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Abstract. A general variational formulation for free vibration analysis of hybrid (metal-
composite) plates with a trapezoidal platform is presented in this paper. The plate is
composed of two distinguished parts in the span direction, where the inboard section is
assumed to be made of an isotropic metal, and the outboard section is from a laminated
composite material. Kinematics, corresponding to the First-order Shear Deformation
plate Theory (FSDT), is used to take into account the non-classic e�ects of transverse
shear deformation and rotational inertia for both sections in the analysis. The developed
approach is based on the global Ritz method, where the transverse deection and two
rotations of the plate are independently approximated by simple and Legendre polynomials.
The algorithm allows one to obtain an approximate analytical solution for the hybrid plate
with di�erent geometric aspect ratios, numbers of layers, staking sequences and metal to
composite ratios. The results of the present work for special cases, including pure metal
and pure composite plates, are in good agreement with previous works.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

For many years, mathematical models of aircraft wings
based on equivalent plate representation combined with
global Ritz analysis techniques have been used for basic
studies in vibration, aeroelasticity and structural opti-
mization [1-3]. These investigations were �rstly based
on isotropic metal plates. However, the current trend
in aircraft design is to increase the proportion of �ber
composites in the structures. During the last three
decades, the use of advanced light weight-high strength
Fiber Reinforced Polymer (FRP) composite materials
in modern aircraft structures has rapidly increased [4].
For instance, about 20% of the JAS39 Gripen structure
is made of FRP composite material (Figure 1). Due
to this revolutionary tendency in the aircraft industry
towards the use of composite materials, many inves-
tigators have paid attention to developing approaches
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for the analysis of anisotropic laminated plates [5]. On
the other hand, since many primary aircraft structural
parts are also constructed using metals, the number of
hybrid metal-composite structures is increasing. Based
on the inherent property di�erences between compos-
ites metals [6], other certi�cation and design methods
adapted for the composites have had to be developed.
It should be noted that most developed approaches for
the vibration analysis of laminated composite plates
with trapezoidal and triangular shapes are based on
the theory of thin plates.

Classical Laminated Plate Theory (CLPT) ne-
glects the e�ects of shear deformation and rotational
inertia, and this leads to results that overestimate the
frequencies of vibration. This error is greater when
the thickness of the plate increases. The simplest
alternative, considering the above mentioned e�ects,
is the use of the �rst order shear deformation theory
for moderately thick plates, proposed by Reissner and
Mindlin, which incorporates the approximation made,
with respect to non-uniform distribution strains and
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Figure 1. Composite and metal materials in JAS39
Gripen [4].

shear stresses. A complete analysis of the theoretical
basis and the main advantages, application areas and
the limitations of using FSDT or CLPT theories can
be found (e.g. in [7]). Liew et al. [8] present a review of
work on the vibration of thick plates, which mainly uses
the �rst-order theory and refer to rectangular plates.

Particularly, the study of moderately thick trape-
zoidal plates through approximate analytical methods
presents the di�culty of the construction of simple and
adequate approximation functions that can be applied
to the entire domain of the plate [9]. The global pb-2
Rayleigh-Ritz method was used to study the free vi-
bration behavior of trapezoidal Mindlin plates [10] and
cantilever triangular Mindlin plates [11]. Zhong [12]
analyzed the free vibration of triangular plates by the
di�erential quadrature method. Dozio and Carrera [13]
proposed a variable kinematic Ritz formulation for
vibration study of arbitrary quadrilateral thick plates.
All this research work refers to plates made of isotropic
material.

A few studies can be found in the literature for the
free vibration analysis of laminated thick trapezoidal
plates. For instance, the Rayleigh-Ritz procedure
has been applied by Kapania and Lovejoy [14] in the
analysis of quadrilateral, thick, generally laminated
plates having arbitrary edge supports, together with
Chebychev polynomials as trial functions. The bound-
ary conditions have been enforced by the appropri-
ate use of distributed linear and rotational springs
along the edges. This method has been applied to
cantilever plates. Chen et al. [15] studied the free
vibration of cantilevered symmetrically laminated thick
trapezoidal plates using p-Ritz method, incorporating
the third-order shear deformation theory. Haldar
and Manna [16] proposed a high precision triangular
element with shear strain for the free vibration analysis
of composite trapezoidal plates. Gurses et al. [17] used
the method of Discrete Singular Convolution (DSC)
for free vibration analysis of laminated trapezoidal
plates. Gurses, et al. [17] obtained the governing
equations and boundary conditions for the free vi-
bration of trapezoidal plates using the First order
Shear Deformation Theory (FSDT), together with
proper transformation from a Cartesian system into
trapezoidal coordinates; the Generalized Di�erential
Quadrature (GDQ) method is then employed to obtain

solutions. The vibration of Mindlin plates on elastic
edge supports was analyzed in [18-20]. Maria et al. [21]
presented a general vibrational formulation for the
determination of natural frequencies and mode shapes
of the free vibration of symmetric laminated plates
of trapezoidal and triangular shape. Shokrollahi and
Bakhtiari-Nejad [22] studied the e�ect of the sweep
angle and taper ratio of swept back trapezoidal wings
based on the geometrically nonlinear von Karman
plate theory. Zamani et al. [23] studied the free
vibration analysis of moderately thick symmetrically
laminated general trapezoidal plates with various com-
binations of boundary condition. They employed the
Generalized Di�erential Quadrature (GDQ) method to
obtain solutions for the governing equations. They
used the proper transformation from the Cartesian
system into trapezoidal coordinates. They showed
that this method has good accuracy and a fast rate
of convergence. Civalek [24] analyzed the Discrete
Singular Convolution (DSC) method that is developed
for the vibration analysis of moderately thick symmet-
rically laminated composite square plates, based on
the First-order Shear Deformation Theory (FSDT). In
this approach, the derivatives in both the governing
equations and the boundary conditions are discretized
by the method of DSC. Wang and Wu [25] presented
the free vibration analysis of rhombic plates with
free edges using a modi�ed Di�erential Quadrature
Method (DQM). Due to the stress singularity at the
obtuse angles of the rhombic plates, many approx-
imate and numerical methods have encountered se-
rious convergence problems when the skew angle is
large. This problem is solved by DQM. Civalek [26]
developed a four-node Discrete Singular Convolution
(DSC) method for free vibration analysis of arbitrary
straight-sided quadrilateral plates. He uses geometric
transformation to transfer the governing equations and
boundary conditions of the plate from the physical
domain into a square computational domain.

In all these papers, the plates under consideration
have either a fully metal or composite construct. The
main objective of the present paper is to propose a
general algorithm that allows obtaining approximate
analytical solutions in order to study the free vibration
of moderately thick trapezoidal hybrid plates. The
procedure is based on the general Ritz method. Mean-
while, the interface connection between the metal and
the composite parts is assumed to be continuous.

2. Theoretical formulation plate geometry

Consider a general trapezoidal hybrid plate with uni-
form thickness, h, and an arbitrary classical boundary
condition. The Cartesian coordinate system, x � y,
passing through the mid-surface of the plate, and
the geometry of the plate with side lengths, a, b,
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Figure 2. Geometry and notations of a hybrid plate.

c, d, and internal angles, � and �, are shown in
Figure 2. The lamination scheme is symmetric with
respect to the mid-plane for the composite part. The
angle of the �ber orientation is denoted by �, which
is measured from the x-axis to the �ber direction,
as shown in Figure 2. Throughout the remainder
of the paper, a counterclockwise, four-letter, compact
symbolic notation is used for describing the plate
boundary conditions. Letters S, F and C have been
introduced to denote, respectively, simply supported,
free and clamped edges.

The present study is based on the First order
Shear Deformation plate Theory (FSDT). The com-
ponents of the displacements �eld in the x, y and z
directions, at any time, t, are given by:

u(x; y; z; t) = z�x(x; y; t);

v(x; y; z; t) = z�y(x; y; t);

w(x; y; z; t) = w0(x; y; t); (1)

where w0(x; y; t) are the deections of the midplane
points, and �x(x; y; t) and �y(x; y; t) are the rotations
of the cross sections with respect to coordinates x
and y, respectively. For free vibration analysis, the
displacement and rotations are given by harmonic
functions of the time, i.e:

w(x; y; t) = w(x; y) cos!t; (2)

�x(x; y; t) = �x(x; y) cos!t; (3)

�y(x; y; t) = �y(x; y) cos!t; (4)

where ! is the frequency of the plate in radians per
second.

According to Eqs. (2) to (4), the maximum kinetic
energy of the freely vibrating plate expressed in the
Cartesian coordinate is given by:

Tmax = Tmaxmetal + Tmaxcomposite ; (5)

where Tmaxmetal is kinetic energy of the metal part, and
Tmaxcomposite is the kinetic energy of the composite part.
Tmaxmetal , in the Cartesian coordinates, are given by:

Tmaxmetal

=
�mh!2

2

YmcZ
0

(a�y)
tan�Z
y

tan �

�
(w)2 +

h2

12
(�2
x + �2

y)
�
dxdy;

(6)

where �m is the mass density of the plate metal part,
! is the circular frequency where the integration is
carried out over the metal part of the plate, and Ymc is
the length of the boundary between the metal and the
composite.

Also, Tmaxcomposite in the Cartesian coordinates are
given by:

Tmaxcomposite

=
!2

2

spanZ
Ymc

(a�y)
tan�Z
y

tan �

fmchw2 + Ic(�2
X + �2

Y )gdxdy; (7)

where mc and Ic are the mass and moment of inertia
of the composite, which are given in the following
equations:

mc =

h
2Z

�h2
�cdz =

NcX
k=1

�ck(hk+1 � hk); (8)

Ic =

h
2Z

�h2
�cdz =

NcX
k=1

�ck(h3
k+1 � h3

k); (9)

where �c is the composite mass density. The maximum
strain energy of the mechanical system is given by:

Umax = Umaxmetal + Umaxcomposite ; (10)

where Umaxmetal and Umaxcomposite are the maximum
strain energies of the metal part and composite part
of the plate, respectively, and which, in the Cartesian
coordinates, are given as:

Umaxmetal =
1
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In these equations, k, G and v are the shear coe�-
cient, the shear modulus and Poisson's ratio for metal,
respectively; D is plate exural rigidity, given by:

D =
Eh3

12(1� v2)
; (12)

and E is Young's modulus;
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where coe�cients Dij , (i; j = 1; 2; 6), are the bend-
ing, twisting and bending-twisting coupling rigidities,
which are given by:

Dij =
1
3

NcX
k=1

Q(k)
ij (z3

k+1 � z3
k); (14)

where Aij , (i; j = 4; 5), are shear rigidity coe�cients,
given by:

Aij = k
NcX
k=1

Q(k)
ij (zk+1 � zk); (15)

where k is the shear correction factor; coordinates
zk+1, and zk are depicted in Figure 2, Nc is the total
number of layers in the laminate, and Qij are reduced
transformed rigidities (see, for instance, [5]), which
depend on the mechanical properties of each lamina
and the angle of �ber orientation.

2.1. Geometric mapping
For generality and convenience, the present formulation
is expressed in a dimensionless form. The actual
trapezoidal plate in the x � y physical domain is
mapped into a square plate in the computational u; v
domain (�1 � u � 1;�1 � v � 1) using the following
coordinate transformation (see, for instance [7]):

x =
4X
i=1

Ni(u; v)xi;

y =
4X
i=1

Ni(u; v)yi; (16)

where:

(x1; y1) = (0; 0);

(x2; y2) = (a; 0);

(x3; y3) = (a� c cos�; c sin�);

(x4; y4) = (b cos�; b sin�): (17)

The mapping functions, Ni, are de�ned by:

Ni(u; v) =
1
4

(1 + uiu)(1 + viv); i = 1; 2; 3; 4; (18)

in which:

(u1; v1) = (�1;�1); (u2; v2) = (1;�1);

(u3; v3) = (1; 1); (u4; v4) = (�1; 1): (19)

The derivatives of any quantity in the two coordinate
systems are related by:

@
@x

= �11
@
@u

+ �12
@
@v
;

@
@y

= �21
@
@u

+ �22
@
@v
; (20)

where �ij are the elements of J�1 in which:

J =
4X
i=1

24@Ni@u

@Ni
@v

35 �xi yi
�
; (21)

is the Jacobian matrix of the transformation.
The in�nitesimal area, dA = jJ jdudv, in the

physical domain, is mapped in the computational
domain according to:

dA = jJjdudv; (22)

where jJj is the determinant of the Jacobian matrix.
The kinetic and strain energies of the vibration

hybrid plate can now be expressed in mapping coordi-
nates, as follows:
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Umaxmetal =
1
2

1Z
�1

vmcZ
�1

ff(u; v)gdvdu; (25)

Umaxcomposite =
1
2

1Z
�1

1Z
vmc

fg(u; v)gdvdu; (26)

where f(u; v) and g(u; v) are the functions that depend
on the parameters of the problem, e.g. geometry,
material properties and variables u and v. Also,
components of the displacement �eld in the u, v and z
directions are given by:

w(x; y) = w(u; v);

�x(x; y) = �11�u(u; v) + �12�v(u; v);

�y(x; y) = �21�u(u; v) + �22�v(u; v): (27)

And vmc is the length of the boundary between the
metal and thte composite in the mapping coordinates.

2.2. Approximating functions
The transvers deection and the rotations are ex-
pressed by products of simple one-dimensional poly-
nomials, as follows:

w(u; v; t) =
MX
i=1

NX
j=1

aij(t)Ui(u)Vj(v); (28)

�u(u; v; t) =
MX
i=1

NX
j=1

bij(t)�i(u)Vj(v); (29)

�v(u; v; t) =
MX
i=1

NX
j=1

cij(t)Ui(u)�j(v); (30)

where aij(t), bij(t) and cij(t) are the unknown coef-
�cients to be determined by the Ritz method. Also,
Ui(u), Vj(v), �i(u) and �j(v) are polynomials that
satisfy the geometry boundary conditions of the equiva-
lent beam in each coordinate. It is well known that it is
not necessary to subject coordinate functions to natural
boundary conditions. It is su�cient that they satisfy
geometrical boundary conditions since, as the number
of coordinate functions approaches in�nity, the natu-
ral boundary conditions will be exactly satis�ed [18-
20]. Consequently, when the edges have rotational
or translational restraints, all boundary conditions are
natural. Thus, it is possible to ignore the boundary
conditions in the construction of the �rst polynomial
of each set.

Polynomials for boundary conditions c-f-f-f, s-s-s-
s and c-c-c-c are given in the following:

c-f-f-f:

Ui(u) =
1

2ii!
di

dui
(u2 � 1)i; i = 1; 2; 3; � � � (31)

Vj(v) = (v + 1)j+1; j = 1; 2; 3; � � � (32)

�i(u) =
dUi(u)
du

; i = 0; 1; 2; � � � (33)

�j(v) =
dVi(v)
dv

; j = 0; 1; 2; � � � (34)

s-s-s-s:

Ui(u) = sin(i�(u+ 1)=2); i = 1; 2; 3; � � � (35)

Vj(v) = sin(j�(v + 1)=2); j = 1; 2; 3; � � � (36)

�i(u) =
dUi(u)
du

; i = 0; 1; 2; � � � (37)

�j(v) =
dVi(v)
dv

; j = 0; 1; 2; � � � (38)

c-c-c-c:

Ui(u) = (u+ 1)(u� 1)u(i�1); i = 1; 2; 3; � � � (39)

Vj(v) = (v + 1)(v � 1)v(j�1); j = 1; 2; 3; � � � (40)

�i(u) =
dUi(u)
du

; i = 0; 1; 2; � � � (41)

�j(v) =
dVi(v)
dv

; j = 0; 1; 2; � � � (42)
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3. Application of Ritz method

Application of the Ritz method requires minimization
of the following energy functional:

� = Umax � Tmax; (43)

where Umax and Tmax are, respectively, given by
Eqs. (18)-(23). Minimization of the functional leads
to the following system of equations:�

[k]� w2[M]
� fcg = f0g ; (44)

where:

fcg =

8<:aijbijcij
9=; ; (45)

[k] =

266664
[kww] [kw�x ] [kw�y ]

[k�x�x ] [k�x�y ]

sym [k�y�y ]

377775 ; (46)

[M] =

266664
[Mww] [0] [0]

[M�x�x ] [0]

sym [M�y�y ]

377775 : (47)

4. Numerical results

Numerical results, which are useful for appreciating
the variations of frequency parameters for plates with
di�erent metal to composite ratios, di�erent geometric
conditions and di�erent �ber orientation angles, are

presented in this section. These results are obtained
for two cases, including cantilevered plate simply sup-
ported at all sides of the plate.

4.1. Convergence analysis
It is well known that the Ritz method can lead to
arbitrarily accurate approximate solutions to boundary
value problems. Provided that the trial functions
are admissible in the original variational principle,
convergence to the true solution is guaranteed as the
number of admissible functions tends to in�nity [13].
In cases of dynamic problems, displacement-based
Ritz methods show a monotonic convergence of the
frequency solutions from above, i.e. upper bound values
for the frequency parameters are obtained. In practical
computations, the number of Ritz terms is limited by
CPU time and capacity, and the achievable accuracy of
the solution is inuenced by this truncation. Moreover,
the choice of trial functions strongly a�ects the rate
of convergence of the method and, thus, its e�ciency.
This aspect is also related to the numerical stability
of the solution, since ill conditioning may occur when
many admissible functions are required to obtain a
desired accuracy. Considering this, the evaluation
of any Ritz-based approach should �rst include an
appropriate convergence analysis. The convergence
study of the proposed Ritz formulation is presented
in this section. Convergence for the �rst six values
of the neutral frequency for boron-epoxy [�45]2s and
aluminum for hybrid trapezoidal plates with (v = 0:3,
k = 0:833, � = � = 10�) under two boundary
conditions, s-s-s-s and c-f-f-f, are shown in Table 1.

4.2. Veri�cation of the method
To validate the proposed approach, comparisons with
numerical values provided by other researchers ob-

Table 1. Convergence study of the �rst six values of the neutral frequency for boron-epoxy [�45]2s and aluminum for
hybrid trapezoidal plates (v = 0:3, k = 0:833, � = � = 10�).

M = N !1 !2 !3 !4 !5 !6

s-s-s-s
2 245.67 606.89 686.90 1160.84 1378.9 1554.3
3 231.44 512.38 607.51 992.78 1204.4 1423.2
4 228.65 485.67 538.78 897.33 1127.4 1300.1
5 227.33 484.58 537.66 852.54 1113.6 1255.5
6 227.21 484.40 537.42 849.39 1108.5 1240.7
7 227.10 484.32 537.01 848.18 1105.7 1236.9

c-f-f-f
2 36.78 140.41 381.24 719.40 815.45 1037.45
3 30.82 116.75 168.43 369.46 398.74 483.25
4 29.14 102.68 147.44 335.55 352.22 422.19
5 28.51 93.89 132.65 298.23 330.18 390.18
6 28.32 91.31 128.95 285.34 318.39 361.39
7 28.29 91.14 128.68 283.21 314.03 355.47
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tained by other methods, are carried out. Also,
convergence studies have been implemented.

Results of a convergence study of the frequency
parameter, !, are shown in Table 1. The �rst four
values of ! are presented for trapezoidal thick plates
(� = � = 20�), cantilever, simply supported at the
sides. The plate consists of a single boron-epoxy layer
(� = 45�) with E1 = 207 GPa, E2 = 21 GPa, v12 = 0:3,
G12 = G13 = 7 GPa, G23 = 4:2 GPa, k = 5=6, and
aluminum with the mechanical properties E = 73 GPa,
v = 0:3, � = 2800 kg/m3, span = 2 m, a = 2 m and
k = 5=6.

The convergence of the mentioned frequency pa-
rameters is studied by gradually increasing the number
of polynomials in the approximate function, w, �u and
�v, which are, respectively, given by M and N . It can
be observed that the frequency parameters converge
monotonically from above as the number of terms
increases.

Table 2 shows the values of the fundamental fre-
quency parameter, 
 = !span2p�=D=2�, for di�erent
isotropic trapezoidal plates, simply supported at the
four sides. On the other hand, frequency parameters
are compared with those of Haldar and Manna [16] who
employed high precision triangular elements including
shear strain. They are also compared with the results
of Zhong [12] who used the DSC method and with

the results of Quintana et al. [21] who worked on the
Ritz method. Zhong [12] also presents a convergence
study increasing the number of grid points. The nu-
merical values obtained by these authors are depicted
in Tables 2 and 3 and have been computed using
15 � 15 grid points. It is important to point out that
the values of the frequency parameters, obtained by
the methodology proposed in this work, are obtained
using seven terms in the coordinate functions in each
direction (M = N = 7).

It should be noted that the Ritz method produces
approximations from above for each eigenvalue with
respect to the exact eigenvalues. It is important when
the exact solution cannot be obtained. In Table 3,
each layer of the lamina has the following material
properties:

E1 = 40 GPa;

E2 = 0:6 GPa;

v12 = 0:25;

G12 = G13 = 0:6E2;

G23 = 0:5E2

k = 0:833:

Table 2. Dimensionless parameters of fundamental frequency, 
 = !span2p�h=D=2�, for simply supported isotropic
trapezoidal plates (v = 0:3, k = 0:833, � = �).

tan� 1� span h=b Present
Ref. Ref. Ref.

[18] [8] [7]

0.4 0.8 0.01 6.013 6.02 5.99 6.02

0.3 0.6 4.903 4.91 4.90 4.91

0.2 0.4 4.066 4.08 4.06 4.09

0.1 0.2 3.522 3.51 3.51 3.52

Table 3. Dimensionless parameters of fundamental frequency, 
 = !span2
q

�=E2
h , for cross ply [90=0=0=90] trapezoidal

plate (� = �).

tan� 1� span h=span
SSSS CCCC

Present Ref.
[18]

Ref.
[12]

Ref.
[11]

Present Ref.
[18]

Ref.
[12]

Ref.
[11]

0.4 0.8 0.1 27.509 27.50 27.54 34.74 34.767 34.76 34.76 34.74

0.3 0.6 23.836 23.82 24.06 23.91 30.498 30.39 31.08 30.95

0.2 0.4 20.331 20.32 20.48 20.35 27.543 27.53 27.62 27.53

0.1 0.2 17.760 17.37 18.41 17.39 24.903 24.75 25.12 24.73

0.4 0.8 0.2 17.538 17.53 17.63 17.54 19.568 19.47 19.51 19.54

0.3 0.6 15.455 15.39 15.46 15.44 17.486 17.47 17.56 17.45

0.2 0.4 13.487 13.48 13.51 13.49 15.801 15.79 15.88 15.76

0.1 0.2 11.975 11.97 11.99 11.97 14.557 14.50 14.59 14.46
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Table 4. Frequency parameters, !, for cantilevered
skewed trapezoidal plates (� = 45�).
c=a d=a !1 !2 !3 !4

0.5
1 707.36 1281.58 2761.09 5584.47

0.5 792.10 1692.02 4666.14 6124.4
0.25 1076.65 3012.97 5345.75 7890.07

1
1 164.02 436.83 1083.52 1464.93

0.5 184.42 646.98 1118.86 1841.37
0.25 229.28 956.38 1471.36 2573.35

2
1 38.04 151.90 335.25 467.76

0.5 44.86 194.16 357.44 601.88
0.25 51.66 211.06 389.02 673.47

Results for two di�erent boundary conditions, (ssss
and cccc), thickness ratios (h=span = 0:1; 0:2), and
several geometric con�gurations have been included in
this table. In all cases, a very good agreement in
the numerical values can be observed, indicating the
accuracy that can be achieved through application of
this methodology, which uses simple polynomials to
construct the shape functions.

4.3. New numerical results
In this section, new numerical results, which can
serve as a supplement to the existing data, based
on the vibration characteristics of moderately thick
trapezoidal hybrid plates, are presented. In particular,
the results for the di�erent geometric conditions of the
plate are presented.

Table 4 shows the frequency parameters obtained
by the present method for the �rst four modes of
the 9 skewed plate con�gurations, having � = 45�
and a wide range of aspect ratios (c=a = 0:5; 1; 2),
metal to composite ratio (Ymc = 0:5), and chord ratio
(d=a = 0:25; 0:5; 1), as shown in Figure 2. Table 5
shows frequencies obtained for the �rst four modes
where results have been calculated for � = 0� to
�60�.

To evaluate the e�ect of di�erent �ber orientation
angles, �, on the dynamic properties of trapezoidal
laminated plates (� = � = 20�), variation of the
frequency parameter for the �rst four modes of the
hybrid plate is plotted in Figure 3. The elastic
properties and geometrical parameters used in Figure 3
are as the data shown in Table 1, but with span = 1 m
and a = 1:2 m.

The e�ect of the metal to composite ratio is shown
in Figure 4. Variation of the frequency parameter
for the �rst four modes of the hybrid plate is plotted
in Figure 4. The data of Figures 3 and 4 are the
same, but with di�erent �bre angles and metal to
composite ratios. To examine the e�ects of the metal to
composite ratio and di�erent angles, �, the frequency

Table 5. Frequency parameters, !, for cantilevered
skewed trapezoidal plates (a=b = 1).

Skew
angle

(�)
d=a !1 !2 !3 !4

0�
1 132.01 359.84 593.76 1000.41

0.5 149.55 450.81 636.53 1391.11
0.25 174.79 492.81 717.21 1697.60

15�
1 130.99 367.68 642.01 975.80

0.5 147.59 423.21 683.96 1311.72
0.25 181.34 460.44 750.14 915.23

30�
1 143.84 394.20 815.33 1090.88

0.5 157.85 446.82 837.43 1471.68
0.25 182.26 603.05 875.15 1945.45

45�
1 132.94 408.40 1121.22 1222.29

0.5 139.72 553.28 1060.13 1758.16
0.25 166.91 832.80 1322.37 2287.21

60�
1 197.81 650.26 1922.85 2231.92

0.5 200 836.58 2107.13 2921.69
0.25 254.99 1184.81 2469.12 3562.45

Figure 3. E�ect of �ber orientation on the frequency
parameter for �rst four modes, for a four-layer [0=�=�=0]
laminated plate.

parameter for the �rst four modes is considered. The
dimensions and properties used in Figure 5. are listed
in Figure 4.

Figure 6 shows the variation of weight to thickness
of the plate, with variations of Ymc.

5. Conclusion

A simple, accurate and general algorithm for the
free transverse vibration analysis of trapezoidal hybrid
plates, consisting of symmetrically laminated compos-
ite in combination with an isotropic metal, is proposed
in this study. The developed methodology is based
on the global Ritz method and the �rst order shear
deformation theory. The transverse deection and
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Figure 4. Variation of frequency parameters, !, with metal to composite ratio, Ymc, in di�erent angels �ber.

Figure 5. Variation of frequency parameters, !, with metal to composite ratio, Ymc, in � = 0�, 15�, 30�, 45�, and � = 0�.

Figure 6. E�ect of metal to composite ratio on variation
of weight to thickness of plate.

two rotations are approximated by means of simple
polynomials. The algorithm allows uni�ed treatment
of hybrid plates with di�erent geometrics, aspect ra-
tios, number of layers, staking sequences and metal
to composite ratios. From convergence studies and
comparisons with results available in the literature,
it is observed that the approach presented is reliable
and accurate. Sets of numerical results are given in
tabular and graphical form, illustrating the inuence
of di�erent geometrics, staking sequences and metal
to composite ratios. Finally, it is important to note
that the proposed method can be easily extended for
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application of static and stability analyses. It can
also be generalized to study thick trapezoidal plates
with a non-symmetrical stacking sequence in the mid-
plane.
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