24; 25; 22; 35):

Also, we design the Combining Operator 2 (CO2) based
on a path-relinking algorithm developed by Ranjbar et
al. [22]. The CO2 gets two parent solutions as inputs

and generates a set of child solutions as follows. In
this method, the elements of sf and sm are compared
from left to right respectively. The �rst element of
sf which di�ers from the corresponding element of sm
is changed such that to be identical with sm. This
change creates a new solution (s1). For example, in
the RDPSP, the two following solutions sf and sm
di�er in the second element, indicating the precedence
relation between activities 1 and 4. Thus, s1 is a
copy of sf , but in which relation (1 ! 4) has been
changed to (1jj4), taken from sm. Next, we �nd the �rst
di�erent element between s1 and sm which is related
to activities 1 and 6. Using changing relation (1 ! 6)
to (1  6), s2 is generated from s1. This process
is repeated until we reach sm. In this example, 13
di�erent solutions are generated. The CO2 randomly
selects two solutions, one solution from the �rst half
of all the generated solutions and another one from
the second half. These two solutions are considered as
children solutions.

sf = f(1jj2); (1!4); (1jj5); (1!6); (1!8);

(2!3); (2!5); (2!6); (2!8); (2!9);

(3jj4); (3jj5); (3!6); (3!7); (3!8); (4jj5);

(4!6); (4!8); (4!9); (5!6); (5!7);

(5jj9); (6jj7); (6jj9); (7jj8); (7jj9); (8jj9)g;
s1 = f(1jj2); (1jj4); (1jj5); (1!6); (1!8); (2!3);

(2!5); (2!6); (2!8); (2!9); (3jj4);

(3jj5); (3!6); (3!7); (3!8); (4jj5); (4!6);

(4!8); (4!9); (5!6); (5!7); (5jj9);

(6jj7); (6jj9); (7jj8); (7jj9); (8jj9)g;
s2 = f(1jj2); (1jj4); (1jj5); (1 6); (1!8); (2!3);

(2!5); (2!6); (2!8); (2!9); (3jj4);

(3jj5); (3!6); (3!7); (3!8); (4jj5); (4!6);

(4!8); (4!9); (5!6); (5!7); (5jj9);

(6jj7); (6jj9); (7jj8); (7jj9); (8jj9)g;
s3 = f(1jj2); (1jj4); (1jj5); (1 6); (1!8); (2!3);

(2!5); (2 6); (2!8); (2!9); (3jj4); (3jj5);

(3!6); (3!7); (3!8); (4jj5); (4!6);
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(4!8); (4!9); (5!6); (5!7); (5jj9); (6jj7);

(6jj9); (7jj8); (7jj9); (8jj9)g;
...

s13 = f(1jj2); (1jj4); (1jj5); (1 6); (1!8); (2!3);

(2!5); (2 6); (2!8); (2!9); (3 4);

(3jj5); (3 6); (3jj7); (3!8); (4!5);

(4 6); (4!8); (4!9); (5 6); (5jj7); (5jj9);

(6!7); (6!9); (7!8); (7! 9); (8jj9)g;
sm = f(1jj2); (1jj4); (1jj5); (1 6); (1!8); (2!3);

(2!5); (2 6); (2!8); (2!9); (3 4);

(3jj5); (3 6); (3jj7); (3!8); (4!5); (4 6);

(4!8); (4!9); (5 6); (5jj7); (5jj9); (6!7);

(6!9); (7!8); (7!9); (8jj9)g:
The CO2 method follows the same strategy for
the ATPSP, but it deals with numbers instead of
precedence relations.

4.1.4. Repairing operator
It is possible that the o�spring schedules generated
by the initial population generation method or by the
crossover operator are infeasible. In order to overcome
this problem, we repair each schedule representation
after its generation. For this purpose, we generate a
random sequence of all pairs (i; j) =2 A and then check
the feasibility of the network based on this sequence.
Whenever the infeasibility condition is found due to
a relation like (i ! j), we change it as (i j). As
an example, consider the schedule representation ss
introduced in Section 4.3. Since there is loop 2! 5!
6 ! 2 in the corresponding project network of this
schedule representation, we should change precedence
relation (5! 6) as (5 6).

The repairing operator for the ATPSP includes
two steps. The �rst step is applied to infeasible
solutions for the purpose of making them feasible while
the second step is applied to the solutions which are not
subject to the concurrency property. In the �rst step
in which the precedence constraints are investigated,
for each activity i 2 N , if si < max

j2Pred(i)
ffjg, we

set si = max
j2Pred(i)

ffjg. In the second step of the

repairing method, for each activity i 2 N in which
si =2 ESi, we shift the activity to the direction that has
more positive or less negative impact on the objective

Figure 6. Gantt chart of schedule s0d.

Figure 7. Gantt chart of repaired schedule s0d.

function by the minimum amount required such that
we have si 2 ESi. For example, consider schedule
representation s0d, shown in Section 4.3 and depicted
in Figure 6.

In this schedule, at �rst, activity 2 is scheduled
which is concurrent with event t = 0. Then, activities
1 or 5 are scheduled where none of them is concurrent
with available events. Thus, we change s1 = 0 and s5 =
0. Then, activities 3, 4, 5, 6, 7, 8, and 9 are shifted to
the left such that the precedence relations among them
is kept and s3 = f2 = 12. Finally, we obtain schedule
representation s0d = (0; 0; 0; 12; 17; 0; 17; 18; 19; 16; 27),
depicted in Figure 7.

4.1.5. Local search operator
A local search operator is applied to each children
schedule with the probability of pls to enforce search
intensi�cation. For the RDPSP, this operator changes
each unordered pair (ijjj) as (i! j) and (i j) if each
of these directions does not make the project network
infeasible. For each direction of each unordered pair of
activities, the eNPV is calculated. It should be noticed
that the impact of each change is evaluated while other
unordered pairs of activities are not changed. The
current schedule is replaced with the best schedules
found in the aforementioned alterations and the local
search procedure is repeated.

Similarly, for the ATPSP, we change the start
times of activities instead of direction of the unordered
pair of activities. For this purpose and for a given
schedule s, we should �rst calculate the ESi(s) based
upon concurrency property for each activity i 2 N .
Then, si is changed to each time t 2 ESi(s) while start
times of other activities are kept the same. Finally, the
impact of each change is evaluated and the best found
solution is replaced with the current solution and this
procedure is repeated. Both the foregoing local search
procedures are stopped whenever no improvement is
obtained anymore.
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4.2. A genetic algorithm
The Genetic Algorithm (GA) was developed by [24]
based on the biological evolution idea for solving
compound optimization problems. GA has been widely
used in optimization problems [25]. Our GA starts
with generation of the initial population P with size
of jP j. Each element (solution) of the P is gen-
erated by the initial population generation method,
described in Section 4.1.1. In order to develop a new
element P , each element of the current population,
which is considered as the father schedule (sf ), is
mated randomly with other element of the population,
considered as the mother schedule (sm). They con-
stitute a couple and each couple generates two child
schedules, considered as the son schedule (ss) and the
daughter schedule (sd). The child generation process
is performed using three operators, i.e. combining,
mutation, and local search. The combining and local
search operators have been presented in Sections 4.1.3
and 4.1.5. The mutation operator selects 100pmut
percent of cells of each solution and changes them
randomly to other de�ned states. Since the gener-
ated child solutions may be infeasible, the repairing
operator, described in Section 4.1.4, is also applied in
the necessary cases to make the generated solutions
feasible.

The child with the better eNPV is chosen as
the child (sc) of the parents and is improved by the
local search operator with probability of pls. Next,
it is added to the end of P . Then, the population,
consisting of the 2jP j elements, is updated by deleting
half of its elements in such a way that the best
individuals will appear in the population more than
those with a worse eNPV value, emulating the \survival
of the �ttest" principle of nature. To that purpose,
we delete population elements using a biased random
sampling method in which the deletion probability of
each element is inversely proportional to its eNPV.
In order to prevent drop of the best-found schedule
so far, we will never delete it from the population.
This procedure will be continued until the termination
criterion is met.

5. Computational results

5.1. Benchmark problem set
All coding was implemented in the Visual C++ 6.0 en-
vironment; all experiments were run on a PC Pentium
IV 3 GHz processor with 1024 MB of internal memory.
For the RDPSP, we used the test sets of [3] including
420 test instances in which n = 10; 15; 20; 25; 30; 35; 40
and OS = 0:25; 0:5, and 0:75 where OS is the Order
Strength, the number of precedence-related activity
pairs divided by the theoretically maximum number
of such pairs in the network [26]. For each com-
bination of n and OS, 20 test instances were gen-

erated varying in the durations of activities, costs,
and PTSs: durations and costs are realizations of
(independent) discrete uniform random variables on
the intervals [1; 15] and [�50; 0], respectively, and the
PTS-values are with uniform probability chosen from
[80%; 100%].

Also, for the ATPSP, we used test sets generated
by De Reyck and Leus [3] including 60 test instances
in which they chose n = 6; 8; 10; 12 and OS = 0:4; 0:6,
and 0:8. For each combination of n and OS, they
generate �ve test instances. Moreover, durations
and costs are realizations of (independent) discrete
uniform random variables on the intervals [1; 10] and
[�100;�10], respectively, and the values of PTS are
with uniform probability chosen from [50%; 100%].
Unless mentioned otherwise, we set r = 0:05.

In order to compare the e�ciency of our developed
algorithms, we generated two large-scale test sets
including 120 test instances of RDPSP with n = 50; 100
and 30 test instances of ATPSP with n = 12; 15.

5.2. Setting of parameters
Using Design Of Experiments (DOE) technique and
based on hard test instances of the RDPSP and
ATPSP, we set the SS's parameters pls, th-dist, jP j, and
b. For each time limit, we considered three levels for
the �rst three parameters as follows: pls = 0:01; 0:03,
and 0.05; th-dist = 0:2; 0:4, and 0.6; jP j = 10b; 15b, and
20b. Also, for each of time limits, TL = 1, 10, and 100,
we considered three levels for parameter b as shown in
Table 3.

For each time limit, we ran a 34 full factorial
design and found the results of Table 4.

Similarly, we set the parameters of GA as jP j, pls,
and pmut, as shown in Table 5.

Table 3. Levels of parameter b.

TL b

1 4, 6, 8
10 12, 14, 16
100 20, 30, 40

Table 4. Setting of parameter.

TL b pls th-dist jP j
1 6 0.03 0.2 10b
10 12 0.03 0.4 10b
100 30 0.05 0.4 15b

Table 5. Levels of the GA's parameter.

TL pls jP j
1 0.02 50
10 0.03 100
100 0.05 500
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Table 6. Comparative results for combining methods.

Time limit TL = 1 second TL = 10 seconds TL = 100 seconds

Solution method SS+
CO1

SS+
CO2

GA+
CO1

GA+
CO2

SS+
CO1

SS+
CO2

GA+
CO1

GA+
CO2

SS+
CO1

SS+
CO2

GA+
CO1

GA+
CO2

RDPSP
n = 50 23.81 21.44 26.46 24.67 8.18 5.61 9.00 6.14 0.16 0.04 0.20 0.14

n = 100 64.15 56.31 72.48 60.71 12.45 9.10 14.15 11.07 3.61 1.53 4.08 2.23

ATPSP
n = 15 19.07 18.50 27.53 19.13 5.87 4.98 7.15 5.21 0.01 0.00 0.02 0.00

n = 20 29.64 24.71 36.38 26.09 8.13 7.13 8.92 7.18 2.07 1.81 2.37 1.96

TAPD 34.17 30.24 40.71 32.65 8.66 6.71 9.81 7.40 1.46 0.85 1.67 1.08

Table 7. Comparative results for the RDPSP.

TL

TL = 1 second TL = 10 seconds TL = 100 seconds

SS+CO2 B&B SS+CO2 B&B SS+CO2 B&B

n

10 1.41(59) 0.00(60) 0.00(60) 0.00(60) 0.00(60) 0.00(60)

15 8.97(51) 6.34(53) 1.07(58) 1.04(58) 0.00(60) 0.00(60)

20 14.21(47) 8.94(51) 4.91(54) 2.84(57) 0.00(60) 0.00(60)

25 17.86(35) 29.94(20) 13.84(45) 26.84(25) 5.143(53) 19.02(35)

30 26.74(19) 35.83(13) 18.27(33) 31.11(19) 17.94(34) 28.60(23)

35 45.12(9) 51.59(5) 34.27(20) 37.61(16) 30.12(18) 34.08(20)

40 50.64(0) 59.71(0) 44.07(8) 54.88(3) 35.61(17) 41.37(14)

TAPD. (Avg#opt) 23.56(31.43) 27.48 (28.86) 16.63(39.71) 22.05(34) 12.69(43.14) 17.58(38.86)

5.3. Comparative computational results
As the termination criterion, we consider three time
limits TL = 1, 10, and 100 seconds and run our
SS, GA, and B&B procedures of [2,3] in the given
time limits. The performance of our SS and GA for
the RDPSP and ATPSP with two di�erent combining
methods have been summarized in Tables 5, 6, and 7,
respectively. We report the Average Percent Deviation
(APD) from the optimal solutions (or best known
solutions). The best known solutions for the RDPSP
with n = 10; 15; 20; 25; 30; 35; 40 and for the ATPSP
with n = 6; 8; 10; 12 have been determined using B&B
algorithms of [2,3]. For other test instances (large-
scale test instance), the best found solutions have been
obtained by SS or GA. The result of Table 6 shows
the performance of SS and GA based on APD with
two di�erent combining methods of CO1 and CO2.
This comparison has been made on the basis of large
scale test instances which are more applicable for meta-
heuristic algorithms. From Table 6 and based on the
Total Average Percent Deviation (TAPD), we conclude
that SS algorithms combined with CO2 has the best
performance in both the RDPSP and the ATPSP. Also,
it can be seen that with identical combining operator,
SS outperforms GA in average. Thus, in the rest of

this paper, we compare only performance of SS+CO2
with exact solution algorithms.

The result of Table 7 shows that the developed
SS+CO2 algorithm for the RDPSP dominates the B&B
algorithms of [3]. In addition to APD, in each cell of
this table, the number of times the optimal solution
(#opt) is obtained is reported inside parenthesis. For
test instances with n = 10, 15, and 20, the B&B
algorithm has better performance than that of our
developed SS+CO2, but for larger test instances, our
SS+CO2 algorithm outperforms the B&B algorithm
(in terms of both APD and #opt). The last row of
Table 7 indicates the summarized results in terms of
Total Average Percent Deviation (TAPD) and average
number of optimal solutions (Avg#opt). This row
indicates that SS+CO2 algorithm surpasses the B&B
algorithm.

Similar to those of Table 7, the results of Table 8
indicate that our SS+CO2 algorithm outperforms the
B&B algorithm of [2] in average and also for larger test
instances (n = 10 and 12).

5.4. Sensitivity analysis
In this section, we analyze the impact of repairing
and local search operators. On the basis of the
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Table 8. Comparative results for the ATPSP.

TL

TL = 1 second TL = 10 seconds TL = 100 seconds

SS+CO2 B&B SS+CO2 B&B SS+CO2 B&B

n

6 0.00(15) 0.00(15) 0.00(15) 0.00(15) 0.00(15) 0.00(15)

8 0.20(14) 0.17(13) 0.00(15) 0.00(15) 0.00(15) 0.00(15)

10 0.84(10) 2.44(4) 0.21(13) 0.59(8) 0.00(15) 0.05(14)

12 2.46(4) 3.35(0) 0.38(9) 2.32(3) 0.21(12) 1.86(5)

TAPD. (Avg#opt) 0.88(10.75) 1.49(8) 0.15(13) 0.73(10.25) 0.05(14.25) 0.48(12.25)

Table 9. Impact of repairing and local search operators on the performance of SS+CO2.

n
RDPSP ATPSP

10 15 20 25 30 35 40 6 8 10 12

SS+CO2/repairing 0.67 2.84 7.14 18.91 25.14 41.57 58.10 0.01 0.08 0.35 0.72

SS+CO2/local search 0.96 2.34 6.18 20.41 25.37 48.63 60.72 0.03 1.38 2.54 2.0

performance of SS+CO2, around 25% of precedence
relations generated in RDPSP schedules were repaired
(inversed). Also, around 35% of start times generated
in ATPSP schedules were changed to �nd feasible
solutions. Moreover, in the second phase of the
repairing operator of ATPSP, 18.5% of start times were
changed because of the concurrency property. These
results indicate that if we do not apply the repair-
ing operator, a noticeable percent of solutions must
be regenerated. To show e�ciency of the repairing
operator, we run the SS+CO2 algorithm over both
RDPSP and ATPSP without repairing operator by
considering TL = 10 seconds. In this case, instead
of each infeasible solution, a new random solution is
generated until a feasible solution is found. In Table 9,
the row titled by \SS+CO2/repairing" indicates the
APD values while repairing operators have not been
applied in the SS+CO2 algorithm. By comparing
these outcomes with similar values reported in Tables 5
and 6, we �nd that performance of the algorithm has
decreased by as many as 6.65 and 4.8 percent for
RDPSP and ATPSP, respectively.

Also, we run the SS+CO2 algorithm over both
RDPSP and ATPSP without their corresponding local
search procedures. The last row of Table 9 shows that
the performance of SS+CO2 algorithm has decreased
by around 7.8 and 6.47 percent for RDPSP and ATPSP,
respectively.

6. Summary, conclusions, and further research

In this paper we studied the project scheduling problem
under the risk of failure of activities. We consid-
ered two introduced problems in the literature: the
RDPSP and ATPSP. We developed a scatter search

metaheuristic for the mentioned problems with especial
components. Using available test sets in the literature,
we compared the performance of our developed scatter
search algorithm with those of the branch-and-bound
algorithms, developed by Ranjbar and Davari [2] and
De Reyck and Leus [3] for the ATPSP and RDPSP,
respectively. The computational experiments indicated
that our algorithm has better performance, especially
for larger test instances.

For future research, we propose to consider the
modular project scheduling and extend our algorithm
for this new problem. In addition, developing new
exact and metaheuristic algorithms with more e�cient
operators for the RDPSP and ATPSP can be interest-
ing research topics.
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