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Abstract. An important problem in today�s industries is the cost issue, due to the high
level of competition in the global market. This fact obliges organizations to focus on
improvement of their production-distribution routes, in order to �nd the best. The Supply
Chain Network (SCN) is one of the, so-called, production-distribution models that has
many layers and/or echelons. In this paper, a new SCN, which is more compatible with real
world problems is presented, and then, two novel hybrid algorithms have been developed
to solve the model. Each hybrid algorithm integrates the simulation technique with
two metaheuristic algorithms, including the Genetic Algorithm (GA) and the Simulated
Annealing Algorithm (SAA), namely, HSIM-META. The output of the simulation model
is inserted as the initial population in tuned-parameter metaheuristic algorithms to �nd
near optimum solutions, which is in fact a new approach in the literature. To analyze
the performance of the proposed algorithms, di�erent numerical examples are presented.
The computational results of the proposed HSIM-META, including hybrid simulation-GA
(HSIM-GA) and hybrid simulation-SAA (HSIM-SAA), are compared to the GA and the
SAA. Computational results show that the proposed HSIM-META has suitable accuracy
and speed for use in real world applications.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

A Supply Chain Network (SCN) is a dynamic system
that includes all activities involved in the life cycle of
products, from processing the raw material until deliv-
ery to customers. These activities include manufactur-
ing, inventory control systems, distribution channels,
warehousing, customer services etc. [1]. The SCN has
been widely investigated for its competitive advantages
in today's business world. A SCN consists of some
suppliers, manufacturing plants, Distribution Centers
(DCs), and customers. The impact of competition
forces suppliers, manufacturers, and DCs to collaborate
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e�ciently with each other on the entire SCN. The
concept of the SCN is presented in Figure 1 [2]. Supply
Chain Management (SCM) coordinates and integrates
all these activities into a smooth process. The main
objective of a SCM system is to minimize system-wide
costs while satisfying service-level requirements with
increasing global competition, even in emergence of e-
business deals. SCM is viewed as a major solution for
cost reduction and pro�tability strategies [3].

Recent studies have focused on multi-facility,
multi product, and multi-period problems. Several
algorithms have been developed to solve SCN problems.
Many mathematical programming methods, such as
Linear Programming (LP), Integer Programming (IP),
and Mixed-Integer Programming (MIP), have been
utilized to solve the small-scale problems. On the other
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Figure 1. The concept of the supply chain network.

hand, metaheuristic algorithms, such as Genetic Algo-
rithms (GA), Neural Networks (NN), and Simulated
Annealing Algorithms (SAA), have been developed
to solve large-scale problems, known due to the NP-
hardness of a SCN. Real SCN problems have several
stochastic parameters, such as demand rate and lead
time. Therefore, the simulation approach can be more
practical for addressing such a stochastic large-scale
real world problem. Chan [4] identi�ed seven categories
of quantitative and qualitative performance measure-
ment. These include cost and resource utilization as
quantitative, and quality, 
exibility, visibility, trust,
and innovativeness as qualitative.

Also, several studies proposed the simulation
approach to solve the problem. The simulation ap-
proach proposed by Lee et al. [5] was based on the
equation of continuous portion in the SCN architecture
in modelling the problem. The architecture includes
and describes how these portions can be used in SCN
simulation models. Joines et al. [6] utilized a SCN
simulation, optimization methodology, using GA to
optimize system parameters. Jang et al. [7] and Lim et
al. [8] introduced a Bill Of Material (BOM) relationship
between manufacturing plants. Long and Lin [9] pro-
posed a framework of a multi-agent-based distributed
simulation platform for SCN. Pan et al. [10] provided a
systematic approach for analyzing and designing SCN
construction. They utilized a simulation technique to
explore the behaviour of the SCN and �nd the near
optimal solutions. Akgul et al. [11] commented on
optimization-based methods for biofuel supply chain
assessment under uncertainty. The work identi�es
mathematical programming, as well as simulation-
based methods, as being relevant to this �eld. Weare
and Fagerholt [12] studied optimal planning of o�shore
SCN. Considering major uncertainty elements, such
as weather impact, on sailing and loading operations,
they described how voyage-based solution methods can
be used to provide decision support in the supply
vessel planning process. In their proposed solution,
the simulation was combined with an optimization
method to create a more robust 
eet, and schedule
solutions for supply planning. Some modelling tech-
niques to model SCN under uncertainty were presented
by Awudu and Zhang [13]. Their work focused on
biore�nery SCN, while researchers made the point
that there is limited literature regarding uncertainty,
speci�cally in the biore�nery SCN context. They
concluded that all supply chains are under uncertainty
conditions. The researchers used analytical methods
and simulation-based techniques. Zengin et al. [14]

investigated discrete event simulation with its robust,
accurate modelling, and analysis capabilities. Long and
Zhang [15] proposed an integrated framework for agent-
based inventory production-transportation modelling
and distributed simulation of SCN. This extended
framework provides users with a meta-agent class
library and a multi-agent-based distributed platform
for SCN to build an agent-based simulation model
visually and rapidly using meta-agents as building
blocks. Further, it supports the independent build-
ing of sub-simulation models, implementing and syn-
chronizing them together in a distributed environ-
ment.

Research that has utilized metaheuristic algo-
rithms can be investigated as follows. Chan et al. [16]
developed a hybrid GA for production-distribution
problems in multi-factory SCN models, and solved
a hypothetical production-distribution problem using
this algorithm. Chan and Chung [17] presented an
optimization algorithm to solve the problem of demand
allocation, transportation, and production scheduling
in a demand-driven multi-echelon distribution network,
especially considering demand due date. The proposed
optimization algorithm was combined with GA and the
Analytic Hierarchy Process (AHP). Gen and Syarif [18]
proposed a new technique, called a spanning tree-
based GA, for solving production-distribution prob-
lems. They integrated production, distribution, and
inventory systems, so that products were produced
and distributed in the right quantities, to the right
customers, and at the right times. The goal was
to minimize total costs while satisfying all customer
demands. Syami [19] studied the traditional facility
location problem considering logistic costs. To this
end, two di�erent heuristics, based on Lagrange re-
laxation and SAA, were used. Ross [20] proposed
a two-phase approach for a SCN. The �rst phase
includes a strategy that selects the best set of dis-
tribution centers to be opened, and the second is
an operational decision that includes customer and
resource assignments. The SAA is applied to solve
this problem. Jayaraman and Ross [21] provided
a distribution network in two models, focusing on
two key stages: planning and implementing. De-
termining warehouse and cross-dock center allocation
to open warehouses, and family product allocation
from warehouse to cross-dock center are all results
of solving the �rst model. The second model is an
operational model aiming to minimize the cost of
transportation to warehouses, the cost of transporta-
tion from warehouses to cross-dock centers and the
cost of product distribution to the customers. SAA
is used to achieve near optimal solutions for both
models. Zhang et al. [22] presented an extended
GA to support the multi-objective decision-making
optimization for the SCN. They showed that their
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proposed approach can obtain the optimal manufac-
turing resource allocation plan within a reasonable
time in the proposed case studies. Xian-cheng et
al. [23] proposed a genetic-particle swarm optimiza-
tion algorithm for closed-loop SCN. They show that
their algorithm provides a new way to design closed-
loop SCN and gain good convergent performance and
rapidity. Furlan et al. [24], Sukumara et al. [25], and
Caballero et al. [26] combined process simulation and
optimization to optimize the combinatorial optimiza-
tion problems.

In this research, the mathematical model from
Lim et al. [8] was developed by considering capacitated
warehouses and de�ning some new relevant variables
to the basic model for each echelon to make the SCN
model much more realistic. For example, in some
industrial companies, such as iron melting industries,
many products have particular length and width sizes,
and, thus, keeping them in un-capacitated warehouses
for long times is impossible. Therefore, the warehouse
capacities of these companies are limited. According
to Lim et al. [8] this problem is an NP-hard problem,
so, two hybrid simulation-metaheuristic algorithms,
called HSIM-META, were developed to solve the SCN
model. The simulation is used to solve and �x the
routes of the SCN and computing of the total costs.
Then, these feasible solutions are used as the initial
population in metaheuristic algorithms to �nd near
optimum solutions. To the best of our knowledge, there
is no similar approach in dealing with the SCN, which
combines simulation and metaheuristic algorithms to
solve the model. However, using simulation, or com-
bining simulation with metaheuristics (OVS), is not a
new approach in SCN literature, but this is the �rst
time that a new OVS method has been developed for
the SCN. Usually, in OVS methods, the simulation
replications are used to calculate the �tness function.
Sometimes the simulation replications are used to pro-
duce a regression model to be used as the �tness func-
tion. Sometimes, at each iteration of the metaheuristic,
whenever the algorithm wants to calculate the �tness
function, it replicates the simulation model to achieve
this value. This novel approach connects the simulation
model and the metaheuristics through construction of
the initial population. Based on conjecture, wherein
having an initial good feasible population, instead of
random initial ones, can terminate the metaheuristics
faster, the simulation model helps to produce several
feasible solutions randomly in a very short time (1000
solutions in less than 1 second). This conjecture
has been proved at least for the current problem,
i.e. the initial high quality population can result in
a faster termination. The optimum solution may be
among these generated solutions, or, at least, the best
solution could be a good lower bound for the main
problem. This capability helps metaheuristics to start

from a good basis and to reject many non-promising
solutions.

This paper is organized in the following way. In
Section 2, the mathematical model is presented. In
Section 3, the solution methodologies are explained
by introducing GA and SAA. Then, the proposed
hybrid simulation-metaheuristics (HSIM-META) are
especially described with their components. The link
between simulation results and metaheuristics is also
presented by developing and testing three di�erent
scenarios. The best one has been selected based on
minimizing total costs, including �xed set up costs,
production costs, inventory holding costs, and trans-
portation costs. In Section 4, the computational
results have been presented which compare the results
of HSIM-META with normal GA and SAA. Finally,
concluding remarks and suggestions for future research
are presented in Section 5.

2. Mathematical model

The SCN model in this study has �ve echelons, in-
cluding suppliers, sub assembly factories, �nal assem-
bly factories, DCs, and �nal customers. The cost
parameters assumed in the model are production,
transportation, inventory holding, and facility set up
costs. An example case of a SCN used for this study is
presented in Figure 2.

The assumed SCN procures raw material from the
suppliers and processes them into the sub-assembled
products in sub-assembly factories. These sub-
assembled products are then transported to the �nal as-
sembly factories for producing the assembled products,
and, then, �nal assembly products are transported to
the distribution centers to ful�ll customer demand.

The basic formulation of the SCN problem was
taken from Lim et al. [8] with some revisions, includ-
ing the warehouse capacities for all factories at each
echelon, and by adding some relevant variables to the
basic model.

The following assumptions are made regarding the
underlying SCN at each period of time:

� Suppliers, manufacturing plants, DCs, customers,
and products are known;

� The customer demands of each product are known
and con�dent;

� The locations of the suppliers, manufacturing
plants, DCs, and customers are known;

� The set up time are assumed to be negligible;

� All cost parameters are known and con�dent;

� All manufacturing plants and DCs have relevant
capacity for production and inventory;



R. Rooeinfar et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 330{347 333

Figure 2. An example of the supply chain network for this study.

� The bill of material (BOM) of each sub product of
any �nal product is known, and the consumption
ratio is 1:1.

The following notations are used:
Indices
c Index of raw materials (c = 1; 2; :::; C);
v Index of sub-assembled products

(v = 1; 2; :::; V );
K Index of �nal assembled products

(k = 1; 2; :::;K);
e Index of suppliers (e = 1; 2; :::; E);
s Index of sub-assembly factories

(s = 1; 2; :::; S);
P Index of �nal assembly factories

(p = 1; 2; :::; P );
J Index of distribution centers

(j = 1; 2; :::; J);
d Index of customers (d = 1; 2; :::; D);
T Index of time periods (t = 1; 2; :::; T ).
Parameters
Pcet Fixed set up cost of e for c at time

period t;
Pvst Fixed set up cost of s for v at time

period t;
Pkpt Fixed set up cost of p for k at time

period t;
Pkjt Fixed set up cost of j for k at time

period t;
Cces Unit production cost of c at e to s at

time period t;
Cvspt Unit production cost of v at s to p at

time period t;
Ckpjt Unit production cost of k at p to j at

time period t;

HCcet Unit inventory holding cost of c at e at
time period t;

HCcsvt Unit inventory holding cost of c at s to
v at time period t;

HCvst Unit inventory holding cost of v at s at
time period t;

HCvpkt Unit inventory holding cost of v at p to
k at time period t;

HCkpt Unit inventory holding cost of k at p
at time period t;

HCkjt Unit inventory holding cost of k at j at
time period t;

TCcest Unit transporting cost of c from e to s
at time period t;

TCvspt Unit transporting cost of v from s to p
at time period t;

TCkpjt Unit transporting cost of k from p to j
at time period t;

TCkjdt Unit transporting cost of k from j to d
at time period t;

Adkt Demand of k for d at time period t;
TNce Processing time of c at e;
TNvs Processing time of v at s;
TNkp Processing time of k at p;
Qcet Total available production capacity of

c at e at time period t;
Qvst Total available production capacity of

v at s at time period t;
Qkpt Total available production capacity of

k at p at time period t;
Rcet Total available inventory capacity of c

at e at time period t;
Rcst Total available inventory capacity of c

at s at time period t;
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Rvst Total available inventory capacity of v
at s at time period t;

Rvpt Total available inventory capacity of v
at p at time period t;

Rkpt Total available inventory capacity of k
at p at time period t;

Rkjt Total available inventory capacity of k
at j at time period t;

M A large positive integer number.
Variables
Xcest Production amount of c at e to s at

the end of period t;
Xvspt Production amount of c at e to s at

the end of period t;
Xkpjt Production amount of k at p to j at

the end of period t;
Icet Inventory amount of c at e at the end

of period t;
Icsvt Inventory amount of c at s to v at the

end of period t;
Ivst Inventory amount of v at s at the end

of period t;
Ivpkt Inventory amount of v at p to k at the

end of period t;
Ikpt Inventory amount of k at p at the end

of period t;
Ikjt Inventory amount of k at j at the end

of period t;
TRcest Transportation amount of c from e to

s at the end of period t;
TRvspt Transportation amount of v from s to

p at the end of period t;
TRkpjt Transportation amount of k from p to

j at the end of period t;
TRkjdt Transportation amount of k from j to

d at the end of period t.

Wcest

8>><>>:
1; if transportation takes place from e

to s at the end of period t

0; otherwise

Wvspt

8>><>>:
1; if transportation takes place from s

to p of v at the end of period t

0; otherwise

Wkpjt

8>><>>:
1; if transportation takes place from p

to j of k at the end of period t

0; otherwise

Wkjdt

8>><>>:
1; if transportation takes place from j

to d of k at the end of period t

0; otherwise

Ucet

8>><>>:
1; if production takes place for c

at supplier e at the end of period t

0; otherwise

Uvst

8>>>>><>>>>>:
1; if production takes place for v at

the �nal assembly factory s at
the end of period t

0; otherwise

Ukpt

8>>>>><>>>>>:
1; if production takes place for k at

the �nal assembly factory p at
the end of period t

0; otherwise

Ukjt

8>><>>:
1; if DC j is opened for k

at the end of period t

0; otherwise

The mathematical model (Problem 1) is presented as
follows:

MinimizeX
c

X
e

X
t

�
(PcetUcet) + (HCcetIcet)

+
X
s
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�

+
X
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X
t

�
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+ (HCvstIvst) +
X
p

(CvsptXvspt)
�

+
X
k

X
p

X
t

�
(PkptUkpt) + (HCkptIkpt)

+
X
j

(CkpjtXkpjt)
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+
X
c

X
s

X
v

X
t

(HCcsvtIcsvt)

+
X
v

X
p

X
k

X
t

(HCvpktIvpkt)

+
X
k

X
j

X
t

�
(PkjtUkjt) + (HCkjtIkjt)
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+
X
c

X
e

X
s

X
t

(TCcestTRcest)

+
X
v

X
s

X
p

X
t

(TCvsptTRvspt)

+
X
k

X
p

X
j

X
t

(TCkpjtTRkpjt)

+
X
k

X
j

X
d

X
t

(TCkjdtTRkjdt) (1)

St:X
s

(TNceXcest) � QcetUcet; 8c; e; t; (2)X
p

(TNvsXvspt) � QvstUvst; 8v; s; t; (3)

X
j

(TNkpXkpjt) � QkptUkpt; 8k; p; t; (4)

Icet � RcetUcet; 8c; e; t; (5)

Icsvt � RcstUvst; 8c; s; v; t; (6)

Ivst � RvstUvst; 8v; s; t; (7)

Ivpkt � RvptUkpt; 8v; p; k; t; (8)

Ikpt � RkptUkpt; 8k; p; t; (9)

Ikjt � RkjtUkjt; 8k; j; t; (10)

Xcest �MUcet; 8c; e; s; t; (11)

Xvspt �MUvst; 8c; e; s; t; (12)

Xkpjt �MUkpt; 8c; e; s; t; (13)

TRcest �MWcest; 8c; e; s; t; (14)

TRvspt �MWvspt; 8v; s; p; t; (15)

TRkpjt �MWkpjt; 8k; p; j; t; (16)

TRkjdt �MWkjdt; 8k; j; d; t; (17)X
s

Xcest + Icet �X
s

TRcest � Icet�1 = 0; 8c; e; t;
(18)X

p

Xvspt + Ivst �X
p

TRvspt � Ivst�1 = 0; 8v; s; t;
(19)X

j

Xkpjt + Ikpt �X
j

TRkpjt � Ikpt�1 = 0; 8k; p; t;
(20)

Ikjt�1 � Ikjt � TRkjdt +Adkt = 0; 8k; j; d; t; (21)

X
p

Xvspt �X
c

X
e

Xcest �X
c

Icsvt�1; 8v; s; t;
(22)X

j

Xkpjt �X
v

X
s

Xvspt �X
v

Ivpkt�1; 8k; p; t;
(23)

Xcest; Xvspt; Xkpjt � 0 8c; e; s; v; p; k; j; t; (24)

Icmt; Icsvt; Ivst; Ivpkt; Ikpt; Ikjt � 0

8c;m; s; v; p; k; j; t; (25)

TRcmst; TRvspt; TRkpjt; TRkjdt � 0

8c;m; s; v; p; k; j; d; t; (26)

Ucet;Uvst;Ukpt;Ukjt;Wcest;Wvspt;Wkpjt;Wkjdt 2 f0; 1g
(27)

The objective function of this model is to minimize
the total costs, including set up, production, inven-
tory holding, and transportation costs through the
model. Constraints (2)-(4) represent the capacity
restrictions for each supplier, sub-assembly factory, and
�nal assembly factory. Constraints (5)-(10) represent
the capacity restriction for the supplier, warehouse,
sub-assembly warehouse, �nal assembly warehouse,
and DC. Constraints (11)-(13) ensure that a set up
event occurs when a factory manufactures an item
such as raw material, sub-assembled product, or �nal-
assembled product. Constraints (14)-(17) imply that a
link among plants exists if the transportation quantities
are non-zero. Constraints (18)-(21) represent a balance
equation that de�nes the inventory levels for items
c, v, and k at the end of period t at each plant,
and DC results from production and transportation
procedures. Constraints (22) and (23) ensure that the
external demands must be satis�ed. Constraints (24)-
(26) represent the non-negativity restrictions on the
decision variables. Constraint (27) shows the integer
0-1 variables. It should be mentioned that Constraint
sets (5)-(10) have been added to the basic model of Lim
et al. [8] as limited capacity warehouses of factories at
each echelon.

3. Solution methodologies

At �rst, general metaheuristic algorithms, including
the Genetic Algorithm (GA) and the Simulated An-
nealing Algorithm (SAA) are brie
y described, and,
then, the proposed HSIM-GA and HSIM-SAA and
their components are especially described.

3.1. Genetic algorithm in general
The Genetic Algorithm (GA) is a well-known meta-
heuristic optimization technique originally developed
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by Holland [27]. Vose [28] provided the whole concept
of the basic GA. R.L. Haupt and S.E. Haupt [29] under-
took a brief study, including some of the latest research
results on applying GA. Brie
y, the GA mechanism is
based on a natural selection process that starts with
an initial set of random solutions (population). Each
individual in the population (chromosome) indicates
a solution to the problem. During a generation, the
chromosomes are evaluated using a cost function. In
order to produce the next generation, two operators
are used in GA. The �rst, called the crossover, merges
two chromosomes of a current generation to create
o�spring, and the other, called, mutation, modi�es a
chromosome. Then, based on cost function values,
some parents and o�spring having better values of
cost function, form a new generation. In this way,
better chromosomes of successive generations have
higher probabilities of being selected and the algorithm
converges to the best chromosome that expectantly
indicates the optimum or near optimal solution to
the problem after several generations. In general,
GA can �nd the global optimum solution with a high
probability.

3.2. Simulated annealing algorithm in general
SAA is a randomized local search method based on
simulation of metal annealing. The procedure was
popularized by Krikpatrik et al. [30] and is based on the
work carried out by Metropolis et al. [31] (also called
the Metropolis algorithm) in statistical mechanics.
SAA emulates the physical process of annealing, which
attempts to force a system to its lowest energy state
through a controlled cooling procedure. In a physical
system with a large number of atoms, equilibrium may
be characterized as the minimal value for the energy
of the system. This is accomplished by a slow cooling
of the temperature. Then, the system is said to be at
thermal equilibrium at temperature T if the probability
of being in state i with energy Ei follows the Bultzen
distribution:

Probfx = ig =
exp

n �Ei
KBT

oP
expf �EiKBT g

; (28)

where KB is the Bultzen constant and the sum extends
to all possible states. By moving the atoms randomly
to new con�gurations, di�erent energy changes are
induced (�E). If the increment is negative, the new
con�guration is accepted as a new state, but if the
con�guration has higher energy than the previous state,
it is only accepted with a certain probability, as follows:

exp
���E
KBT

�
: (29)

By repeating these steps, it is shown that the accepted
con�gurations converge to the Bultzen distribution

after some indeterminate number of iterations at each
particular temperature. The procedure may be easily
applied to a large number of optimization problems,
where the objective function plays the role of energy.
In this context, the temperature is a control parameter
to de�ne large or small moves for the optimization
variables.

3.3. Proposed hybrid
simulation-metaheuristics algorithm
(HSIM-META)

As mentioned earlier, Problem 1 is an NP-hard problem
and, so, metaheuristic algorithms can be potentially
appropriate for solving the problem. On the other
hand, the SCN has several stochastic parameters which
cannot be dealt with via mathematical programming
approaches, especially in large scale problems. There-
fore, the simulation is used to model the real world SCN
problems. First, a mathematical model is constructed
similar to Problem 1 and, then, this model is used
to construct the corresponding simulation model. All
constraints in Problem 1 are coded in the simulation
software in such a way that each run results in a
feasible solution. Then, the simulation model is run
and the best production-distribution routes for each
customer are obtained. Also, each run is terminated
when all demands of customers are satis�ed. Next, the
output solutions of simulation are used as the initial
population in the proposed tuned metaheuristics. The
metaheuristics run and its circle is repeated until
the stopping criteria are satis�ed. Therefore, the
simulation model has two key speci�cations in the
tuned parameter proposed HSIM-META algorithm.
First, it produces some feasible solutions which can be
used in the GA and SAA as initial population, and,
second, it covers and handles the stochastic behaviour
of the SCN. In the next subsection, we describe the
essential components of the HSIM-GA and HSIM-SAA
in detail.

3.3.1. The chromosome representation of HSIM-GA
The �rst important step in utilizing the proposed
HSIM-GA algorithm is the chromosome representation.
We design a heuristic chromosome, which can generate
feasible solutions and which satis�es the majority of
constraints (Constraint sets (2)-(17)). Our chromo-
some structure is a N�T super matrix, where, N is the
number of the submatrix, which illustrates suppliers,
sub-assembly factories, �nal assembly factories, DCs
and customers, and T is the period of time. An
example of the chromosome structure is shown in
Figure 3. In this �gure, we describe submatrix numbers
1, 2, 3, and 10 as an example.

The main important questions related to the pro-
duction, warehousing, and transportation capacities of
the SCN at each echelon are as follows:
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Figure 3. An example of the chromosome structure.

I. How many products should be produced at each
factory?

II. How many products should be transported to the
next echelon?

To answer these questions, we introduce a heuris-
tic method for randomly generating a feasible initial
population which can consider these constraints. The
following example presents the proposed heuristic:

X1 +X2 +X3 +X4 +X5 = 2000; (30)

X1 � 1100; (31)

X2 � 500; (32)

X3 � 400; (33)

X4 � 300; (34)

X5 � 100: (35)

Suppose that the above model represents the �rst row
of submatrix 1, including the production amount of
raw material, type 1, at the suppliers. Constraint (30)
shows that the total amount of raw material produced
by the suppliers is equal to 2000. Also, Constraint
sets (31)-(35) implies that the maximum production
capacity of suppliers 1, 2, 3, 4 and 5 to produce
raw material type 1 are 1100, 500, 400, 300 and 100,
respectively. According to the above information, we
can infer that suppliers 2, 3, 4, and 5 can produce,
totally, 1300 units of raw material type 1 if they work
with maximum capacity. Also, we can conclude that

supplier 1 should, at least, produce 700 units of raw
material, type 1, to satisfy Constraint (30). Therefore,
if suppliers 3, 4, and 5 work with maximum capacity,
they can produce 800 units of raw material type 1,
totally, and supplier 2 should at least produce 200 units
of raw material, type 1. Also, suppliers 4 and 5 can
produce totally 400 units of raw material, type 1, if
they work at maximum capacity. Therefore, supplier 3
should at least produce 200 units of raw material, type
1, to satisfy Constraint (30). Next, we can conclude
that supplier 4 should at least produce 200 units of raw
material, type 1, to satisfy Constraint (30). According
to the information, we could �ll submatrix 1 as follows:

X1 = Uniform (700; 1100) = 1000; (36)

X2 � 500; (37)

X3 � 400; (38)

X4 � 300; (39)

X5 � 100; (40)

X2 +X3 +X4 +X5 = 1000; (41)

X2 = Uniform (200; 500) = 400; (42)

X3 +X4 +X5 = 600; (43)

X3 = Uniform (200; 400) = 300; (44)

X4 +X5 = 300; (45)
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X4 = Uniform (200; 300) = 250; (46)

X5 = 2000� 1000� 400� 300� 250 = 50: (47)

A graphical representation of the described heuristic
method can be found in Figure 4(a)-(e), in which all
manufacturing plants, such as suppliers, sub-assembly
factories, and �nal assembly factories, produce accord-
ing to the their production capacity constraints (this
procedure is utilized for Constraint sets (2)-(17).

3.3.2. Initialization of HSIM-GA
The input parameters of our HSIM-GA is the popu-
lation size (NPop), which shows the total number of
chromosomes in each generation, crossover probability
(Pc) and mutation probability (Pm).

3.3.3. The cross over operator of HSIM-GA
The goal of cross over is to explore new solution space.
The cross over operator corresponds to exchanging the
parts of the strings of selected parents. In general, there

Figure 4. An example of the chromosome �lling structure.
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are three ways to keep the initial solutions feasible by
cross over, as follows:

� Assume penalty functions for infeasible solutions;

� Return the infeasible solutions to feasible solutions
by special techniques;

� Keep every new generated solution feasible.

After generating feasible submatrixes as parents,
the proposed cross over operator is used as follows:

1. Two chromosomes are selected according to the
roulette wheel selection method;

2. Every cell of parent 1 is added to the corresponding
cell of parent 2, then, this value is divided by two.
In other words, the average of the two parents is
called the o�spring. These calculations are repeated
for all submatrixes at each period of time.

This cross over operator ensures that all generated
o�springs are feasible and one never comes out of the
feasible region. An example of the proposed cross over
operator of submatrix 1 is illustrated in Figure 5.

3.3.4. The mutation operator of HSIM-GA
Mutation is undertaken to prevent premature conver-
gence and to explore new solution space. We introduce
a new mutation operator that keeps each generated so-
lution feasible. We consider submatrix 1 to present our
mutation operator of HSIM-GA. First, we randomly
select a supplier and allocate total productions to it, as
follows: One cell of the submatrix is selected and total
production is assigned to it. Next, the other submatrix
cells are updated considering the total production and
capacity of factory constraints. An example of the
mutation operator is shown in Figure 6.

At the second step, the essential components of
the HSIM-SAA are presented as follows.

Figure 6. An example of the mutation operator.

3.3.5. Initialization of HSIM-SAA
The input parameters of the SAA are: Initial tempera-
ture (T0), which is the starting temperature point and
the temperature decreasing rate (�).

3.3.6. Solution representation of HSIM-SAA
The solution representation in the HSIM-SAA is similar
to the ones described in \The chromosome representa-
tion" for HSIM-GA.

3.3.7. Neighborhood representation of HSIM-SAA
To present the neighborhood structure, the proposed
mutation operator of HSIM-GA, described in \The
mutation operator" is utilized to avoid fast convergence
of the HSIM-SAA.

3.3.8. Initial temperature
A suitable initial temperature is one that results in an
average increase of acceptance probability near to one.
The value of initial temperature will clearly depend on
the scaling of �tness and, hence, it should be problem-
speci�ed. Therefore, we �rst generate a large set of

Figure 5. An example of cross over operator.
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random solutions, then, a standard division of them is
calculated and used to determine the initial tempera-
ture in such a way that the acceptance probability of
primary generations reached 0.95. Consequently, the
initial T is set to 1500, based on some preliminary
parameter selection examinations, which are described
in Subsection 4.1.

3.3.9. Stopping criteria
In general, the algorithms could be stopped in the
following ways:

� After a prede�ned number of generations;
� When an individual solution reaches a prede�ned

level of �tness;
� When the variation of individuals from one genera-

tion to the next generation reaches a prede�ned level
of stability.

In this paper, the algorithms will be stopped
according to the �rst way, in which, if there is no
improvement in the best �tness value for the 50 genera-
tions, the algorithms will stop. This stopping criterion
is used for both HSIM-GA and HSIM-SAA algorithms.
Figures 7 and 8 depict the 
owchart of the proposed
Hybrid Simulation-Genetic Algorithm (HSIM-GA) and
a Hybrid Simulation-Simulated Annealing Algorithm
(HSIM-SAA), respectively.

3.3.10. Allowing infeasibility
To simplify the escape process from local optimum so-
lutions, the chromosome is allowed to be infeasible, but
is penalized according to the amount of infeasibility.
An e�cient penalty formulation, which is dynamic, is
applied in such a way that explores the space in the
�rst and results in infeasible solutions at the end of the
evolution. A general form of a distance based penalty
method, incorporating a dynamic aspect, is based on
the length of the search area for our minimization
problem:

Fp(x; t) = f(x) +
sX
s=1

pst; (48)

where ps is a relative scaling for violation of chro-
mosomes from constraint s, and t is the generation
number. This penalty formulation is capable of visiting
highly infeasible solutions at the �rst steps of the
search. By gradually increasing the penalty amount
imposed on bad moves, the next solutions tend to be
close to the feasible region (this procedure is used for
Constraint sets (18)-(23).

4. Computational results

All computations were carried out on a PC using
a Core i5 with 2.4 GHz CPU, and 4 GB of RAM.

Figure 7. The 
owchart of the proposed HSIM-GA.

Enterprise Dynamics (ED) 8.2 [32] was used as the
simulation software and all constraints in problem 1
were coded in ED 8.2. MATLAB V7.13.0.564, R2011b
was used to code the metaheuristics, and the linear
programming models have been solved using CPLEX
9.0. Also, Minitab 16 software has been used to tune
the parameters. According to Lim et al. [8], the
backlogging is not planned in the model and unsatis�ed
demand in the previous periods is not transferred to
the next. The order quantity is computed according
to the BOM ratio, which is set to 1 in this study
for each echelon. We design a simulation model to
impose any excessive costs onto the model, in such a
way that when the demand of the last �nal customer is
satis�ed, all manufacturing plants at each echelon are
stopped. We link the simulation model to the Microsoft
Excel so that after each simulation run, the simulation
results are exported to the Excel sheets, and the total
�xed and variable costs are calculated. Then, the
simulation model is replicated and the best production-
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Figure 8. The 
owchart of the proposed HSIM-SAA.

distribution routes for each customer are obtained.
After closing non-economic facilities and warehouses
in the simulation model, it is replicated again and
total costs are computed. To use the results of the
simulation model, each problem is replicated 500 times
and the results are saved in Microsoft Excel sheets.
Regardless of the volume of goods transported among
the di�erent echelons, the simulation model can help to
determine the best distribution routes in the SCN. In
the second phase, these production-distribution routes
are �xed in the simulation model, and, again, the
model is replicated 100 times to determine the near
optimum volumes (transportation volumes among ech-
elons). Therefore, after 100 replications, 100 feasible
solutions are saved in the Microsoft Excel sheets.
For each feasible solution, the average total costs are

calculated in two ways; by �xing the routes (by closing
the non-economic factories and warehouses according
to the previous results) and without �xing routes. In
this paper, we use the second way because it produces
lower costs.

Ten di�erent test problems were created; the
size of each test problem is shown in Table 1. All
test problems have 4 �nal products. The total costs
include transportation, production, inventory holding
and �xed set up costs from supplier to �nal customer
at each echelon. All test problems are generated using
uniform distributions, which are depicted in Tables 2
to 5, respectively. Every factory produces four types of
product, including four raw materials in the suppliers,
four sub-assembled products in the sub-assembly fac-
tories, and four �nal assembled products in the �nal
assembly factories at each echelon. The processing
time of raw materials in the suppliers and the sub
products in the sub-assembly factories follow a uniform
distribution U(10; 15). The processing time of �nal
products in �nal assembly factories follows a uniform
distribution U(15; 20). The customer demand of each
product is an integer number uniformly distributed
from U(30; 60). Also, the maximum storage capacity
of raw materials in the supplier warehouse, the sub
products in the sub-assembly factory warehouse, the
�nal product in the �nal assembly factory warehouse,
and the �nal product in DCs are equal at 70, 70, 75,
and 75, respectively.

4.1. Tuning the parameters
The initial parameters of our HSIM-GA include cross
over (Pc) and mutation (Pm), and the initial parameter
of our HSIM-SAA is initial temperature (T0), which is
the starting temperature point, and the temperature
decreasing rate (�). We used the Taguchi method in
designing the experiments (DOE) [33]. In the Taguchi
method, the results are transferred into a measure
called a signal to noise (S=N) ratio. The formulation of
this ratio is di�erent for each objective (maximization
or minimization). Eq. (49) represents the (S=N) ratio
for minimization objectives:

S=N = �10 log

 
1=n

nX
i=1

y2
i

!
; (49)

in which, n and yi indicate the number of replications
and process response values at the i'th replication. In
the DOE, we chose the orthogonal array of L9 both for
HSIM-GA and the HSIM-SAA. The initial parameter
values, after the sensitivity analysis of the factors, are
shown in Tables 6 and 7. Figures 9 and 10 depict
the averaged S=N ratio for each factor level. Also,
the optimum combinations of the parameters for each
HSIM-META, which include HSIM-GA and HSIM-
SAA, are shown in Table 8.
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Table 1. The size of test problems.

Problem
sizes

Number of
suppliers

Number of sub-
assembly factory

Number of �nal
assembly factory

Number of
DCs

Number of
customer

1 1 2 2 1 2
2 2 1 2 2 2
3 2 2 1 2 3
4 2 2 2 2 3
5 3 2 3 2 3
6 3 3 2 3 3
7 4 3 5 4 3
8 4 3 4 4 4
9 5 4 4 4 4
10 5 5 5 4 4

Table 2. Transportation costs among echelons.

Transporter cost
from supplier to

sub-assembly factory

Transporter cost
from sub-assembly

factory to �nal
assemble factory

Transporter cost
from �nal assembly

factory to DC

Transporter cost
from DC to

�nal customer

Transporter costs U (200, 700) U (400, 800) U (200, 600) U (200, 700)

Table 3. Production costs of manufacturing plants at each echelon.

Production cost
in supplier

Production cost
in sub-assembly

factory

Production cost
in �nal assembly

factory
Production costs U (1200, 1500) U (1400, 3800) U (1500, 3200)

Table 4. Inventory holding costs of manufacturing plants and warehouses at each echelon.

Inventory holding
cost in supplier

Inventory
holding cost in

sub-assembly factory

Inventory holding
cost in �nal

assembly factory

Inventory
holding cost

in DC

Inventory holding costs U (50, 80) U (40, 100) U (50, 80) U (60, 90)

Table 5. Fixed set up costs of manufacturing plants and warehouses at each echelon.

Supplier Sub-assembly factory Final assembly factory DC
Fixed set up

costs
U (1200000, 1600000) U (2000000, 4000000) U (5000000, 9000000) U (500000, 800000)

4.2. Analysis of results
In order to use HSIM-META to obtain near optimum
solutions, three di�erent scenarios were developed to
link the output data of the simulation model in the
tuned-parameter, HSIM-META. The scenarios, as fol-
lows, determine how the randomly generated solutions
in the simulation model must be used as the initial
population in HSIM-META:

- Scenario 1: 10 best simulation solutions (regarding
their objective function) are used;

- Scenario 2: 10 best simulation solutions, together
with 10 medium solutions, are use;

- Scenario 3: 10 best simulation solutions, 10
medium solutions, and 10 worst solutions are used.

After several experiments using MATLAB soft-
ware, it was shown that Scenario 1 is the best. Then,
we link the output of the �rst 10 best simulation
solutions in tuned-parameter HSIM-META.

To test the performance of HSIM-META, we com-
pared HSIM-META, including HSIM-GA and HSIM-
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Table 6. The initial parameter ranges in HSIM-GA.

Parameters Factor levels
1 2 3

Npop 300 500 700
Pc 0.85 0.9 0.95
Pm 0.01 0.02 0.03

Table 7. The initial parameter ranges in HSIM-SAA.

Parameters Factor levels
1 2 3

T0 1000 1500 2000
� 0.9 0.95 0.99

Figure 9. Factor level of the proposed HSIM-GA.

Figure 10. Factor level of the proposed HSIM-SAA.

SAA, with general GA and SAA, without using the
simulation result as the initial population for the test
problems. Also, we utilized the Average Relative Per-
centage Deviation (ARPD) to compare the algorithms,
according to the following formulas:

RPDj =
Zs(j)�mins(j)

mins(j)
� 100 j = 1; :::; n; (50)

Table 8. The optimum parameter levels.

Hybrid
metaheuristics

Parameters Optimum
amounts

HSIM-GAA

Npop 500
Pm 0.02
Pc 0.9

Pr = 1� (Pc + Pm) 0.08

HSIM-SAA T0 1500
� 0.95

Figure 11. The Tukey's Honestly Signi�cant Di�erence
(HSD) for the small sized problems.

ARPD =
Pn
i=1 RPD
n

; (51)

where, Zs is the objective function value for a given
algorithm, mins is the best value of the objective
function between both algorithms, and n is the row
number of small size or large size problems.

The results of the proposed HSIM-GA, HSIM-
SAA, GA, and SAA are presented in Table 9. We
designed 50 cases for the test problems. Each problem
size was replicated �ve times and the optimum solu-
tions of the objective function and the CPU time were
recorded. To investigate the solution quality of the
proposed algorithms, the optimum solution of each test
problem is obtained by CPLEX. The last two columns
of Table 9 report the objective function and CPU time
for the CPLEX. We limited the computational time
of CPLEX to 2000 seconds. Not obtaining the global
optimum solution within this time limitation is meant
as \Not available (Out of CPU time)".

In order to statistically compare algorithm qual-
ity, Tukey's Honestly Signi�cant Di�erence (HSD) test
is applied. Using this test, we are able to reveal
signi�cant di�erences between algorithms. As shown
in Figure 11, the di�erences are not very meaningful
among HSIM-GA, HSIM-SAA, GA, SAA and CPLEX
for the small-sized problems. Thus, it can be concluded
that two meta-heuristics, along with the others, are
able to �nd good solutions.

Figures 12 and 13 show the Average RPD
(ARPD) of the objective function and the CPU time
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Table 9. The computational results for Objective Function (OF) and CPU time.
Problem

sizes
Test

problem
HSIM-GA HSIM-SAA GA SAA CPLEX

OF
CPU
time
(S)

OF
CPU
time
(S)

OF
CPU
time
(S)

OF
CPU
time
(S)

OF
CPU
time
(S)

1

1 14563218 121 14438903 112 15447921 208 16653210 165 14273210 115
2 13573422 119 13564380 121 14896356 203 15567911 160 13159012 118
3 13478032 124 13659903 118 14784487 215 15312175 166 13227631 123
4 14489046 122 14278325 117 15658104 211 16405476 169 13873196 117
5 13736938 120 13972207 123 14812143 209 15446532 164 13557290 122

2

6 16663218 163 16438903 156 17447921 277 18653210 222 16117691 158
7 15573422 172 15564380 161 16896356 282 17567911 217 15317762 161
8 15478032 166 15659903 159 16784487 281 17312175 216 14984720 154
9 16489046 174 16278325 153 17658104 274 18405476 217 15870313 155
10 15736938 161 15672207 166 16812143 278 17446532 224 15228035 160

3

11 18115421 253 18327645 234 19754328 406 20216674 321 17748902 232
12 17904512 248 18115437 242 19595632 401 20674328 325 17511693 227
13 19226398 257 19794321 251 20463206 389 22893217 327 18784322 236
14 19468703 249 19359023 239 20234002 403 22704310 328 18980331 233
15 18326812 251 18216732 247 19438721 408 20405611 330 17820346 225

4

16 20225489 371 20874321 357 23412387 559 25217632 478 19773904 331
17 19548732 378 19443211 348 22683279 544 24438791 477 19125477 327
18 19763221 383 20126532 363 21974591 551 24690034 485 19317021 337
19 20437621 379 21553176 361 23542176 547 25517904 483 19763488 329
20 20773265 385 20821763 357 23789033 543 25711890 475 19653382 334

5

21 23435105 603 23326743 578 27674802 878 29763485 810 NAa NA
22 24658214 596 24789432 582 28727628 889 30715543 818 NA NA
23 24673268 610 23810547 585 29043557 883 31104367 807 NA NA
24 23675523 588 23657854 590 27527643 886 29563498 821 NA NA
25 23326548 594 23214892 579 28032564 890 30124461 811 NA NA

6

26 28546739 733 28045671 714 31305781 1067 34923420 947 NA NA
27 27678494 742 27558902 725 29078432 1063 33664983 952 NA NA
28 28345329 748 28653332 731 32763456 1071 35217054 943 NA NA
29 27768932 739 27614736 720 29873490 1069 32674389 958 NA NA
30 27432176 746 27667235 737 30236726 1082 33021472 949 NA NA

7

31 32456721 1045 32768534 1021 36237653 1393 41234761 1293 NA NA
32 33568934 1048 33876421 1032 38763219 1402 42658940 1298 NA NA
33 33789054 1046 33671187 1018 39012378 1388 42895476 1303 NA NA
34 32784537 1049 33151239 1036 37413471 1406 40763487 1296 NA NA
35 32894542 1043 33458716 1026 36590325 1390 41553489 1310 NA NA

8

36 37636310 1282 37434550 1256 40764376 1634 44957432 1513 NA NA
37 37675323 1291 37922567 1268 40857821 1641 43216786 1510 NA NA
38 37819340 1275 37363125 1247 39976535 1637 44678975 1543 NA NA
39 38214831 1284 38637712 1261 41045684 1644 46659853 1521 NA NA
40 38139323 1287 38443257 1244 41456723 1639 45321765 1532 NA NA

9

41 43245781 1576 44672390 1523 47412265 2054 51356722 1911 NA NA
42 43763218 1581 44890327 1512 46803265 2047 52278360 1918 NA NA
43 43678902 1567 44523311 1536 47335812 2061 51934462 1922 NA NA
44 44669216 1583 45704571 1524 49327634 2056 54603265 1924 NA NA
45 44832368 1580 45769362 1533 48763341 2066 55221783 1932 NA NA

10

46 51526295 2023 52867340 1995 56247642 2607 62832170 2453 NA NA
47 50742387 2034 51512376 1978 55864376 2616 60336529 2448 NA NA
48 51762344 2026 52213275 1985 57562178 2624 63015677 2464 NA NA
49 50448745 2041 51982300 1991 54565903 2619 61690434 2457 NA NA
50 51736782 2037 52112187 1987 56537645 2625 62589932 2461 NA NA

aNA: Not Available (out of CPU time).
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Figure 12. The ARPD for objective function of the
algorithms.

Figure 13. The ARPD for computational time of the
algorithms.

of the proposed algorithms. According to the ARPD
factor, HSIM-GA has better quality, with 0.54, 10.29,
and 19.84 deviations, against HSIM-SAA, GA and
SAA, respectively. In terms of the CPU time index, the
HSIM-SAA obtained better CPU time, with 3.33, 50.75
and 31.68 deviations, against HSIM-GA, GA and SAA,
respectively. Also, Figures 14 and 15 show the 95%
con�dence intervals of RPD for the objective function
and CPU time indices, respectively. To sum up, we can
see that HSIM-GA gives better results than all other
algorithms in terms of the objective function, and the
HSIM-SAA has better results regarding the CPU time
index for all problem sizes.

5. Conclusion and suggestions for future work

In this paper, a new model and two hybrid algorithms
were developed to address the so-called SCN problem.
The algorithms combined a simulation technique with
two metaheuristic algorithms (GA and SAA), called
HSIM-META, to solve such an NP-hard problem,

Figure 14. 95% con�dence intervals of RPD of objective
function.

Figure 15. 95% con�dence intervals of RPD of CPU
time.

which is the main contribution of the current research.
First, the mathematical programming model of the
SCN was developed, assuming limited capacities for the
model warehouses, and then the corresponding simula-
tion model was built. The simulation model was used
to determine the best production-distribution routes
and to close non-economic facilities and warehouses in
the SCN model. After �xing the routes, several random
feasible solutions were generated by the simulation
model using 3 di�erent scenarios and by selecting the
best one. Then, 10 best feasible solutions were selected
as the initial population for HSIM-META. This version
of OVS is a novel approach in OVS literature. It
bene�ts from the ability of the simulation technique
to produce several random feasible solutions and also
from the optimization engine of metaheuristics. To
test the performance of our HSIM-META algorithm,
50 numerical test problems were developed and solved
using the algorithms. As the results show, combining
simulation with the metaheuristic algorithms has the
advantages of both methods and can escape from the
local optimal solution and �nd near optimal solutions.
Analysis of the results shows that the HSIM-META
containing HSIM-GA and HSIM-SAA has better qual-
ity of solutions, regarding the objective function and
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CPU time, than general GA and SAA. According
to the ARPD comparisons, HSIM-GAA has better
quality solutions than GA, SAA, and HSIM-SAA in
terms of the objective function, and the HSIM-SAA
is faster in comparison to GA, SAA, and HSIM-GA.
For future research, other metaheuristic algorithms can
be considered and linked to the simulation technique.
Also, shortage costs can be investigated in the SCN
to develop a new mathematical model. To expand the
current model, our suggestion is to consider the pricing
factor in the model, i.e. consider some active competi-
tors in the market, whose sales volume and prices can
a�ect product prices and demands, which could make
the model much more realistic. In this new concept,
which integrates SCN with market planning, an agent-
based simulation modelling is highly recommended.
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