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Abstract. This paper presents a set of multi-objective programming problems in a rough
environment. These problems are classi�ed into �ve classes according to the location of the
roughness in the objective functions or the feasible set. We study the class in which all of
the objective functions are crisp and the feasible region is a rough set and, in particular,
discuss the properties of the complete and e�cient (Pareto optimal) solutions of rough
multi-objective programming problems. In order to obtain these solutions, we need certain
theorems, which we derive. Finally, we illustrate our results by examples.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Multiple Objective Programming (MOP) is a research
�eld that has been developed very much in the last
three decades. It contains many real-world problems
in which several objective functions have to be si-
multaneously optimized [1]. Since most of the real-
world problems are not crisp, the methods of classical
mathematics are not usually suitable for dealing with
them. Almost all concepts which we use in natural
language are vague or uncertain. Some of these
uncertainties are expressed by interval data, fuzziness,
randomness, roughness or their hybrids.

The newest theory for the joint management of
vagueness and uncertainty is that of Rough Sets Theory
(RST) proposed by Pawlack [2] in 1982. It is an
e�ective theoretical framework for discussion about
knowledge that has the ability to classify objects.
An object in a crisp and ordinary set is completely
determined, while in a rough set, it is approximately
determined based on partial knowledge. In RST, any
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vague concept is replaced by a pair of precise concepts
called the lower and the upper approximations of the
vague concept. For a vague concept X, a lower approx-
imation is contained in all objects which surely belong
to the concept X and an upper approximation contains
all objects which possibly belong to the concept X.

In recent decades, RST has been used as the
fundamental tool in many applications including op-
timization problems [3,4]. For the mathematical pro-
gramming problems in the crisp environment, the aim
is to maximize (minimize) an objective function over
a certain set of feasible solutions. However, in many
problems, the Decision-Maker (DM) may not be able
to specify the objective and/or the feasible set, exactly.
One of the ways by which DM can specify them is
using RST. In [5], we proposed a type of linear pro-
gramming problem with rough interval coe�cients, and
introduced two optimal ranges (surely optimal range
and possibly optimal range) and two optimal solutions
concepts (completely satisfactory solution and rather
satisfactory solution).

Youness [6] proposed a new type of mathematical
programming problem in which the decision set was a
rough set and called it rough programming problem.
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He also de�ned two concepts for optimal solutions,
namely, \surely optimal" and \possibly optimal". In
his discussions, he assumed that the lower and upper
approximation sets of rough sets were continuous.
Osman et al. [7] classi�ed rough programming prob-
lems into three classes according to the place of the
roughness. They also de�ned the concepts of \rough
feasibility" and \rough optimality" and studied the
class of rough programming problems with a crisp
objective function and a rough feasible set. This paper
focuses on extending this class of problems to the case
when we have multi-objective functions.

There have been numerous books, monographs,
articles, and chapters in books dealing with MOP
problems (see [1,8] and references therein). MOP is one
of the most popular methods used in Multiple-Criteria
Decision-Making (MCDM). An MOP problem aims to
maximize (minimize) several objective functions over a
set of feasible solutions. Numerous studies of MCDM in
a rough environment have been reported (for instance,
see [9]). However, in this paper, we discuss MOP
problems in rough environment.

In recent years, some scholars have proposed and
studied di�erent problems of operational research and
decision-making, especially multi-objective program-
ming problems, in rough environment. The newest
research in this �eld has been developed by Xu and his
coauthors. For example, Xu and Zhao [10,11] studied
a class of multi-objective decision-making problems
with fuzzy rough coe�cients and its application in
inventory problems. Xu and Yao [12,13] proposed a
class of multi-objective programming problems with
random rough coe�cients. Furthermore, Xu et al. [14]
developed a Data Envelopment Analysis (DEA) model
with rough parameters. Their model can be used to
evaluate the performance of supply chain networks. It
should be noted that in all the research, the rough
coe�cients or parameters of problems are \rough vari-
ables". The concept of rough variable, proposed by
Liu [3], is de�ned via similarity relation in a rough
space. While we discuss rough MOP problems using
rough sets proposed by Pawlack [2] that are de�ned
via indiscernibility relation as an equivalence relation
in an approximation space. In other words, in the
stated literature and most of the recent research, to
solve rough programming problems, the scholars use
the ranking methods such as the Expected value, �-
Optimistic value, and �-Pessimistic value of rough
variables to transform rough programming problems
into deterministic programming ones. But we will
state a methodology which transforms rough program-
ming problems into classical programming problems
by changing the feasible set into its lower or upper
approximations.

Recently, Tao and Xu [15] proposed a new type of
rough MOP problems. They investigated the proper-

ties of feasible and e�cient solutions and used \rough
membership functions" to obtain a solution. They also
obtained compromise solutions by using the interactive
fuzzy satisfying method.

Li et al. [16] proposed a rough programming
model based on the synthesis e�ect by distinguishing
direct e�ect and indirect e�ect. They considered the
role of equivalence classes in decision-making, which
provides a useful tool for processing the roughness with
di�erent ideas. Li et al. [17] discussed the necessity and
feasibility of developing a rough programming model.
Their model is developed on the basis of the greatest
compatible classes and synthesis e�ect.

In comparison with the successful application of
rough set theory in real world, the research on rough
programming is at the starting point. Furthermore,
most of the recent achievements in rough programming
have been stated based on rough variables, rough
membership functions, or the e�ect of equivalence
classes. In this paper, we further consider and analyze
solutions to rough MOP problems based on upper
and lower approximations of rough sets without use
of rough membership functions.

The rest of the paper is organized as follows. In
Section 2, some basic preliminaries about RST, MOP
problems, and weighted sum method are presented. In
Section 3, �rstly, Single-Objective Programming (SOP)
problems in rough environment are reviewed. Then,
rough multi-objective programming problems are clas-
si�ed into �ve classes; and new solution concepts are
de�ned and discussed. Finally, concluding remarks are
given in Section 4.

2. Preliminaries

In this section, we recall some basic concepts, de�ni-
tions, and theorems of RST and MOP (for more details,
see [1,2]).

2.1. Rough sets
The main idea of RST is based on the indiscernibility
relation that every object is associated with a certain
amount of information and the object can only be
expressed by means of some obtained information.
Therefore, objects with the same or similar information
can be indiscernible with respect to the available
information. A fundamental concept in RST is the
approximation space. It involves the construction of
a system of de�nable sets.

Suppose U be a �nite nonempty set of objects,
and E � U�U be an equivalence relation on U . Then,
the ordered pair A = (U;E) is called an approximation
space generated by E on U . The equivalence relation
E forms a partition on U like U=E = fE1; E2; :::; Erg
where for all i = 1; 2; :::; r, Ei � U , Ei 6= ;,
Ei \ Ej = ;(i 6= j) and

S
Ei = U . Each set Ei
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is called an equivalence class of the approximation
space A. In RST, every subset M � U is described
by the equivalence classes of A. Generally, two sets
characterize the set M called the lower and the upper
approximations of M , which are de�ned by the relation
E, respectively, as follows:

E�(M) =
[fEi � U=E j Ei �Mg;

E�(M) =
[fEi � U=E j Ei \M 6= ;g:

Clearly, the lower approximation E�(M) is the greatest
de�nable set contained in M , and the upper approxi-
mation E�(M) is the least de�nable set containing M .
Also, the di�erence between the upper and the lower
approximations is called the boundary of M and is
denoted by MBN = E�(M) � E�(M). If MBN 6= ;,
then the set M is rough (inexact), otherwise the set M
is crisp (exact).

2.2. Multi-objective programming
Any problem which optimizes multiple mathematical
objective functions simultaneously under a given set of
solutions is called a Multiple Objective Programming
(MOP) problem and can be formulated as follows:

max f(x) = (f1(x); f2(x); : : : ; fp(x))

s:t: x 2 X; (1)

where x = (x1; x2; : : : ; xn)t is an n-dimensional vector
of decision variables, fi(x) for i = 1; :::; p is given real-
valued objective functions, and X is a feasible set of
solutions.

If we directly apply the notion of optimality for
SOP problem to MOP Problem (1), we obtain the
following notion of a completely optimal solution.

De�nition 2.1 [1]. x� 2 X is called a completely
optimal solution of Problem (1) if fi(x�) � fi(x) 8 i =
1; :::; p; 8 x 2 X.

However, when the objective functions conict
with each other, a completely optimal solution does
not always exist. Hence, new solution concepts, called
e�cient and weak e�cient solutions, are introduced in
MOP problems.

De�nition 2.2 [1]. x� 2 X is called e�cient (Pareto
optimal) solution of Problem (1) if there is no other
x 2 X such that fi(x) � fi(x�) for i = 1; : : : ; p, and
fk(x) > fk(x�) for at least one k 2 f1; :::; pg.
De�nition 2.3 [1]. x� 2 X is called weak e�cient
solution of Problem (1) (weak Pareto optimal) if there
is no x 2 X such that fi(x) > fi(x�) for i = 1; :::; p.

2.3. The weighted sum method
One of the traditional approaches for solving an MOP
problem to �nd e�cient and weak e�cient solutions is
scalarization. A simple possible way for scalarization
is the weighted sum method. This method solves the
following SOP problem:

max
pX
j=1

wjfj(x)

s:t: x 2 X; (2)

where w = (w1; :::; wp) � 0 is a vector of weighting
coe�cients assigned to the objective functions by the
DM.

The relationships between an optimal solution of
Problem (2) with e�cient and weak e�cient solutions
of Problem (1) are given by the following theorems.

Theorem 2.1 [1]. Let x� 2 X be an optimal solution
of Problem (2). The following statements hold.

� If w > 0, then x� is an e�cient solution of Problem
(1);

� If w � 0, then x� is a weak e�cient solution of
Problem (1);

� If w � 0 and x� is a unique optimal solution
of Problem (2), then x� is an e�cient solution of
Problem (1).

Theorem 2.2 [8]. In Problem (1), assume that
f1; :::; fp are concave functions and X is a convex set.
If x� 2 X is a weak e�cient solution of Problem (1),
then x� is an optimal solution of Problem (2) for some
w � 0.

3. Single and multi-objective programming
problems in rough environment

In this section, initially, we review some de�nitions and
theorems of rough SOP problems. Then, rough multi-
objective programming problems are discussed.

3.1. Rough single-objective programming
A new type of programming problems in rough environ-
ment was introduced by Osman et al. [7]. They classi-
�ed rough programming into three classes according to
the place of roughness. In the �rst class, the objective
function is crisp while the feasible set is a rough set [7].

Suppose that A = (U;E) is an approximation
space generated by an equivalence relation E on the
set U and U=E = fE1; E2; :::; Erg is the partition
generated by E on U . Then, a rough SOP problem
of the �rst class is as follows:

max f(x)

s:t: x 2M
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E�(M) �M � E�(M); (3)

where M � U is a \rough set" in the approximation
space A = (U;E) as the feasible region of the problem.
The sets M� = E�(M) and M� = E�(M) are the upper
and the lower approximations of M with respect to
equivalence relation E, respectively. The function f :
M� ! R is a crisp real valued objective function which
is continuous on M�. Also, let MBN = M� �M� be
boundary of M .

In Problem (3), the optimal value is a rough
number and the optimal solutions set is a roughly-
de�ned set (for more details about de�nition of rough
number and rough function, see [18]).

De�nition 3.1 [7]. In Problem (3), the optimal
value of the objective function is a rough number
denoted by �f , whose lower and upper bounds are
denoted by �f� and �f�, respectively.

To solve rough programming problems, the con-
cepts like rough feasibility and rough optimality were
de�ned. We quote some de�nitions and a theorem
from [7] for Problem (3).

The solutions of Problem (3) are divided to
di�erent rough feasibility groups as follows [7]:

� A solution x is surely-feasible if it belongs to the
lower approximation of the feasible set, i.e. x 2M�;

� A solution x is possibly-feasible if it belongs to the
upper approximation of the feasible set, i.e. x 2M�;

� A solution x is surely-infeasible if it does not belong
to the upper approximation of the feasible set, i.e.
x =2M�.

Other categories of the solutions are based on
rough optimality, as follows [7]:

� A solution x is surely-optimal if f(x) = �f�;
� A solution x is possibly-optimal if f(x) � �f�;
� A solution x is surely-not optimal if f(x) < �f�.

In order to compute the lower and upper bounds
for the optimal value of objective function �f , we recall
the following theorem from [7].

Theorem 3.1 [7]. In Problem (3), the lower and
upper bounds of the optimal objective value �f are given
by:

�f� = supfa; bg and �f� = supfa; cg;
where (assuming the existence of the solution to the
following crisp problems):

a = max
x2M� f(x);

c = max
x2MBN

f(x);

b = sup
Ei2U=E
Ei�MBN

�
min
x2Ei f(x)

	
:

De�nition 3.2 [7]. In Problem (3), there are four
optimal sets covering all possible degrees of feasibility
and optimality, as follows:

� FOss = fx 2 M� j f(x) = �f�g is the set of all
surely-feasible and surely-optimal solutions;

� FOsp = fx 2 M� j f(x) � �f�g is the set of all
surely-feasible and possibly-optimal solutions;

� FOps = fx 2 M� j f(x) = �f�g is the set of all
possibly-feasible and surely-optimal solutions;

� FOpp = fx 2 M� j f(x) � �f�g is the set of all
possibly-feasible and possibly-optimal solutions.

3.2. Rough multi-objective programming
In this section, the MOP problems in rough environ-
ment are investigated. We call them Rough Multiple
Objective Programming (RMOP) problems, where the
roughness may appear in di�erent ways. In other
words, the feasible set and/or the objective functions
may be rough or crisp. Thus, RMOP problems can be
classi�ed as follows:

(a) MOP problems with rough feasible set and crisp
objective functions;

(b) MOP problems with crisp feasible set and rough
objective functions;

(c) MOP problems with rough feasible set and rough
objective functions;

(d) MOP problems with crisp feasible set and both
crisp and rough objective functions;

(e) MOP problems with rough feasible set and both
crisp and rough objective functions.

To solve RMOP problems, we use the concepts
of rough feasibility and rough optimality based on the
results of Osman et al. [7] for rough SOP problems.
However, we only consider an ROMP problem of the
�rst class (a), where the objective functions are crisp
and feasible set is rough.

Similar to rough SOP problems, let A = (U;E)
and U=E = fE1; E2; :::; Erg be the approximation
space and the partition generated by equivalence re-
lation E on the set U , respectively. Then, the problem
can be formulated as follows:

max f(x) = (f1(x); f2(x); : : : ; fp(x))

s:t: x 2M
E�(M) �M � E�(M); (4)

where M � U is a Rough set as the feasible region of
Problem (4). The sets M� = E�(M), M� = E�(M),
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andMBN have the same de�nitions as those in Problem
(3) of Section 3.1. For all j = 1; 2; :::; p, the functions
fj : M� ! R are crisp real valued objective functions,
which are continuous on M�.

Firstly, the following example (taken from [6] with
small modi�cations) is presented as a real problem to
show an instance in Problem (4).

Example 3.1. Assume the drugs D1 and D2 were
developed to treat liver cancer. Let f and g be the
e�ects of the drugs D1 and D2, respectively. In other
words, if U is the set of all cells of the liver then f and
g are two functions of U on the real numbers set R.
Moreover, the values f(x) and g(x) mean the e�ects of
D1 and D2 on the cell x of U , respectively. Suppose:

1. Using drugs for a year implies to kill 30% of cancer
cells;

2. Using drugs for 2 years implies to kill 50% of cancer
cells and 1% of normal cells;

3. Using drugs for 3 years implies to kill 70% of cancer
cells and 2% of normal cells;

4. Using drugs for 4 years implies to kill 99% of cancer
cells and 3% of normal cells.

Equivalence relation E on U is de�ned as follows:

(u; v) 2 E ,

8>>><>>>:
u and v are killed in the same year
or
u and v are not killed in the end of

treatment.

Now, let M � U be the set of all cancer cells. The
de�ned equivalence relation E makes a partition to U
as:

E1 = fu 2M ju was killed in the �rst yearg;
E2 = fu 2M; v 2 U rM ju and v were killed in

the second yearg;
E3 = fu 2M; v 2 U rM ju and v were killed in

the third yearg;
E4 = fu 2M; v 2 U rM ju and v were killed in

the fourth yearg;
E5 = fv 2 U rM jv were not killed in

the end of treatmentg:
Then, set M is a rough set with respect to equivalence

relation E, such that the lower and upper approxima-
tions of M are E�(M) = E1 and E�(M) = E1 [ E2 [
E3 [ E4, respectively.

The problem of �nding the maximum e�ect of
each drug D1 and D2, is a rough bi-objective program-
ming and is formulated as follows:

max ft(x)

max gt(x)

s:t: x 2M
E�(M) �M � E�(M);

where ft; gt : M ! R are the e�ects of the drugs on
cell x 2M in a certain year t 2 f1; 2; 3; 4g.

With regard to the rough SOP, we present the
next de�nition.

De�nition 3.3. In Problem (4), the optimal value
of the objective function is a rough number denoted
by �f = ( �f1; �f2; :::; �fp), whose lower and upper bounds
are denoted by �f� = ( �f1�; �f2�; : : : ; �fp�) and �f� =
( �f1
�; �f2

�; : : : ; �fp
�), respectively.

Remark 3.1. If �f� = �f�, i.e. �fj� = �fj
�, for all j =

1; 2; : : : ; p, the optimal value is exact, otherwise it is
rough.

In order to deal with Problem (4), we need to �nd
the optimal values and solutions for each rough SOP
Problem (5), for all j = 1; 2; :::; p:

max fj(x)

s:t: x 2M (5)

E�(M) �M � E�(M):

With regard to Section 3.1, the lower and upper bounds
of each optimal objective value �fj for Problem (5) are
given by:

�fj� = supfaj ; bjg and �fj
� = supfaj ; cjg;

where (assuming the existence of the solution to the
following crisp problems):

aj = max
x2M� fj(x);

cj = max
x2MBN

fj(x) and

bj = sup
Ei2U=E
Ei�MBN

�
min
x2Ei fj(x)

�
:

Moreover, we denote the set of all \surely-feasible
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and surely-optimal", \surely-feasible and possibly-
optimal", \possibly-feasible and surely-optimal", and
\possibly-feasible and possibly-optimal" solutions of
Problem (5) by FOjss; FO

j
sp; FO

j
ps, and FOjpp, respec-

tively.
In what follows, we extend the notions of feasi-

bility and optimality of rough SOP problems to the
multiple case.

De�nition 3.4. For Problem (4):

� x̂ is a surely-complete optimal solution if fj(x̂) =
�fj
�, for all j = 1; :::; p;

� x̂ is a possibly-complete optimal solution if fj(x̂) �
�fj�, for all j = 1; :::; p.

Similar to De�nition 3.2, we can de�ne four
optimal sets covering all possible degrees of feasibility
and complete optimality as follows:

� FOs(sc) = fx 2M� j fj(x) = �fj
�; j = 1; :::; pg is the

set of all surely-feasible and surely-complete optimal
solutions;

� FOs(pc) = fx 2 M� j fj(x) � �fj�; j = 1; :::; pg is
the set of all surely-feasible and possibly-complete
optimal solutions;

� FOp(sc) = fx 2 M� j fj(x) = �fj
�; j = 1; :::; pg is

the set of all possibly-feasible and surely-complete
optimal solutions;

� FOp(pc) = fx 2 M� j fj(x) � �fj�; j = 1; :::; pg is
the set of all possibly-feasible and possibly-complete
optimal solutions.

Proposition 3.1. For Problem (4), the following
statements hold:

(i) FOs(sc) =
Tp
j=1 FO

j
ss;

(ii) FOs(pc) =
Tp
j=1 FO

j
sp;

(iii) FOp(sc) =
Tp
j=1 FO

j
ps;

(iv) FOp(pc) =
Tp
j=1 FO

j
pp:

Proof. The proof is straight forward. �
Often, the sets FOs(sc); FOs(pc) and FOp(sc) are

empty. In other words, surely- and possibly-complete
optimal solutions do not always exist. Therefore, we
introduce another concepts instead of complete optimal
solutions for RMOP problems. These solution concepts
are based on e�ciency (Pareto optimality). To �nd
surely- and possibly-e�cient solutions, we use the
union of the sets FOjss; FO

j
sp; FO

j
ps, and FOjpp. Hence,

for Problem (4), the following notations are used:

P =
p[
j=1

FOjss; Q =
p[
j=1

FOjsp;

S =
p[
j=1

FOjps; and T =
p[
j=1

FOjpp:

De�nition 3.5. For Problem (4):

� x̂ 2M is called a surely-e�cient solution if:
x̂ 2 M� and there is no other x 2 M� such that
fi(x) � fi(x̂) for i = 1; : : : ; p, and fk(x) > fk(x̂) for
at least one k 2 f1; : : : ; pg;

� x̂ 2M is called a possibly-e�cient solution if:
x̂ 2 M� and there is no other x 2 M� such that
fi(x) � fi(x̂) for i = 1; : : : ; p, and fk(x) > fk(x̂) for
at least one k 2 f1; : : : ; pg.

We show that if the sets P;Q; S; and T are
nonempty, then the surely and possibly-e�cient solu-
tions belong to these sets. Therefore, the sets M� and
M� in De�nition 3.5 can be restricted to P (or Q) and
S(or T ), respectively.

Proposition 3.2. For Problem (4), the following
statements hold:

- If P 6= ;, then each member of M� r P cannot be a
surely-e�cient solution;

- If Q 6= ;, then each member of M� rQ cannot be a
possibly-e�cient solution;

- If S 6= ;, then each member of M� r S cannot be a
surely-e�cient solution;

- If T 6= ;, then each member of M� r T cannot be a
possibly-e�cient solution.

Proof. We prove only the �rst item. The other items
can be proved similarly. It should be proved that for
every x 2M�rP , there exists x̂ 2 P such that fi(x̂) �
fi(x) for i = 1; :::; p, and fk(x̂) > fk(x) for at least one
k 2 f1; :::; pg, or equivalently:

(fi(x̂) � fi(x) for i = 1; : : : ; p) and

(f1(x̂); :::; fp(x̂)) 6= (f1(x); :::; fp(x)) :

To this end, on the contrary suppose that there is �x 2
M� r P such that for all x 2 P :

(9j 2 f1; :::; pg : fj(x) < fj(�x)) or

(f1(x); :::; fp(x)) = (f1(�x); :::; fp(�x)) :

Firstly, if fj(x) < fj(�x) for x 2 P; then fj(x) = �fj
� =

supfaj ; cjg < fj(�x). The following two cases can be
considered:

(i) If aj � cj , then �fj
� = aj = max

x2M� fj(x) < fj(�x),

which is a contradiction since �x 2M� r P �M�.
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(ii) If aj < cj , then max
x2M� fj(x) = aj < cj = �fj

� <
fj(�x), which is a contradiction since �x 2M�.
Secondly, if (f1(x); : : : ; fp(x)) = (f1(�x); :::; fp(�x))

then fj(�x) = �fj
� for j = 1; :::; p, since x 2 P and

fj(x) = �fj
� for j = 1; :::; p. Thus, �x 2 FOjss for j =

1; :::; p. So, �x 2 Tpj=1 FO
j
ss � Spj=1 FO

j
ss = P , which

is a contradiction since �x 2 M� r P . This completes
the proof.�

According to Proposition 3.2, if the sets P;Q; S;
and T are nonempty, then the rough e�cient solutions
of RMOP problems are restricted to these sets. Hence,
we can modify De�nition 3.5 as De�nition 3.6 to cover
all possible degrees of feasibility. It should be noted
that usually among the sets P;Q; S and T , only the set
P is empty.

De�nition 3.6. For Problem (4):

� �x is called a surely-feasible and surely-e�cient solu-
tion if:
�x 2 P and there is no other x 2 P such that
fi(x) � fi(�x) for i = 1; :::; p, and fk(x) > fk(�x)
for at least one k 2 f1; :::; pg;

� �x is called a surely-feasible and possibly-e�cient
solution if:
�x 2 Q and there is no other x 2 Q such that
fi(x) � fi(�x) for i = 1; :::; p, and fk(x) > fk(�x)
for at least one k 2 f1; :::; pg;

� �x is called a possibly-feasible and surely-e�cient
solution if:
�x 2 S and there is no other x 2 S such that
fi(x) � fi(�x) for i = 1; :::; p, and fk(x) > fk(�x)
for at least one k 2 f1; :::; pg;

� �x is called a possibly-feasible and possibly-e�cient
solution if:
�x 2 T and there is no other x 2 T such that fi(x) �
fi(�x) for i = 1; :::; p, and fk(x) > fk(�x) for at least
one k 2 f1; :::; pg.

Remark 3.2. If the relations � of all items in the
De�nition 3.6 are replaced by >, then the expression
\e�cient" should be replaced with \weak e�cient".
For instance:

� �x is called a surely-feasible and possibly-weak e�-
cient solution of (4) if:
�x 2 Q and there is no other x 2 Q such that
fi(x) > fi(�x) for i = 1; :::; p.

Notation. We denote the e�cient sets in terms
of four optimal sets covering all possible degrees of
feasibility and optimality of the solutions as:

� FOs(se): The set of all surely-feasible and surely-
e�cient solutions;

� FOs(pe): The set of all surely-feasible and possibly-
e�cient solutions;

� FOp(se): The set of all possibly-feasible and surely-
e�cient solutions;

� FOp(pe): The set of all possibly-feasible and
possibly-e�cient solutions.

Proposition 3.3. For Problem (4), the following
statements hold:

(i) FOs(sc) � FOs(se);
(ii) FOs(pc) � FOs(pe);
(iii) FOp(sc) � FOp(se);
(iv) FOp(pc) � FOp(pe):
Proof. The proof is straight forward.�

As mentioned before, the traditional approach to
solve an MOP problem is scalarization and one of the
most popular scalarization methods is the weighted
sum method. The following theorems are stated for
�nding surely and possibly-e�cient solutions of the
RMOP problems.

Theorem 3.2. Let x� be an optimal solution of the
crisp Problem (6). If wj > 0 for j = 1; : : : ; p, then
x� is a surely-feasible and surely-e�cient solution of
Problem (4).

max
pX
j=1

wjfj(x)

s:t: x 2M�
fr(x) = �fr

�; (6)

where r 2 f1; : : : ; pg.
Proof. Since x� is an optimal solution of Problem (6),
then it is feasible. Thus, x� 2 M� and fr(x�) = �fr

�.
So, x� 2 P =

Sp
j=1 FO

j
ss. Now, on the contrary

suppose that there is �x 2 P such that fi(�x) � fi(x�)
for i = 1; :::; p, and fk(�x) > fk(x�) for at least one
k 2 f1; :::; pg. If r = k, then fr(�x) > fr(x�) = �fr

�.
Therefore, fr(�x) > �fr

� = supfar; crg and �x 2 P �M�,
which is a contradiction. If r 6= k, then fr(�x) �
fr(x�) = �fr

�. Since �x 2 P , then �x 2 M� and fr(�x) =
�fr
�. Therefore, �x is a feasible solution to Problem (6).

On the other hand, wifi(�x) � wifi(x�) for i = 1; :::; p
and wkfk(�x) > wkfk(x�). Thus,

Pp
j=1 wjfj(�x) >Pp

j=1 wjfj(x
�) which is a contradiction.�

Theorem 3.3. Let x� be an optimal solution of the
crisp Problem (7). If wj > 0 for j = 1; :::; p, then
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x� is a surely-feasible and possibly-e�cient solution to
Problem (4).

max
pX
j=1

wjfj(x)

s:t: x 2M�
fr(x) � �fr�; (7)

where r 2 f1; :::; pg.
Proof. Since x� is an optimal solution to Problem
(7), it is feasible. Thus, x� 2 M� and fr(x�) � �fr�.
So, x� 2 Q =

Sp
j=1 FO

j
sp. Now, on the contrary

suppose that there is �x 2 Q such that fi(�x) � fi(x�)
for i = 1; : : : ; p, and fk(�x) > fk(x�) for at least one
k 2 f1; :::; pg. Firstly, since x� is feasible for Problem
(7), if r 6= k, then fr(�x) � fr(x�) � �fr�. If r = k, then
fr(�x) > fr(x�) � �fr� and �x 2 Q � M�. Thus, �x is a
feasible solution to Problem (7). Secondly, wifi(�x) �
wifi(x�) for i = 1; : : : ; p and wkfk(�x) > wkfk(x�).
Therefore,

Pp
j=1 wjfj(�x) >

Pp
j=1 wjfj(x

�). This is a
contradiction to the fact that x� is the optimal solution
to Problem (7).

Theorem 3.4. Let x� be an optimal solution of the
crisp Problem (8). If wj > 0 for j = 1; : : : ; p, then
x� is a possibly-feasible and surely-e�cient solution to
Problem (4).

max
pX
j=1

wjfj(x)

s:t: x 2M�

fr(x) = �fr
�; (8)

where r 2 f1; :::; pg.
Proof. The proof is similar to that of Theorem 3.2.�

Theorem 3.5. Let x� be an optimal solution of the
crisp Problem (9). If wj > 0 for j = 1; :::; p, then x�
is a possibly-feasible and possibly-e�cient solution to
Problem (4).

max
pX
j=1

wjfj(x)

s:t: x 2M�
fr(x) � �fr�; (9)

where r 2 f1; :::; pg.

Proof. The proof is similar to that of Theorem 3.3.�
It should be noted that in Theorems 3.2-3.5 if the

solution x� is a unique optimal solution to the weighted
crisp Problems (6)-(9), then wj can be nonnegative
(wj � 0) for j = 1; :::; p.

Moreover, if the uniqueness is not guaranteed and
wj � 0 for j = 1; :::; p, then the optimal solution
of the weighted crisp Problems (6)-(9) is a \weak
e�cient" solution to Problem (4) with di�erent degrees
of feasibility. For instance:

Theorem 3.6. Let x� be an optimal solution to the
crisp Problem (7). If wj � 0 for j = 1; : : : ; p, then x�
is a surely-feasible and possibly weak-e�cient solution
to Problem (4).

Proof. The proof is similar to that of Theorem 3.3.�
Also, in order to �nd surely- and possibly com-

plete optimal solutions of the RMOP Problem (4), we
can solve some crisp problems similar to Problems (6)-
(9).

Theorem 3.7. Let x� be an optimal solution to the
crisp Problem (10). If wj > 0 for j = 1; :::; p, then
x� 2 FOs(pc), i.e. x� is a surely-feasible and possibly-
complete optimal solution to Problem (4).

max
pX
j=1

wjfj(x)

s:t: x 2M�
fr(x) � �fr� r = 1; 2; :::; p: (10)

Proof. Since x� is an optimal solution to Problem
(10), it is feasible. Thus, x� 2 M� and fr(x�) �
�fr� 8 r = 1; 2; :::; p. Subsequently, x� 2 Tpj=1 FO

j
sp =

FOs(pc).�
Finally, we study the converse of Theorems 3.2-

3.6. As an instance, we state only the converse of
Theorem 3.6. To do so, we need the following theorem
which is taken from [1].

Theorem 3.8 [1]. Let M be a convex set and fj :
M ! R be concave function for j = 1; :::; p. Then, if
the system fj > 0, j = 1; : : : ; p has no solution x 2M ,
there exist w = (w1; :::; wp) � 0;

Pp
j=1 wj = 1 such

that 8 x 2M;
Pp
j=1 wjfj(x) � 0:

Theorem 3.9. Suppose M� be a convex set and fj :
M� ! R be concave function for j = 1; 2; :::; p. If
Q 6= ; and x̂ is a surely-feasible and possibly-weak
e�cient solution to Problem (4), then there exist w =
(w1; : : : ; wp) � 0 such that x̂ is an optimal solution to
the crisp Problem (7).
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Proof. Since x̂ is a surely-feasible and possibly-weak
e�cient solution to Problem (4), then x̂ 2 Q � M�
and subsequently there exists r 2 f1; :::; pg such that
fr(x̂) � �fr�. Thus, x̂ is a feasible solution for Problem
(7). Moreover, there is no other x 2 Q such that
fj(x) > fj(x̂) for j = 1; :::; p. This means that the
system fj(x)�fj(x̂) > 0; j = 1; 2; :::; p has no solution
x 2 Q � M�. Therefore, by Theorem 3.7, there exist
w = (w1; :::; wp) � 0;

Pp
j=1 wj = 1 such that for all

x 2 M�, we have
Pp
j=1 wj(fj(x) � fj(x̂)) � 0. Thus,Pp

j=1 wjfj(x) �Pp
j=1 wjfj(x̂) for all x 2 M�. Hence,

x̂ is an optimal solution to Problem (7).�
In the sequel, some numerical examples are given

to illustrate some of the theoretical results.

Example 3.2. Let U = fx = (x1; x2) 2 R2 j (x1 �
3)2 +(x2�3)2 � 9g, and let K be a polytope generated
by the following closed half-spaces:

g1(x) = x1 + x2 � 8 � 0;

g2(x) = x1 � x2 � 2 � 0;

g3(x) = x1 + x2 � 4 � 0;

g4(x) = x1 � x2 + 2 � 0:

Suppose that E is an equivalence relation on U such
that U=E = fE1; E2; E3g where:

E1 = fx 2 U : x is an interior point of polytope Kg;
E2 = fx 2 U : x is a boundary point of polytope Kg;
E3 = fx 2 U : x is an exterior point of polytope Kg:

Now, assume that M is a rough feasible region in the
approximation space A = (U;E) such that M� =
E1 [ E2 and M� = E1 [ E2 [ E3 are lower and
upper approximations of M , respectively. Also, the
boundary of M is given by MBN = E3 (see Figure 1).
The structure of M is taken from [7,6]. Consider the
following RMOP problem:

max f1(x) = (x1 � 4)2 + (x2 � 2)2 � 2

max f2(x) = x2
1 + x2

2 � 5x1x2

max f3(x) = 5� (x1 � 1)2 � (x2 � 3)2

s:t: x 2M
M� �M �M�: (11)

In order to �nd some e�cient solutions to Problem
(11), we solve some crisp SOP problems by Theorems
3.1-3.5.

Figure 1. The set K and equivalence classes of E on U .

First step: Finding the rough optimal value �f =
( �f1; �f2; �f3):

�f1� = a1 = f1(1; 3) = f1(3; 5) = 8;

�f1
� = c1 = f1(0:8787; 5:1213) = 17:4853;

�f2� = a2 = f2(1; 3) = f2(3; 1) = �5;

�f2
� = c2 = f2(4:0209; 0:1791) = 12:6;

�f3� = �f3
� = a3 = f3(1; 3) = 5

�
c3 = f3(1� �; 3� �)

= 5� � < a3
�
:

Second step: Finding the rough optimal sets for any
objective function:

FO1
ss = fx 2M� j f1(x) = �f1

� = 17:4853g = ;;
FO1

sp = fx 2M� j f1(x) � �f1� = 8g = f(1; 3); (3; 5)g;
FO1

ps = fx 2M� j f1(x) = �f1
� = 17:4853g

= f(0:8787; 5:1213)g;
FO1

pp = fx 2M� j f1(x) � �f1� = 8g
= f(x1; x2) 2 U : (x1 � 4)2 + (x2 � 2)2 � 10g;

FO2
ss = fx 2M� j f2(x) = �f2

� = 12:6g = ;;
FO2

sp=fx 2M� j f2(x) � �f2� = �5g=f(1; 3); (3; 1)g;
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FO2
ps = fx 2M� j f2(x) = �f2

� = 12:6g
= f(4:0209; 0:1791)g;

FO2
pp = fx 2M� j f2(x) � �f2� = �5g

= f(x1; x2) 2 U : x2
1 + x2

2 � 5x1x2 � �5g:
Finally, since c3 < a3, FO3

ss = FO3
sp = FO3

ps =
FO3

pp = f(1; 3)g.
Third step: Finding the rough completely optimal
sets:

FOs(sc) =
3\
j=1

FOjss = ;;

FOs(pc) =
3\
j=1

FOjsp = f(1; 3)g;

FOp(sc) =
3\
j=1

FOjps = ;;

FOp(pc) =
3\
j=1

FOjpp = f(1; 3)g:
Therefore, Problem (11) has no surely-complete opti-
mal solution. But, the point x� = (1; 3) is a possibly-
complete optimal solution.

Fourth step: Finding the rough e�cient solutions
sets, �rstly, the sets P;Q; S, and T are as follows:

P =
3[
j=1

FOjss = f(1; 3)g;

Q =
3[
j=1

FOjsp = f(1; 3); (3; 5); (3; 1)g;

S=
3[
j=1

FOjps=f(0:8787; 5:1213);(4:0209; 0:1791);(1; 3)g;

T =
3[
j=1

FOjpp=
�
x 2 U : f(x1 � 4)2+(x2 � 2)2 � 10g

[ fx2
1 + x2

2 � 5x1x2 � �5g	:
Secondly, according to Theorems 3.2-3.5, we solve the
SOP problems P1; P2; P3; and P4 as follows:
P1 :

max w1
�
(x1 � 4)2 + (x2 � 2)2 � 2

�
+ w2

�
x2

1 + x2
2 � 5x1x2

�

+ w3
�
5� (x1 � 1)2 � (x2 � 3)2�

s:t: x1 + x2 � 8 � 0

x1 � x2 � 2 � 0

x1 + x2 � 4 � 0

x1 � x2 + 2 � 0

fr(x) = �fr
�;

where r 2 f1; 2; 3g.
P2 :

max w1
�
(x1 � 4)2 + (x2 � 2)2 � 2

�
+ w2

�
x2

1 + x2
2 � 5x1x2

�
+

w3
�
5� (x1 � 1)2 � (x2 � 3)2�

s:t: x1 + x2 � 8 � 0

x1 � x2 � 2 � 0

x1 + x2 � 4 � 0

x1 � x2 + 2 � 0

fr(x) � �fr�;
where r 2 f1; 2; 3g.
P3 :

max w1
�
(x1 � 4)2 + (x2 � 2)2 � 2

�
+ w2

�
x2

1 + x2
2 � 5x1x2

�
+

w3
�
5� (x1 � 1)2 � (x2 � 3)2�

s:t: (x1 � 3)2 + (x2 � 3)2 � 9

fr(x) = �fr
�;

where r 2 f1; 2; 3g.
P4 :

max w1
�
(x1 � 4)2 + (x2 � 2)2 � 2

�
+ w2

�
x2

1 + x2
2 � 5x1x2

�
+

w3
�
5� (x1 � 1)2 � (x2 � 3)2�

s:t: (x1 � 3)2 + (x2 � 3)2 � 9

fr(x) � �fr�;
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where r 2 f1; 2; 3g.
By changing the weights, we can get di�erent

e�cient solutions, which are handled by the DM (see
Tables 1-4).

In Table 1, since there is no x̂ 2 M� such that

Table 1. Surely-feasible, and surely-e�cient solutions
with di�erent weights to Problem P1.

r w1 w2 w3 x1
� x2

�

3 0.33 0.33 0.34 1.000606 2.999394
3 0.1 0.1 0.8 1.000577 2.999423
3 0.5 0.4 0.1 1.000580 2.99910

Table 2. Surely-feasible and possibly-e�cient solutions
with di�erent weights to Problem P2.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 1.000606 2.999394
1 0.9 0.05 0.05 1 3
1 0.2 0.3 0.5 1.000712 2.999298
2 0.1 0.8 0.1 1 3
2 0.2 0.4 0.4 0.999320 2.999850
2 0.5 0.3 0.2 0.999352 3.000120
3 0.33 0.33 0.34 1 3
3 0.2 0.4 0.4 1 3
3 0.5 0.4 0.1 1 3

Table 3. Possibly-feasible and surely-e�cient solutions
with di�erent weights to Problem P3.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 0.8786796 5.121320
1 0.8 0.1 0.1 0.8691861 5.111786
1 0.4 0.5 0.1 0.8614629 5.103963
2 0.4 0.5 0.1 4.019090 0.1783941
2 0.7 0.2 0.1 4.019602 0.1785793
2 0.1 0.3 0.6 4.019006 0.1783636
3 0.33 0.33 0.34 0.9995549 2.999893
3 0.2 0.4 0.4 0.9990667 3.000117
3 0.5 0.4 0.1 0.9992445 2.999690

Table 4. Possibly-feasible and possibly-e�cient solutions
with di�erent weights to Problem P4.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 0.1724377 4.002443
1 0.2 0.4 0.4 0.1534008 3.947034
1 0.5 0.4 0.1 0.2214822 4.131300
2 0.33 0.33 0.34 0.1724377 4.002443
2 0.2 0.4 0.4 0.1534008 3.947034
2 0.1 0.3 0.6 0.1119307 3.811823
3 0.33 0.33 0.34 0.9996620 3.000140
3 0.2 0.4 0.4 0.9995774 2.999938
3 0.5 0.4 0.1 0.9996227 2.999917

fr(x̂) = �fr
� for r = 1; 2, the results are provided only

for r = 3.
Table 2, for all r = 1; 2; 3, gives the point x� =

(1; 3) as a surely-feasible and possibly-e�cient solution.
Table 3 presents di�erent points of the set S which are
possibly-feasible and surely-e�cient solutions. Finally,
in Table 4, all of the obtained solutions are possibly-
feasible and possibly-e�cient, which belong to the
set T .

Example 3.3. Consider Example 3.2 where the third
objective function is changed as follows:

max f3(x) = 2x3
1x2 � 2x1x3

2:

Then, �f3� = a3 = f3(5; 3) = 480, �f3
� = c3 =

f3(5:99; 3:2445) = 985:4736; and the rough optimal sets
for the function f3 are:

FO3
ss = fx 2M� j f3(x) = �f3

� = 985:4736g = ;;
FO3

sp = fx 2M� j f3(x) � �f3� = 480g = f(5; 3)g;
FO3

ps = fx 2M� j f3(x) = �f3
� = 985:4736g

= f(5:99; 3:2445)g;
FO3

pp = fx 2M� j f3(x) � �f3� = 480g
= f(x1; x2) 2 U : 2x3

1x2 � 2x1x3
2 � 480g:

Hence, the rough completely optimal sets are:

FOs(sc) = FOs(pc) = FOp(sc) = ;;

FOp(pc) =
�
x 2 U : fx1 � 4)2 + (x2 � 2)2 � 10g

\ fx2
1 + x2

2 � 5x1x2 � �5g

\ f2x3
1x2 � 2x1x3

2 � 480g
�
:

So, Problem (11) with the new objective function
f3 has neither surely-complete optimal solution nor
surely-feasible and possibly-complete optimal solution.

At the last step, for obtaining the rough e�cient
solutions sets we need to �nd the sets P;Q; S; and T
as follows:

P =
3[
j=1

FOjss = ;;

Q =
3[
j=1

FOjsp = f(1; 3); (3; 5); (3; 1); (5; 3)g;
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S =
3[
j=1

FOjps = f(0:8787; 5:1213); (4:0209; 0:1791);

(5:99; 3:2445)g;

T =
3[
j=1

FOjpp=
�
x 2 U : f(x1�4)2 + (x2�2)2 � 10g

[ fx2
1 + x2

2 � 5x1x2 � �5g

[ f2x3
1x2 � 2x1x3

2 � 480g
�
:

P = ; means that there is no x̂ 2M� such that fr(x̂) =
�fr
� for r = 1; 2; 3. Thus, Problem P1 (by replacement

of the new objective function f3) is infeasible and there
is no surely-feasible and surely-e�cient solution. For
�nding e�cient solutions of other degrees, see Tables 5,
6, and 7.

Example 3.4. Let U = fx = (x1; x2) 2 R2 j �3 �
x1 � 3; � 3 � x2 � 3g.

Suppose that E is an equivalence relation on U
such that it generates a partition as U=E = fEij j
Table 5. Surely-feasible and possibly-e�cient solutions
with di�erent weights to Problem P2.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 1 3
1 0.1 0.8 0.1 3 5
1 0.7 0.1 0.2 1.000606 2.999394

2 0.1 0.8 0.1 1 3
2 0.2 0.4 0.4 1.00022 2.99911
2 0.5 0.4 0.1 0.999105 3.000114

3 0.33 0.33 0.34 5.000001 3.000001
3 0.2 0.4 0.4 5 3
3 0.5 0.4 0.1 5 2.999999

Table 6. Possibly-feasible and surely-e�cient solutions
with di�erent weights to Problem P3.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 0.8786796 5.121320
1 0.2 0.4 0.4 0.8786750 5.121532
1 0.7 0.15 0.15 0.881485 5.100560

2 0.33 0.33 0.34 4.023270 0.1799071
2 0.2 0.4 0.4 4.023233 0.1798934
2 0.5 0.4 0.1 4.023014 0.1798143

3 0.33 0.33 0.34 5.990152 3.242885
3 0.2 0.4 0.4 5.990023 3.244462
3 0.7 0.15 0.15 5.990024 3.244446

Table 7. Possibly-feasible and possibly-e�cient solutions
with di�erent weights to Problem P4.

r w1 w2 w3 x1
� x2

�

1 0.33 0.33 0.34 0.01112153 3.258080
1 0.2 0.4 0.4 0.009590253 3.239686
1 0.5 0.4 0.1 0.05469409 3.570240

2 0.33 0.33 0.34 5.504623 1.348677
2 0.2 0.4 0.4 5.504622 1.348678
2 0.5 0.4 0.1 0.05469409 3.570240

3 0.33 0.33 0.34 5.993313 3.200190
3 0.2 0.4 0.4 5.993560 3.196473
3 0.5 0.4 0.1 5.999507 3.054395

i; j = 1; :::; 6g where:

Eij =fx 2 U j j � 1 � x1 � j � 3;

3� i � x2 � 4� ig for all i; j = 1; :::; 6:

Now, assume that M is a rough feasible region in the
approximation space A = (U;E) such that the lower
and upper approximations of M are as follow:

M� = f(x1; x2) 2 U j �1 � x1 � 1; � 1 � x2 � 1g;
M� = f(x1; x2) 2 U j �2 � x1 � 2; � 2 � x2 � 2g:

Also, the boundary region of M is given by:

MBN =f(x1; x2) 2 U j �2 � x1 < �1; 1 < x1 � 2;

� 2 � x2 < �1; 1 < x2 � 2g;
(see Figure 2). We consider the following RMOP
problem:

max f1(x) = x2
1 + (x2 � 1)2

Figure 2. The rough set M and its approximations.
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max f2(x) =
p

2x1x2 + 5� x3
2

max f3(x) = 2x1x2 � x2
1

s:t: x 2M
M� �M �M�: (12)

To �nd the solutions of Problem (12), similar to
Example 3.2, we proceed as follow:

First step: Finding the rough optimal value �f =
( �f1; �f2; �f3):

�f1� = a1 = f1(�1;�1) = f1(1;�1) = 5;

�f1
� = c1 = f1(�2;�2) = f1(2;�2) = 13;

�f2� = a2 = f2(�1;�1) =
p

7 + 1;

�f2
� = c2 = f2(�2;�2) =

p
13 + 8;

�f3� = a3 = f3(�1;�1) = f3(�1;�1) = 1;

�f3
� = c3 = f3(2; 2) = f3(�2;�2) = 4:

Second step: Finding the rough optimal sets for any
objective function:

FO1
ss = fx 2M� j f1(x) = �f1

� = 13g = ;;
FO1

sp = fx 2M� j f1(x) � �f1� = 5g
= f(�1;�1); (1;�1)g;

FO1
ps = fx 2M� j f1(x) = �f1

� = 13g
= f(�2;�2); (2;�2)g;

FO1
pp = fx 2M� j f1(x) � �f1� = 5g

= f(x1; x2) 2 U : x2
1 + (x2 � 1)2 � 5g;

FO2
ss = fx 2M� j f2(x) = �f2

� =
p

13 + 8g = ;;
FO2

sp = fx 2M� j f2(x) � �f2� =
p

7 + 1g
= f(�1;�1)g;

FO2
ps = fx 2M� j f2(x) = �f2

� =
p

13 + 8g
= f(�2;�2)g;

FO2
pp = fx 2M� j f2(x) � �f2�g

= f(x1; x2) 2 U :
p

2x1x2 + 5� x3
2 �
p

7 + 1g;

FO3
ss = fx 2M� j f3(x) = �f3

� = 4g = ;;
FO3

sp = fx 2M� j f3(x) � �f3� = 1g
= f(�1;�1); (1; 1)g;

FO3
ps = fx 2M� j f3(x) = �f3

� = 4g
= f(�2;�2); (2; 2)g;

FO3
pp = fx 2M� j f3(x) � �f3� = 1g

= f(x1; x2) 2 U : 2x1x2 � x2
1 � 1g:

Third step: Finding the rough completely optimal
sets:

FOs(sc) =
3\
j=1

FOjss = ;;

FOs(pc) =
3\
j=1

FOjsp = f(�1;�1)g;

FOp(sc) =
3\
j=1

FOjps = f(�2;�2)g;

FOp(pc) =
�
x 2 U : fx2

1 + (x2 � 1)2 � 5g

\ fp2x1x2 + 5� x3
2 �
p

7 + 1g

\ f2x1x2 � x2
1 � 1g

�
:

Therefore, Problem (12) has no surely-feasible and
surely-complete optimal solution. But, the point x� =
(�1;�1) is a surely-feasible and possibly-complete
optimal solution and �x = (�2;�2) is a possibly-feasible
and surely-complete optimal solution.

Fourth step: Finding the rough e�cient solutions
set, �rstly, the sets P , Q, S, and T are as follow:

P =
3[
j=1

FOjss = ;;

Q =
3[
j=1

FOjsp = f(�1;�1); (1;�1); (1; 1)g;

S =
3[
j=1

FOjps = f(�2;�2); (2;�2); (2; 2)g;

T =
3[
j=1

FOjpp =
�
x 2 U : fx2

1 + (x2 � 1)2 � 5g
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[ fp2x1x2 + 5� x3
2 �
p

7 + 1g
[ f2x1x2 � x2

1 � 1g	:
Secondly, according to Theorems 3.2-3.5, we need to
solve the SOP problems Q1, Q2, Q3 and Q4 with
di�erent weights.
Q1 :

max w1
�
x2

1 + (x2 � 1)2�
+ w2

�p
2x1x2 + 5� x3

2
�
+w3

�
2x1x2 �x2

1
�

s:t: � 1 � x1 � 1

� 1 � x2 � 1

fr(x) = �fr
�;

where r 2 f1; 2; 3g.
Q2 :

max w1
�
x2

1 + (x2 � 1)2�
+ w2

�p
2x1x2 + 5� x3

2
�

+ w3
�
2x1x2 � x2

1
�

s:t: � 1 � x1 � 1

� 1 � x2 � 1

fr(x) � �fr�;
where r 2 f1; 2; 3g.
Q3 :

max w1
�
x2

1 + (x2 � 1)2�
+ w2

�p
2x1x2 + 5� x3

2
�

+ w3
�
2x1x2 � x2

1
�

s:t: � 2 � x1 � 2

� 2 � x2 � 2

fr(x) = �fr
�;

where r 2 f1; 2; 3g.
Q4 :

max w1
�
x2

1 + (x2 � 1)2�
+ w2

�p
2x1x2 + 5� x3

2
�

+ w3
�
2x1x2 � x2

1
�

s:t: � 2 � x1 � 2

� 2 � x2 � 2

fr(x) � �fr�;

where r 2 f1; 2; 3g.
Therefore, we can get the rough e�cient solutions

sets of di�erent degrees. Since P = ;, there is no
x̂ 2 M� such that fr(x̂) = �fr

� for r = 1; 2; 3. Thus,
Problem Q1 is infeasible and there is no surely-feasible
and surely-e�cient solution. But, for �nding e�cient
solutions of other degrees, the rest of calculations are
similar to those of Examples 3.2 and 3.3.

Remark 3.3. Note that it is possible that some of
the sets P;Q; S; and T be empty. In this case, further
research is needed to �nd surely- and possibly-e�cient
solutions to RMOP problems.

4. Conclusion

In this paper, we �rst reviewed the basic concepts
of rough set theory and recalled some preliminary
concepts and results of the kinds of solutions of a multi-
objective programming problem by paying special at-
tention to a scalarization method used to obtain a so-
lution. We also reviewed rough programming problems
and introduced the concept of Rough Multi-Objective
Programming (RMOP) problems. Then RMOP prob-
lems were classi�ed into �ve classes. We have just
proposed a method for obtaining the solutions of the
�rst class, where the feasible region is a rough set, while
all the objective functions are crisp. In this regard, we
discussed new concepts such as \surely-complete opti-
mal solutions", \possibly-complete optimal solutions",
\surely-e�cient solutions" and \possibly-e�cient solu-
tions". Also, we solved some numerical examples for
illustration.

Extending our study to the remaining four other
classes is a subject for future research. Application of
our methods to real-world problems may also lead to
further considerations.
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