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1. Introduction

Abstract. Effectiveness of root cause analysis efforts, following a control chart signal,
will be enhanced if there exists more accurate information about the true time of change
in the process. In this study, we consider a Poisson process experiencing an unknown
multiple number of step changes in the Poisson rate. We formulate the multiple change-
point scenario using Bayesian hierarchical models. We compute posterior distributions of
the change-point parameters including number, location, and magnitude of changes and also
corresponding probabilistic intervals and inferences through Reversible Jump Markov Chain
Monte Carlo methods. The performance of the Bayesian estimator is investigated over
several simulated change-point scenarios. Results show that when the proposed Bayesian
estimator is used in conjunction with the c-chart, it can provide precise estimates about the
underlying change-point scenario (number, timing, direction, and size of step changes). In
comparison with alternatives, including Poisson EWMA and CUSUM built-in estimators
and a maximum likelihood estimator, our estimator performs satisfactorily over consecutive
monotonic and non-monotonic changes. The proposed Bayesian model and computation
framework also benefit from probability quantification as well as flexibility, which allow us
to formulate other process types and change scenarios.

(© 2016 Sharif University of Technology. All rights reserved.

began to change (change-point) enables us to conduct
root cause analysis more efficiently, since a tighter

Control charts are used to distinguish if a process
works in presence of common and known variations
versus unpredictable variations. Control charts signal
when an assignable cause occurs. Following a signal,
we initiate a search to identify potential causes of
the change and, accordingly, conduct corrective or
preventive actions [1]. Knowing when the process truly
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time-frame prior to the signal in the control charts is
investigated [2,3].

Several statistical methods have been employed
in development of change-point estimators for a broad
range of processes and change types [4,5]. Maximum
Likelihood (ML)-based estimators were found superior
in estimation of step changes [6,7] and linear trends [§]
in Poisson rates compared to early built-in estima-
tors [9-11] of cumulative sum (CUSUM) [10,11] and
Exponentially Weighted Moving Average (EWMA) [12]
control charts.  Perry et al. [13] further relaxed
the underlying assumption of knowing the form of
change types and developed an ML estimator for non-
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decreasing multiple step change points (unknown num-
ber of consecutive changes) using isotonic regression
models. The ML framework has also been applied
for different change scenarios in correlated Poisson
observations [14-16] and other attributes [17-22]. A
Bayesian modeling and computation framework has
recently been proposed as an alternative platform for
both attribute [3,23] and variable characteristics [24-
26]. They were found highly flexible in incorporation
of process complexity (e.g. case mix [27] and censor-
ing time [28]) while providing precise estimates and
informative probabilistic inferences for various sudden
step [29] and linear disturbances [30].

In practice, it is not uncommon to experience non-
monotonic unknown consecutive changes in a Poisson
process that may occur as a result of one influential
process input variable changing several times or several
influential process input variables changing at different
times. Indeed, these changes could influence the pro-
cess mean in any direction and lead to multiple change-
points in the Poisson mean, which are not necessarily
monotonic. None of the built-in estimators of CUSUM
and EWMA charts can describe such multiple change-
point scenarios and provide specific estimates for more
than one change. Moreover, the recent ML-based
and Bayesian estimators of multiple change-point still
remain dependent on a priori knowledge about the
shifts, such as monotonic form [13] or the number of
changes [23].

In this study, we model a multiple change-point
scenario in a Bayesian framework assuming that no a
priori knowledge about the form of consecutive changes
exists. In this setting, we relax two constrains:

1. Knowing the number of change points described in
Agsareh et al. [23];

2. Monotonically increasing or decreasing the consec-
utive changes form previously assumed in Perry et
al. [13] and elsewhere [17,22].

Hence, the number of change points is incorporated
into the proposed Bayesian multiple change-point
model in order to be directly estimated; whereas the
model that was recently developed by Assareh et al. [23]
focused on identifying the change point in the case of
knowing the number of changes. We employ Reversible
Jump Markov Chain Monte Carlo (RJMCMC) meth-
ods [31] to obtain posterior distributions of all multiple
change-point model parameters (number, time, and
size). First, we describe the Bayesian model and
RIJIMCMC components. The application of the model
is demonstrated through an illustrative simulation of a
scenario with one change point. Then, we investigate
performance of the model over a wide range of con-
secutive changes and also false alarms. The model is
explained in Section 2 and implemented and analyzed

in Section 3. Then, we compare performance of the
estimator with those of alternatives in Section 4 and
summarize the study and obtained results in Section 5.

2. Bayesian Poisson process multiple
change-point model and RIMCMC method

2.1. Model

We employed Bayesian Hierarchical Models (BHM)
to formulate a multiple change-point scenario in a
Poisson process. Consider a process Xy, t =1,---,T,
that is initially in-control and then k change points
with unknown locations and magnitude occur in the
Poisson rate. Thus, at & unknown points in time
Th1,Tk2, " » Tk k, the rate parameter changes from its
known in-control state of Ay o to Mg, Ay = Ak,o + Ok,
and Ap; # Apo for I =1,--. k. The Poisson process
multiple change-point model can be parameterized as
xy ~ Poisson(Ap;), t = 7w+ 1,--- Ty for i =
0,---,k, where 7,0 = 0 and 7 41 = 7. That is:

(exp(—Ar.o) A /2!
if t=1,2,-- 7k

exp(—)\hl)/\”,ﬁjl/xt!

Pz M) = i ot=Teg bl e (1)

exp(—Ap,k) A /24!
if t:Tk7k+17"’ 711.

Thus, the quantities of interest are the number, the
time, and the magnitude of the changes.

Let the maximum number of change points be
K —1 > 0, so that there exist K models, my, k =
0,1,--- , K — 1, where k is the number of changes in
the Poisson process. We assign a discrete distribution
for k; for example, in the following simulation study,
a non-informative flat uniform distribution is imposed;
however, K is set to 7 based on the problem context,
so that f(m =k) =1/7,k=0,---,6. This setting lets
the model test seven hypotheses including occurrence
of a false alarm (no change point), one change point,
two change points, and up to six consecutive change
points. In other contexts, other distributions, such as
truncated Poisson or Gamma, might also be of interest
(see [32] for more details on the selection of prior
distributions).

We place a Gamma, distribution as a prior for
the mean of the Poisson process, so that A;; ~
T(ak,s, Bryi), = 0,--- k. For example, in the simula-
tion study described below, since no other information
on which to base the choice of the hyperparameters
exists, we follow Carlin and Louis [33] and set all oy ;,
Biy for Kk = 0,--- K —1and ¢ = 0,---,k to be
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equal and use empirical Bayes methods to estimate
a and 8. Thus, we let the prior have a mean (a/f)
of 20, equal to the in-control rate A; o and a variance
(a/3?) of at least 6 x /Ao, approximately. This is
a reasonably informative prior for the magnitude of
the change in an in-control Poisson rate as the control
chart is sensitive enough to detect very large shifts and
estimate associated change points. We thus set a = 10
and 6 = 0.5. A non-informative uniform distribution
was also considered to be a prior distribution for the
time of change points in the model. Specifications of
this prior were modified within each iteration of the
posterior computation algorithm (see Section 2.2).

In the above setting, minimum knowledge was
incorporated into the model through the priors. It only
included the general design criteria in the SPC context
and the in-control Poisson rate. We intentionally let
the model not be highly informative in order to run a
balanced performance comparison with non-Bayesian
methods in this study. In practice, for a specific
process, knowledge about possible change patterns,
timing, and magnitude of the changes as well as design
characteristics, such as desired sensitivity, can also
contribute to the prior setting which may lead to more
accurate estimates.

2.2. Parameter estimation

To obtain posterior estimates of the parameters of
interest, we apply the RIMCMC method developed
by Green [31], which has been extensively studied and
used in complex change point and model selection
problems [34-36].

RIMCMC provides a general framework for
Markov Chain Monte Carlo (MCMC) simulation in
which the dimension of the parameter space can vary
between iterations of the Markov chain. Thus, the
dimension of the space, here the number of change
points as well as the time and magnitude of the changes
given the dimension are considered to be stochastic
variables. In this view, the reversible jump sampler
can be seen as an extension of the standard Metropolis-
Hastings algorithm into more general state spaces
that jumps between models with parameter spaces of
different dimensions.

Let 6,, denote the parameter vector correspond-
ing to model m, where 6,, has dimension d,,. If the
current state of the Markov chain is (m,#8,,), then a
general version of the algorithm is the following:

1. Propose a new model m’ with probability j(m,m');

2. Generate u from a specified proposal density g¢
(u|9m7 m7 ml);

3. Propose a new vector of parameters 6/ , by setting
00, 4") = gm,m (O, u) where g, s is a specified
invertible function;

4. Accept model m’ with the probability as obtained
in Box 1.

5. Return to step 1 until the required number of
iterations is reached.

The portion of times that a model m is accepted in the
simulation represents the posterior probability of the
model and the samples from each iteration within the
model m are drawn from the posterior distributions of
the parameter set of 6,,.

Important elements of the algorithm are the pro-
posal distributions g(u'|0,,/, m',m) and the matching
function gy, /. The vectors v and u' are used to make
the dimensions of the parameter spaces of m and m'
equal.

The corresponding proposal distributions are usu-
ally constructed by single MCMC runs within each
model, while the matching function g, s is con-
structed by considering the structural properties of
each model and their possible association.

We adopt the approach taken by Zhao and
Chu [36]. In this approach, proposing a new model
is restricted to adjacent models which have one change
point more or less. This is known as birth or death
of a change point, respectively. We have outlined
the algorithm components in Appendix A: RIMCMC
Components.

3. Performance analysis

3.1. Simulation method

We used Monte Carlo simulation to study the per-
formance of the constructed BHM in multiple change
detection following a signal from a c-chart.

To demonstrate the generalizability of the pro-
posed model, processes with one, two, and three change
points were considered, k = {1,2,3}. We generated 25
observations of a Poisson process with an in-control
rate of Ay g = 20. Then, we induced step changes until
the c-chart [37,38] signalled. Because we knew that the
process was in-control, if an out-of-control observation
was generated in the simulation of the first 25 in-control
observations, similar to the approach applied by Perry
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et al. [13] and others, it was taken as a false alarm and
the simulation was restarted. However, in practice, a
false alarm may lead the process to stop and search for
root causes. When no root cause is found, the process
would continue without adjustment. We, separately,
investigated the performance of the Bayesian model
on false alarms. The simulation was also repeated
for rate parameters of 5 and 10 over equivalent step
changes; since the results are similar to those obtained
for Ax o =20, k = {1,2,3}, they are not reported here.

To investigate the behavior of the Bayesian esti-
mator of the number, k, magnitude, 65 1,..., 0k, and
location, 74,1, ,7k,x, of changes, we replicated the
simulation method explained above 100 times.

The number of replication studies, indeed, is
a compromise between excessive computational time,
considering RIMCMC iterations, and sufficiency of the
achievable distributions even for tails. Since scenarios
with more than one change point prior to the control
chart’s signal were also of interest, simulated datasets
that did not meet the desired processes were excluded.

The multiple changes and control charts were sim-
ulated in MATLAB. For each change-point scenario, we
modified and used RIMCMC algorithm made available
in MATLAB by Zhao and Chu [36] to generate 100,000
samples with the first 20000 samples ignored as burn-
in.

3.2. An illustrative example

Two processes were simulated in which step change of
sizes 61,1 = +5 and 6;,; = —5 were induced at 7 ; =
25. The posterior distributions for the number, time,
and magnitude of step changes for the two processes
are presented in Figure 1. For both change sizes, a
larger mass of the probability function concentrates
on the model with one change point; see Figure 1(a)
and (b). Acceptance of the model with one change
point, mq, leads to posterior distributions of the time,
71,1, and the magnitude, 6; 1, of the change. As seen in
Figure 1(c) and (d), the posteriors for time concentrate
on the 25th sample, which is the real change point. The
posteriors for magnitude approximately concentrate
on the true size of shifts, 6,1 = +£5, as shown in
Figure 1(e) and (f). Since the posteriors tend to be
asymmetric, in particular for time, the mode of the
posteriors is used as an estimator for the change-point
model parameter.

Table 1 shows the posterior estimates for the
induced change sizes, 611 = %5, in the process mean.
The Bayesian estimator suggests that one change point
is more probable, p(m;) = 0.43, prior to signal of
the c-chart where a change of size 6;,; = —5, around
one standard deviation, was induced. Where the c-
chart detects a fall after 51 samples, the mode of the
posterior distribution of 71 ; reports the 25th sample
accurately as the change point. For an increase in size
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2 0.4 2 04
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< 03 < 03
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Figure 1. Posterior distributions of the number k, time
71,1, and magnitude 61,1 of a step change of sizes: (a,c,e)
611 = —5, and (b,d,f) 61,1 = 45 following signals from
c-chart where A1 o =20 and 71,7 = 25.

01,1 = +5, although the posterior mode underestimates
the time of the change, ™1 = 24, it still provides
a reasonable accurate estimation with a bias of one
sample. Posterior estimates of the magnitude of the
change tend to be accurate.

Applying the Bayesian framework enables us to
construct probability-based intervals around estimated
parameters. A Credible Interval (CI) is a posterior
probability-based interval which involves those values
of highest probability in the posterior density of the
parameter of interest. Table 1 also presents 80%
credible intervals for the estimated time and magnitude
of step changes. As expected, the Cls are affected
by the dispersion and higher order behavior of the
posterior distributions. As shown in Table 1 and
discussed above, the magnitude of the changes is not
estimated as precisely as the time of the change.

The probability of having a specified number of
changes is presented in Table 1. The probability of
having more than three changes prior to signalling of

the chart is 0.08 when an increase of size 6;; = =5
has occurred. It is less unlikely, 0.06, for a change
of size 61,1 = +5. An interesting inference can also

be made on the falseness of the signal using p(my),
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Table 1. Posterior distributions (mode, standard deviation (sd)) of multiple change-point model parameters, m and
Oy = (71,1,61,1), following signals (RL) from c-chart where A1, = 20 and 71,17 = 25. Standard deviations and 80% credible

intervals are shown in parentheses and brackets, respectively.

611 RL p(me) Omy
mo my ma mg 71,1 61,1
25 4.97
5 76 0.001 043 034 0.15 (5.46) (0.51)
[24.47,25.55]  [-5.01,-4.95]
24 4.76
+5 44 0019 051 029 0.12 (3.65) (1.02)

[23.94,24.28]  [4.66,4.81]

Table 2. Average of posterior estimates (E(mode), E(sd.)) of multiple change-point model parameters, m; and
Oy = (11,1,61,1), following signals (RL) from c-chart where A\q g = 20 and a step change was induced at 7 ;1 = 25.

Standard deviations are shown in parentheses.

bs BRD) B(p(mx)) O, A
mo mq mo ms E(#1,1) E(62,,) E(61,1)
15 26.30 0.001 0.36 0.34 0.18 25.65 2.08 -6.45
(0.64)  (0.05) (0.04) (0.02) (0.02) (0.71) (1.54) (2.29)
10 32.83 0.006 0.68 0.24 0.05 26.00 2.54 -9.52
(7.23)  (0.01) (0.08) (0.05) (0.02) (0.93) (3.84) (1.41)
5 148.92 0.10 0.36 0.27 0.15 28.25 127.92 -1.49
(126.32)  (0.08) (0.05) (0.03) (0.03) (2.81)  (55.34)  (0.70)
3 293.51 0.24 0.35 0.22 0.10 33.35 529.13 -0.31
(257.68)  (0.09) (0.07) (0.02) (0.02) (13.12)  (180.05)  (0.28)
43 100.39 0.22 0.32 0.24 0.13 28.14 88.24 1.09
(58.25)  (0.06) (0.03) (0.02) (0.01) (12.38)  (24.77)  (1.04)
45 45.10 0.05 0.40 0.30 0.15 27.72 15.95 3.25
(20.21)  (0.07) (0.05) (0.02) (0.02) (9.25)  (10.80)  (1.36)
410 29.18 0.002 0.58 0.28 0.09 26.01 1.53 8.38
(3.34)  (0.01) (0.08) (0.04) (0.03) (1.35) (1.98) (2.15)
415 26.63 0.008 0.51 0.28 0.12 25.86 1.16 11.3
(1L.06)  (0.03) (0.12) (0.05) (0.04) (0.91) (1.35) (3.71)

the probability of having no step change point. Note
that only an upper threshold (K = 7) was imposed on
the number of change points in the model, letting the
model examine a no change-point scenario.

We can also construct other probabilistic infer-
ences using the posterior distributions of parameters.
As an example, the probability that a change point
occurs in the last 10, 20, and 40 observed samples prior
to signalling in the control charts can be obtained.
For a step change of size 617 = —5, since the c-
chart signals very late (see Table 1), it is unlikely that
the change point has occurred in the last 10, 20, and
even 40 samples with probabilities 0.0, 0.0 and 0.03,
respectively, whereas for a change of size 6 = +5,
it is very probable that the change has occurred in
the last 40 samples with probability 0.99, and with
probability of 0.58, it is between the last 10 and 20

samples. Such probability computations and inferences
can be extended to the magnitude of the changes.

3.3. Simulation results

We examined the behavior of the proposed Bayesian
model in estimation of the number, location, and
magnitude of changes using 100 replications of the sim-
ulated datasets outlined in Section 3.1. Table 2 shows
the average of the estimated parameters obtained from
the replicated datasets where there existed one change
point prior to signal of the control chart.

For all change sizes, the model with one change
point, my, has the highest posterior probability; how-
ever, the strength of this comparison varies over dif-
ferent change sizes. As seen, this probability, p(m1),
almost doubles when the magnitude of the shift in-
creases from 61,7 = £3, approximately half a standard
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deviation, to 6,1 = %10, two standard deviations. As
the magnitude of the change increases, the posterior
probability of the model with no change point, p(mg),
decreases in favor of the model with one change point.
This implies that the model with no change point,
my, closely competes with the model with one change
point, mq, over small shifts, whereas the model with
two change points, my, is the runner-up over medium
to large shifts. For a large shift, é;; = 15 around
three standard deviations, the probability of a model
with one change point significantly drops, particularly
where there exists a drop in the Poisson mean. This
is due to the early detection of such shifts by the c-
chart that leads to a very short run of samples after
the change, which then compresses the data and hence
informs the RIMCMC algorithm.

For changes of size of less than one standard
deviation (611 = =£3,+£5) in the Poisson rate, the
average of the posterior modes, denote here by E(7),
reports 33rd sample (at latest) as the change point.
The corresponding c-charts detect the changes with
delays greater than 75 samples. The superiority of
using Bayesian estimator in conjunction with c-chart
persists where a medium shift of size 6 = 10 has
occurred in the process mean. In this scenario, the
bias of the Bayesian estimator does not exceed one ob-
servation, whereas the minimum delay is four samples
in detection of the fall. As expected, for large shift
sizes (611 = £15) around three standard deviations,
the c-chart performs well, yet the expected values of
modes report more accurate estimations with a delay
of less than one observation.

Table 2 reveals that the variation of the Bayesian
estimates for time tends to reduce when the magnitude
of shift in the process mean increases. However, for
drops, the observed variation is almost less than those
obtained in detection of jumps. This can be explained
by the nature of mean and variance parameters in
a Poisson distribution, so that a drop in the mean
leads to less dispersed observations. The mean of
the standard deviation of the posterior estimates of
time, F(d+, ), also decreases dramatically when mov-

0.6+ X
0.5- '

0.4 —e---5,-10
1 —a—-5,+5
0.3+ -—&---5,+10
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L - %-+5,-5
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j‘o" —e-- +5,410
0.0 +—#— T T T
mo mi moa ms3 m44
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ing from small shift sizes to medium and large shift
sizes.

The average of the Bayesian estimates of the
magnitude of the change, E(61:), shows that the
modes of posteriors for change sizes do not perform as
well as the corresponding posterior modes of the time
across different shift sizes; however, promising results
are obtained where a medium shift, 6;; = £10, has
occurred in the process mean. This estimator tends to
underestimate the sizes. Having said that, Bayesian
estimates of the magnitude of the change must be
studied in conjunction with their corresponding stan-
dard deviations. In this manner, analysis of credible
intervals is effective.

We extended the simulation study to investigate
the performance of the proposed model on scenarios
with two and three consecutive change points, k = 2,3,
prior to the signal of the control chart. A series of
monotonic and non-monotonic changes were considered
in this setting. Average of Bayesian estimates, mode of
posterior distributions, are summarized and depicted in
Figures 2 and 3. See Appendix B: Simulation results for
details of simulation results for two and three change-
points scenarios.

As shown in Figure 2(a), in all two change sce-
narios (monotonic and non-monotonic), the posterior
probability of the model with two change points, ma,
is the highest; however, the strength of this varies
over different change sizes. The estimator tends
to distinguish non-monotonic scenarios better than
monotonic cases (e.g. p(mq(+5,—10)) = 0.59 versus
p(ma(+5,+10)) = 0.40). With an increase in the
absolute difference between two consecutive changes,
the likelihood of the model with two changes increases
(e.g. p(ma(+53,—-10)) = 0.59 versus p(mq(+5,-5)) =
0.35). For monotonic changes, the model with one
change point, mq, competes with the true model, mo,
whereas for small non-monotonic changes, the model
with no change, mg, also contends with the true model.

Figure 2(b) shows that the proposed model
reasonably well estimates change parameters of two
change-point scenarios; however, the performance is

15
101 .
/'/r‘
5 T —+ =510
5 RS 545
o 5410
20 25 }oa/ 35 40| e +5,-10
) 2 ;
5 “ K| —x-+45,5
101 ‘--s‘_‘}; —e - 45,410
+
-154
5 Time

(k)

Figure 2. Average of posterior estimates for (a) the probability of models with k& change points, my, and (b) the time,
72,1 and 72,2, and the magnitude, 62,1 and 62,2, of changes in scenarios with two consecutive change points following signals

from c-chart where Ay o = 20.
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Figure 3. Average of posterior estimates for (a) the probability of models with k& change points, my, and (b) the time,
73,1, 73,2 and 73,3, and the magnitude, 63,1, 632 and 63,3, of changes in scenarios with three consecutive change points

following signals from c-chart where A3 o = 20.

affected by the direction of changes and the size of their
absolute differences. For time of changes, 751 and 75 »,
more accurate estimates were obtained where there
existed non-monotonic changes with larger absolute
differences. The average of the Bayesian estimates of
the magnitude of the changes, 021 and 9, 2, shows that
while the point estimates slightly deviate from the true
values, there is no consistent pattern in these deviations
and the true values are typically encompassed in the
corresponding 80% Cls.

Similar to the two change-point cases, Figure 3(a)
shows that in all scenarios with three changes, the
true model, ms model with three change points, has
the highest probability. However, the strength of this
probability varies over different change sizes. It is seen
that when the magnitude of the third change increases
from one standard deviation to two standard deviations
approximately, the Bayesian estimator distinguishes
the true model more strongly. Accordingly, when the
magnitude of the third change increases, the Bayesian
estimator tends to be more accurate in estimation of
time, 73 1, 73,2 and 73 3 (see Figure 3(b)). The accuracy
and the direction of bias of Bayesian estimates for the
magnitude of the changes, 5371, 5372 and 5373, are not
consistent across different scenarios. However, there
exist some gains in studying the estimated sizes and
directions, particularly when the obtained standard
deviations are also considered.

3.4. False alarms

Incorporation of the number of change points within
the proposed Bayesian hierarchical model and allo-
cation of a prior distribution, which includes a no
change-point hypothesis, enable us to evaluate the
possibility of occurrence of a false alarm within the
process along other multiple change-point hypotheses.
To investigate the performance of the proposed model
in detection of false alarms against true change points,
1000 datasets of Poisson processes with an in-control
rate of Ayo = 20 were generated. Upon c-chart’s
false signals, the change-point model was employed
and the posterior estimate for the number of change

points was obtained and then compared with simulated
scenarios in which a genuine small shift had occurred
(61,1 = *3 at 25th observation). We also analyzed
the performance of the proposed estimator over false
alarms in presence of over-dispersed observations (over-
dispersion index: ¢2/mix > 1). We generated over-
dispersed datasets using a Gamma-Poisson mixture
parameterization, I'(a« = 1/d, 3 = Ay x d), letting an
over-dispersion index of 62/X\g = 1+ d x Ag with d as
over-dispersion parameter. To simulate a range of small
to large over-dispersed Poisson observations, three
magnitudes of d = (0.025,0.01,0.1) were considered.
For homogeneity of comparison, datasets with false
signals prior the 25th observation were excluded.
Likelihood averages of alternative models for all
scenarios are summarized in Table 3. In presence of a
false alarm for equip-dispersed observations, although
the model with no change point is marginally the
superior model compared to the model with one change
point with a slightly higher likelihood (p(mo) = 0.315
vs. p(my) = 0.313), over replications and taking Preci-
sion of estimates into account, the observed difference
between the two alternatives is not statistically signifi-
cant. Having said that, for scenarios with genuine small
shifts of size 6; 1 = £3, the estimated likelihood of the
model with one change point was significantly larger
than the associated probability for the model with no
change point (32% vs. 25% for a decrease and 33% vs.
22% for an increase, respectively, as shown in Table 3).
The observed interval estimates over replications for
likelihood of the two alternative hypotheses of false
alarm and a change point between the three simulated
scenarios demonstrate some capability of the proposed
Bayesian change-point model in differentiation of ran-
dom and genuine shifts in the Poisson process as long as
underlying assumptions are met. As shown in Table 3,
by increase in the magnitude of variance versus mean
of Poisson-based observations, i.e. in presence of over-
dispersion, the c-chart falsely signals earlier. Our
simulation study reveals that if the process exhibits
any degree of over-dispersion, not only insignificant
marginal superiority of the model with no change point
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Table 3. Average of posterior estimates for the probability of models with & change points, my, in presence of false
signals, over-dispersion and small step changes in a c-chart with A1 o = 20. 95% confidence intervals of estimates over

replications are shown in parentheses.

Scenario E(RL) E(p(me))
™Mo mq ma ms
False signal 325.77 0.315 0.313 0.207 0.104
equi-dispersed (d = 0) (310.27-341.27)  (0.311-0.319)  (0.311-0.315)  (0.205-0.208)  (0.103-0.105)
False signal 169.45 0.301 0.312 0.212 0.109
small over-dispersed (d = 0.025) (160.15-178.75)  (0.300-0.301)  (0.311-0.312)  (0.212-0.213)  (0.109-0.110)
False signal 94.98 0.284 0.306 0.219 0.117
medium over-dispersed (d = 0.01)  (90.82-99.14)  (0.283-0.284)  (0.306-0.307)  (0.219-0.220)  (0.117-0.118)
False signal 38.79 0.215 0.291 0.241 0.146
large over-dispersed (d = 0.1) (37.74-39.85)  (0.215-0.216)  (0.291-0.292)  (0.241-0.242)  (0.146-0.147)
True signal following 284.82 0.256 0.329 0.221 0.115
a small decrease (8,1 = —3) (269.33-300.31)  (0.255-0.257)  (0.329-0.330)  (0.221-0.222)  (0.115-0.116)
True signal following 95.25 .226 0.338 0.234 0.126

a small increase (61,7 = +3) (91.55-98.95)

(0.221-0.231)

(0.336-0.341)  (0.232-0.236)  (0.125-0.127)

is no longer persistent, but also the likelihood of the
model with one change point is significantly greater
over replications. With an increased over-dispersion,
the likelihood of no change point markedly decreases in
favor of the model with one change point, suggesting
a true change in the process whereas no change has
genuinely occurred.

Further investigation is required to fully formulate
and evaluate false alarm detection capability of the
proposed model. Sensitivity and comparative analyses
across a broader range of desired change size scenarios,
setting up decision threshold and use of more informa-
tive or truncated priors, are of interest. Furthermore,
caution should be taken in employment of the proposed
model in distinguishing false signals from true shifts
if underlying Poisson assumptions are not satisfied.
Within this setting, appropriate selection of control
charting methods and, accordingly, modification of
change-point models are recommended [39,40].

4. Comparison of Bayesian estimator with
other methods

To study the performance of the proposed Bayesian es-
timator in comparison with alternatives, we considered
Poisson EWMA and CUSUM charts and associated
built-in estimators [9,10] and the proposed ML esti-
mator for a step change in Poisson processes [6] within
replications discussed in Section 3.1.

As expected, since both EWMA and CUSUM
charts are very sensitive to shifts, simulation of more
than one change point before signalling is unlikely.
However, we considered the application of these charts
in contexts in which the monitoring process and charts

were not terminated when the chart had signalled.
Woodall [41] highlighted this circumstance as a signif-
icant characteristic of monitoring in a clinical setting,
where an out-of-control process may not be able to
stop and root cause analysis procedures are conducted
simultaneously or with a delay. We chose the ML
estimator for step change proposed by Samuel and
Pignatiello [6], because it is the only one proposed
ML method that can be applied over different change
scenarios, as the developed ML estimators for linear
trend [8] and multiple change [13] in a Poisson mean are
restricted to increasing trends and monotonic changes.

To construct control charts, we applied the pro-
cedures of Brook and Evans [42] and Trevanich and
Bourke [43] for Poisson CUSUM and Poisson EWMA
control charts, respectively. A Poisson CUSUM ac-
cumulates the difference between an observed value
and a reference value k through S}t = max{0,z; —
kt + St} and S; = max{0,k~ — x; + S;_,} where
Et = (A = X0)/(In(A]) — In(Xg)) and k= = (Ao —
A)/(In(Ng) — In(A[)). TIf ST exceeds a specified
decision interval h*, then the control chart signals
that an increase (a decrease) in the Poisson rate has
occurred. We calibrated the charts to detect a 25%
shift in Poisson rates and have an in-control average run
length (ARLO) of 370, approximately, close to standard
c-chart (see Woodall and Adams [44]). The resultant
Poisson CUSUM charts had (kT,ht) = (22.4,22) and
(k—,h™) = (17.4,14). For simplicity, the values were
rounded to one decimal place.

In a Poisson EWMA, cumulative values of obser-
vations are obtained through Z; = rxz;+(r—1)x Z; 1,
where Zy = Ag, and plotted in a chart with UCL =
Ao + AT/ VarZ; and LCL = \g — A~ /VarZ;. We let
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Table 4. Average of change point estimates obtained through the built-in EWMA (Tcwmea) and CUSUM (Tewsum ), ML
(Tmie) and Bayesian (73, time of the first change) estimators following signals from Poisson EWMA (RLcwma), Poisson
CUSUM (RLcusum), and c-chart (RL.), where Ago = 20 and 74,1 = 25. Standard deviations are shown in parentheses.

c-chart Poisson EWMA Poisson CUSUM .
E(RL.) E(Fmie) E(RLewma) E(Fewma) E(RLcusum) E(Feusum)

10 32.83 25.05 27.76 21.82 28.15 23.40 26.00
(7.23) (0.92) (0.95) (5.23) (0.79) (2.59) (0.93)
- 148.92 25.13 32.31 22.32 33.18 24.27 28.25
” (126.32) (3.74) (3.80) (5.53) (3.80) (3.69) (2.81)
45 45.10 26.08 32.14 23.67 33.14 25.23 27.72
(20.21) (4.02) (4.19) (4.76) (4.52) (3.50) (9.25)
110 29.18 24.99 28.04 22.35 28.35 23.40 26.01
(3.34) (1.64) (1.31) (4.69) (1.32) (3.31) (1.35)
510 42.28 28.39 31.71 22.12 32.62 24.01 26.71
(6.73) (4.51) (3.01) (5.53) (2.94) (3.49) (2.75)
5,410 38.64 33.69 32.16 24.00 32.84 25.87 25.96
(2.97) (4.73) (3.65) (7.24) (3.42) (5.45) (1.94)
4510 42.30 31.03 31.96 24.87 32.70 26.33 26.07
(6.42) (8.69) (5.39) (3.93) (6.84) (3.74) (2.21)
45,410 39.30 26.62 31.98 22.76 32.61 24.55 25.20
(2.90) (4.78) (3.28) (5.30) (3.33) (3.71) (1.29)
54510 52.88 39.68 33.02 23.85 34.12 26.71 26.90
(6.49) (7.23) (5.48) (8.12) (5.42) (6.91) (2.63)
455,410 49.23 37.91 33.18 25.77 34.39 27.50 26.15
(3.59) (9.10) (5.90) (7.93) (6.00) (6.75) (2.27)

r=0.1 and AT = 2.67 to build a chart with an ARL,
of 370, close to a standard c-chart.

Table 4 shows the expected values of the Bayesian
estimates and detected change points provided by
built-in estimators of EWMA [9] and CUSUM [10,11]
charts and the ML estimator [6] for a step change in a
Poisson process. For scenarios of more than one change,
the posterior estimates for the time of the first change
were considered.

Where there exists a step change, the Bayesian
estimator, 7, only outperforms the built-in estimators
of EWMA, 7.ma, and CUSUM, Tcusum, charts over
large shifts of 6 = £10. It is outperformed by them
over medium size changes, § = +5; however, a larger
variation is associated with the estimates obtained
by the alternatives. The ML estimator, 7, also
outperforms the Bayesian estimator over medium and
large step changes.

Where there exist two consecutive changes that
are monotonic, the Bayesian estimator, 73, outperforms
all alternatives, except the CUSUM built-in estimator
for é; o = (=5, —10) reporting slightly more accurate,
24.01 vs. 26.71, but a less precise, 3.49 vs. 2.75,
estimation of the location of the first change point. If
there exist two non-monotonic changes, the Bayesian
estimator, 7, provides reasonably accurate and precise

estimates against the alternatives. For three non-
monotonic step changes scenarios, it also competes
very well with the alternatives taking into account the
obtained standard deviations over replications.

In this comparison analysis, we applied all estima-
tors on the same datasets generated at each iteration;
thus, in CUSUM and EWMA procedures, we let charts
remain in out-of-control state following the signals of
chart until the c-chart signals. Considering accuracy
and precision of estimates over different change sce-
narios, the Bayesian estimator exhibits a reasonable
performance compared to the alternatives. Poisson
EWMA and CUSUM are known to detect small to
medium shifts, quickly [1], as also observed in Ta-
ble 4. However, if the process is not terminated in
following the signals of chart, as it is a case within
a clinical context [41], the Bayesian estimator can
provide more insight about the underlying changes
compared to the built-in estimators for root cause
analysis purposes. Here, we limited the comparative
analysis to runs of Poisson processes up to the signal
of c-chart. Certainly, within contexts with late or
no stopping points following the signals of CUSUM
and EWMA chart, other termination points can be
considered. The performance of our Bayesian estimator
over different termination points in conjunction with
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CUSUM and EWMA charts remains a subject of
further research. The superiority of ML estimator over
one step change scenarios is not surprising since no
limitation is made for the Bayesian estimator; whereas
the ML estimator was specifically designed to detect
one step change.

By relaxing some of the previously incorporated
assumptions in the design of multiple change-point es-
timators, the form [13] and the number of changes [23],
we let post-signal change-point estimation be almost
purely data driven. In addition to accuracy and
precision criteria used for the comparison study, the
obtainable posterior distributions for the number, the
time, and the magnitude of changes enable us to
construct probabilistic intervals around estimates and
probabilistic inferences as discussed in Section 3.2.
This is a significant advantage of the proposed Bayesian
approach compared to other methods. Although sim-
ilar results may be obtained when resampling in con-
junction with ML methods, the inferential capabilities
of this approach are more limited (see Bernardo and
Smith [45] for more details).

5. Conclusion

Knowing the true time when a process has changed
enhances efficiency of root cause analysis efforts by
restricting the search to a tighter window of observa-
tions and related variables. In monitoring a quality
characteristic, it is likely to experience consecutive
changes prior to signalling of quality control procedures
(or termination of the process). In this paper, we
modeled a multiple change-point problem for a Poisson
process in a Bayesian framework. The change point
was developed using Bayesian hierarchical models and
a RIMCMC computation method was employed to
obtain posterior distributions of the model parame-
ters.

We considered three scenarios of changes, a step
change, and two and three consecutive changes where
they are monotonic and non-monotonic. The perfor-
mance of the proposed model was investigated through
simulation in which the estimator was activated fol-
lowing the signal of a c-chart. Over different scenarios,
the Bayesian estimator provided reasonably accurate
estimates for underlying change patterns including
the number, time, and magnitude of the changes.
Incapability of the proposed model in differentiation
of genuine and false signals and sensitiveness to the
Poisson assumption were also addressed; further inves-
tigation is subject to a broader design and analyses.
The abilities of the Bayesian model in probability quan-
tification through credible intervals and construction
of probabilistic inferences for all parameters, including
the location of the change, were illustrated. Then, we
compared the Bayesian estimator with built-in estima-

tors of EWMA, CUSUM, and an ML-based estimator.
The Bayesian estimator performed reasonably well and
remained a strong alternative.

In this study, to fairly compare our Bayesian
estimator with alternatives, we incorporated a limited
knowledge about the underlying process into the model
through the priors. In practice, there may exist
some knowledge about the underlying change-point
model, as addressed by Assareh et al. [23]; thus, it
is worthwhile to better tune the priors accordingly.
In this setting more gain in accuracy and precision is
expected from the Bayesian model compared to non-
Bayesian methods. Further research is required to
investigate the performance of the model using well
informative priors. Such setting could, in particular,
enhance the performance of the Bayesian model in
identification of false alarms. Considering extreme
Poisson rate, very large or very small, and extension
of the model to other processes and change charac-
teristics, such as non-constant inspection unit in a
Poisson process or linear trends in rates, are of interest.
We employed an algorithm developed by Zhao and
Chu [36] based on RIMCMC methods [31] to derive
posteriors. There exist other Bayesian formulation
and computation methods for multiple change-point
problems, e.g. product partition models [46], stochastic
approximation in Monte Carlo algorithms [47] and
others [48,49]. Comparison of RIMCMC methods with
alternatives in control charting is also of interest for
further research.

Our results showed that the Bayesian estimator
can provide an integrated and comprehensive view
of the number, location, magnitude, and direction
of changes where no a priori knowledge about the
change model exists. Compared to the alternatives,
it becomes the superior estimator when considering
other characteristics including relief of setting assump-
tions, ability to incorporate any available knowledge
through informative priors, probabilistic quantification
and inferences features, flexibility of the model, ease of
extension to more complicated change scenarios such as
combination of steps and linear and nonlinear trends,
and relief of analytic calculation of likelihood function,
particularly for non-tractable likelihood functions.

Acknowledgments

The authors gratefully acknowledge financial support
from the Queensland University of Technology and St
Andrews Medical Institute through an ARC Linkage
Project.

Competing interests

The authors declare that they have no competing
interests.



326

H. Assareh et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 316-329

Author’s contributions

Hassan Assareh contributed to the conception, de-
sign, and implementation of statistical analysis and
to writing and modification of the manuscript. Ras-

soul Noorossana,

Majid Mohammadi, and Kerrie

Mengersen contributed to the conception, design, and
modification of the manuscript. All the authors read
and approved the final manuscript.

References

1.

ot

10.

11.

12.

13.

Montgomery, D.C., Introduction to Statistical Quality
Control, Wiley (2008).

Samuel, T. and Pignatiello, J. “Identifying the time of
a step change in the process fraction nonconforming”,
Quality Engineering, 13(3), pp. 357-365 (2001).

Assareh, H., Smith, I. and Mengersen, K. “Bayesian
change point detection in monitoring cardiac surgery
outcomes”, Quality Management in Health Care,
20(3), pp. 207-222 (2011).

Amiri, A. and Allahyari, S. “Change point estimation
methods for control chart postsignal diagnostics: A
literature review”, Quality and Reliability Engineering
International, 28(7), pp. 673-685 (2012).

Atashgar, K. “Identification of the change point: an
overview”, The International Journal of Advanced
Manufacturing Technology, 64(9-12), pp. 1663-1683
(2013).

Samuel, T. and Pignatiello, J. “Identifying the time
of a change in a Poisson rate parameter”, Quality
Engineering, 10(4), pp. 673-681 (1998).

Perry, M.B. “Robust change detection and change
point estimation for Poisson count processes”, Ph.D.

Thesis, Florida State University, USA (2004).

Perry, M.B., Pignatiello, J.J. and Simpson, J. “Esti-
mating the change point of a Poisson rate parameter
with a linear trend disturbance”, Quality and Reli-
ability Engineering International, 22(4), pp. 371-384
(2006).

Nishina, K. “A comparison of control charts from the
viewpoint of change-point estimation”, Quality and
Reliability Engineering International, 8(6), pp. 537-541
(1992).

Page, E.S. “Continuous inspection schemes”, Bio-
metrika, 41(1/2), pp. 100-115 (1954).

Page, E.S. “Cumulative sum charts”, Technometrics,
3(1), pp. 1-9 (1961).

Roberts, S. “Control chart tests based on geomet-
ric moving averages”, Technometrics, 1, pp. 239-250

(1959).

Perry, M.B., Pignatiello, J.J. and Simpson, J. “Change
point estimation for monotonically changing Poisson
rates in SPC”, International Journal of Production
Research, 45, pp. 1791-1813 (2007).

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Niaki, S.T.A. and Khedmati, M. “Detecting and es-
timating the time of a step-change in multivariate
Poisson processes”, Scientia Iranica, 19(3), pp. 862-

871 (2012).

Niaki, S.T.A. and Khedmati, M. “Estimating the
change point of the parameter vector of multivariate
Poisson processes monitored by a multi-attribute t 2
control chart”, The International Journal of Advanced
Manufacturing Technology, 64(9-12), pp. 1625-1642
(2013).

Sharafi, A., Aminnayeri, M. and Amiri, A. “An MLE
approach for estimating the time of step changes in
Poisson regression profiles”, Scientia Iranica, 20(3),
pp. 855-860 (2013).

Perry, M.B., Pignatiello, J.J. and Simpson, J.R. “Es-
timating the change point of the process fraction non-
conforming with a monotonic change disturbance in
SPC”, Quality and Reliability Engineering Interna-
tional, 23(3), pp. 327-339 (2007).

Noorossana, R., Saghaei, A., Paynabar, K. and Abdi,
S. “Identifying the period of a step change in high-
yield processes”, Quality and Reliability Engineering
International, 25(7), pp. 875-883 (2009).

Amiri, A., Koosha, M. and Azhdari, A. “Profile
monitoring for Poisson responses”, In Industrial Engi-
neering and Engineering Management (IEEM), 2011
IEEE International Conference on, pp. 1481-1484,
IEEE (2011).

Hou, C.-D., Shao, Y.E. and Huang, S. “A combined
MLE and generalized P chart approach to estimate
the change point of a multinomial process”, Applied
Mathematics and Information Sciences, 7(4), pp. 1487-
1493 (2013).

Niaki, S.T.A. and Khedmati, M. “Identifying the
change time of multivariate binomial processes for step
changes and drifts”, Journal of Industrial Engineering
International, 9(1), pp. 1-11 (2013).

Niaki, S.T.A. and Khedmati, M. “Change point esti-
mation of high-yield processes experiencing monotonic
disturbances”, Computers & Industrial Engineering,
67, pp. 82-92 (2014).

Assareh, H., Noorossana, R. and Mengersen, K.
“Bayesian change point estimation in Poisson based
control charts”, Journal of Industrial Engineering In-
ternational, 9(1), pp. 32-44 (2013).

Pan, R. and Rigdon, S.E. “A Bayesian approach to
change point estimation in multivariate SPC”, Journal
of Quality Technology, 44(3), pp. 231-248 (2012).

Tan, M.H. and Shi, J. “A Bayesian approach for inter-
preting mean shifts in multivariate quality control”,
Technometrics, 54(3), pp. 294-307 (2012).

Shariatmadari, M. “Change point detection in multi-
variate normal process by Bayesian approach”, Mas-
ter’s Thesis, Islamic Azad University, South Tehran
Branch, Iran (2013).

Assareh, H., Smith, I. and Mengersen, K. “Change



28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

H. Assareh et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 316-329 327

point detection in risk adjusted control charts”, Sta-

tistical Methods in Medical Research (2011).

Assareh, H. and Mengersen, K. “Change point estima-
tion in monitoring survival time”, PLoS ONE, 7(3),
pp- €33630 (2012).

Assareh, H. and Mengersen, K. “Bayesian estimation
of the time of a decrease in risk-adjusted survival
time control charts”, JAENG International Journal of
Applied Mathematics, 41(4), pp. 360-366 (2011).

Assareh, H., Smith, I. and Mengersen, K. “Bayesian
estimation of the time of a linear trend in risk-adjusted
control charts”, JAENG International Journal of Com-
puter Science, 38(4), pp. 409-417 (2011).

Green, P. “Reversible jump Markov chain Monte
Carlo computation and Bayesian model determina-
tion”, Biometrika, 82(4), pp. T11-732 (1995).

Gelman, A., Carlin, J., Stern, H. and Rubin, D.,
Bayesian Data Analysis, Chapman & Hall/CRC
(2004).

Carlin, B. and Louis, T. “Empirical bayes: Past,
present and future”, Journal of the American Statisti-
cal Association, 95(452), pp. 1286-1289 (2000).

Brooks, S.P. “Markov chain Monte Carlo method
and its application”, Journal of the Royal Statistical
Society. Series D (The Statistician), 47(1), pp. 69-100
(1998).

Lavielle, M. and Lebarbier, E.S.P. “An application
of MCMC methods for the multiple change-points
problem”, Signal Processing, 81(1), pp. 39-53 (2000).

Zhao, X. and Chu, P.S. “Bayesian change-point anal-
ysis for extreme events (typhoons, heavy rainfall,
and heat waves): a RIMCMC approach”, Journal of
Climate, 23(5), pp. 1034-1046 (2010).

Shewhart, W. “Quality control charts”, Bell System
Technical Journal, 5, pp. 593-602 (1926).

Shewhart, W. “Quality control”, Bell System Technical
Journal, 6, pp. 722-735 (1927).

Saghir, A. and Lin, Z. “Control charts for dispersed
count data: an overview”, Quality and Reliability
Engineering International, 31(5), pp. 725-739 (2015).
Doi:10.1002/qre.1642.

Wilken, B.A. “Change-point methods for overdis-
persed count data”, Tech. Rep., Department of Air
Force, Air University, Ohio, United States (2007).

Woodall, D.H. “The use of control charts in health-care
and public-health surveillance”, Journal of Quality
Technology, 38(2), pp. 89-104 (2006).

Brook, D. and Evans, D. “An approach to the proba-
bility distribution of CUSUM run length”, Biometrika,
59(3), pp. 539-549 (1972).

Trevanich, A. and Bourke, P. “EWMA control charts
using attributes data”, The Statistician, 42(3), p. 215
(1993).

44. Woodall, W.H. and Adams, B.M. “The statistical
design of CUSUM charts”, Quality Engineering, 5(4),
pp. 559-570 (1993).

45. Bernardo, J.M. and Smith, A.F.M., Bayesian Theory,
Wiley (1994).

46. Barry, D. and Hartigan, J.A. “A Bayesian analysis
for change point problems”, Journal of the American
Statistical Association, 88(421), pp. 309-319 (1993).

47. Liang, F., Liu, C. and Carroll, R.J. “Stochastic approx-
imation in Monte Carlo computation”, Journal of the
American Statistical Association, 102(477), pp. 305-
320 (2007).

48. Lai, T.L. and Xing, H. “A simple Bayesian approach
to multiple change-points”, Statistica Sinica, 21(2), p.
539 (2011).

49. Chib, S. “Estimation and comparison of multi-
ple change-point models”, Journal of Econometrics,
86(2), pp. 221-241 (1998).

Appendix A

RIMCMC components

Birth and death of a change point

In Step 1 of the RIMCMC algorithm, a model, my,
is randomly proposed and can be limited to adjacent
models, my_1 and myy1, say of the last iteration.
We set the probability of transition to adjacent mod-
els, the so-called birth and death of a change point,
jlmg,mer1) = j(mg,me—1) = 05for 0 < bk < K —1
and j(mg,m1) = j(mr—1,mrx—2) = 1 where there
exists only one adjacent model.

In the followings, for ease of expositions, sub-
scripts of new parameters obtained through birth and
death moves are dropped. In the birth of a new
change point, 7, in a move from m; to mp41, all
existing change points and most Poisson rates remain
untouched. A non-informative prior for 7 is p(7) =
1/(n — k — 1) as the birth cannot occur on wxy,
t = (1;7%1, -+ ,Tke). Assume that 7 occurs within
(Tk,j» Tk, j+1) and splits this epoch into two parts. In
this circumstance, the old Ay ; is replaced by two new
rates A\; and Ap, where under the competing model,
my41, their conditional posteriors are:

T—1
)‘1|Z79mmTNP o+ Z fptaﬁ"_T_TkJ )

1=Th.j

Th,j+1—1

Asl, iy 7 T {0+ th7ﬁ+7k,j+1—7'
t=r (A1)

In contrast, for the death of a change point, in a move
from my to my_1, two epochs are merged and the
two rates are replaced by one rate. The conditional
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posterior of the merged rate is:

Thtl,j+2—1
)\|x79mk+1 ~T (a+ Z T, B+ Tk+1,j+2—7k+1,j) .
(A.2)

t=Tp41.5

Proposal distributions
Finding appropriate proposal densities for moves,
Amy,mp41 (u’|‘9mk+17mk+17mk) for birth and Impy1,my
(|0, , My, my41) for death are critical in the RIM-
CMC algorithm.

For a birth move, the vector «' includes three
parameters 7, Ay and A;. We let the proposal density
be:

q(T, /\1, )‘2|9'mk) = p()‘1|9mk77—> X p(/\2|(9mk,7')

X p(7|0m,), (A.3)

where p(A1|0m,,, 7) and p(Az|0pm,, T) are the posteriors
obtained in Eq. (A.1) and p(7|0.,,) is set to the
posterior of the new change point calculated as follows
(see [36] for derivation details):

p(7-|9mk, } )‘17 >\27 ME41, I)
r-1

>
o T ri)(A1—Az2) (A1/Ag) 7w

Tt

(A4)

where Ay and Ay are replaced by the mean of the
posteriors obtained in Eq. (A.1).

For a death move, the vector w includes one
parameter A. We need to propose a new rate for the
period [ j, Tk,j4+1 — 1] under my. Here, the proposal
is set in a straightforward manner by applying the
posterior of A as follows:

Tht1.j+2—1

Z xt, 3

t=Tp41.5

p()\|9mk+1) ~T (a +

+ Tht1,j+2 — T/c+17j) ~ (A.5)

All priors and proposals introduced in Section 2.1 and
the Appendix are then replaced in the acceptance
ratio defined in Eq. (2) for birth and death moves,
appropriately (see [36] for more details).

Appendix B

Sirmulation results

To investigate the performance of the proposed model
in scenarios with two and three consecutive change
points prior to the c-charts signal, we followed the
method described in Section 3.1. A series of monotonic
and non-monotonic changes were considered in this set-
ting. Average of Bayesian estimates, mode of posterior
distributions, over 100 replications, are summarized in
Tables B.1 and B.2.

Table B.1. Average of posterior estimates (F(mode), E(sd.)) of multiple change-point model parameters mj and
Oy = (72,i,62,i), © = 1,2, following signals (RL) from c-chart where A2, 0 = 20, and two consecutive step changes were
induced at 751 = 25 and 795 = 35, respectively. Standard deviations are shown in parentheses.

E(p(me)) Oms,i=1 Orms,i=2
620,822 B(RL) E E B E E B

(F2,1) (6454) (62,1) (F2,2)  (645) (62,2)
510 42.28 0.00 0.29 0.47 0.17 26.71 4.47 -8.53 38.71 6.76 -11.38
(6.73)  (0.00) (0.08) (0.05) (0.03) (2.75)  (1.53)  (2.38) (3.89)  (4.94)  (1.06)

545 68.25 0.12 0.25 0.34 0.17 28.21 12.38 -4.55 36.75 20.97 3.28
(28.02)  (0.09) (0.08) (0.03) (0.01) (4.69)  (7.17)  (L.72) (1.70)  (16.79)  (1.48)

5410 38.64 0.00 0.15 0.52 0.22 25.96 3.84 -4.26 36.00 1.37 9.45
’ (2.97)  (0.01) (0.12) (0.08) (0.05) (1.94)  (L.61)  (4.18) (0.42)  (L.16)  (2.09)
3410 38.50 0.006 0.22 0.45 0.21 24.64 5.11 -4.02 35.91 2.26 8.21
(2.97)  (0.03) (0.11) (0.08) (0.05) (3.48)  (L75)  (4.04) (0.58)  (L.14)  (2.42)

1310 42.10 0.00 0.27 0.54 0.14 24.21 4.12 2.28 35.96 3.46 -9.79
(4.61)  (0.00) (0.11) (0.08) (0.05) (3.70)  (1.50)  (4.49) 0.18)  (1.73)  (1.56)

1510 42.30 0.00 0.18 0.59 0.18 26.07 3.41 6.63 35.95 4.16 -9.03
(6.42)  (0.00) (0.14) (0.10) (0.05) (2.21)  (1.28)  (L.77) (0.31)  (3.88)  (1.28)

155 156.19 0.001 0.28 0.35 0.21 29.32 14.17 4.12 38.14 22.08 -5.45
(120.58)  (0.05) (0.04) (0.02) (0.02) (5.71)  (8.54)  (3.32) (2.39)  (11.34)  (3.29)

45,410 39.30 0.007 0.34 0.40 0.18 25.20 7.11 3.12 37.21 5.14 11.03
(2.90)  (0.01) (0.04) (0.03) (0.02) (1.39)  (1.65)  (3.04) (1.42)  (L19)  (2.15)
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Table B.2. Average of posterior estimates (F(mode), F(sd.)) of multiple change-point model parameters m; and

Oy = (73,1,63,:), © = 1, 2,3, following signals (RL) from c-chart where A\3o = 20, and three consecutive step changes were
induced at 731 = 25, 73,2 = 35 and 73,3 = 45, respectively. Standard deviations are shown in parentheses.
63,1, E(p(mk)) Orms,i=1 Oms,i=2 Orny,i=3
632, E(RL) mo  my  ms s E E AE E E AE E E AE
83,3 (F3,1) (F25,1) (03,1) (F3,2) (8255) (83,2) (F3,3) (6255) (63,3)
54510 52.88 0.00 0.06 0.12 056 2690 275 -5.87 36.15 1.71 430 4595 2.56 -9.87
(6.49) (0.00) (0.08) (0.11) (0.11) (2.63) (1.40) (2.69) (1.36) (0.89) (2.40) (0.39) (1.63) (1.45)
5455 187.33 0.00 0.18 0.21 0.28 27.61 7.34 -4.65 36.35 6.32 331 46.95 891 -4.37
(133.80) (0.00) (0.03) (0.03) (0.02) (3.45) (1.92) (3.87) (2.01) (2.22) (3.31) (4.11) (5.32) (3.31)
5,545 60.05 0.01 0.10 0.16 0.40 26.29 5.27 441 36.01 5.61 -4.32 4641 11.14 5.33
/ (11.08) (0.02) (0.07) (0.09) (0.07) (2.80) (1.65) (4.53) (0.61) (3.28) (1.68) (3.89) (4.94) (1.06)
455,410 49.23 0.00 0.06 0.17 0.48 26.15 4.07 3.73 36.03 1.80 -3.90 46.06 1.37  9.32
(3.59) (0.01) (0.09) (0.12) (0.10) (2.27) (1.43) (4.66) (0.84) (0.82) (1.61) (0.43) (0.71) (1.96)
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