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Abstract. This paper proposes a model on the basis of VlseKriterijumska Optimizacija
I Kompromisno Resenje (VIKOR) methodology as a compromised method to solve the
Multi-Objective Large-Scale Nonlinear Programming (MOLSNLP) problems with block
angular structure involving fuzzy coe�cients. The proposed method is introduced for
solving large scale nonlinear programming in fuzzy environment for �rst time. The problem
involves fuzzy coe�cients in both objective functions and constraints. In this method, an
aggregating function developed from LP- metric is based on the particular measure of
\closeness" to the \ideal" solution. The solution process is composed of two steps: First,
the decomposition algorithm is utilized to reduce the q-dimensional objective space into a
one-dimensional space. Then a multi-objective identical crisp non-linear programming is
derived from each fuzzy non-linear model for solving the problem. Second, for �nding the
�nal solution, a single-objective large-scale nonlinear programming problem is solved. In
order to justify the proposed method, an illustrative example is presented and followed by
description of the sensitivity analysis.

© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Decision making is the processes by which a course of
action is selected from among several alternatives on
the basis of multiple criteria. Many decision-making
problems in management and engineering involve mul-
tiple requirements which re
ect technical and eco-
nomical performance in selecting the course of action
while which satis�es both environment and resources
constraints. In other words, there are many decision
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problems with multiple objectives in a decision-making
process [1-3]. The complexity of many real situation
problems increases when the number of variables is
very large. In other words there are various factors
in the objective functions and constraints in such
problems. Specially, the computational complexity in-
creases sharply in nonlinear objectives and constraints
with large variables. Therefore it becomes di�cult to
obtain e�cient solutions for these problems in a short
time and e�cient manner. However, most of the real-
world large scale programming problems of practical
interest usually has some special structures that can
be exploited. Block angular structure is one of such
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familiar structures [1,4-6]. The block angular structure
problems are solved by a decomposition method [4].A
decomposing algorithm is introduced for parametric
space in large scale linear optimization problems with
fuzzy parameter [4,7].Then this method is applied on
large-scale nonlinear programming problems with block
angular structure [6,8].

Recently, some compromise Multi-Criteria Deci-
sion-Making (MCDM) methods are extended and ap-
plied to �nd the suitable solution for MOLSNLP
problems. TOPSIS method is utilized for solving multi-
objective dynamics programming problems [9,10]. An
e�ective approach is present based on TOPSIS for
solving the inter-company comparison process prob-
lem [11]. TOPSIS is extended for solving multi-person
multi-criteria decision-making problems in fuzzy envi-
ronment [12]. An extended TOPSIS method is also
presented for solving MODM problems [13]. TOPSIS
is extended to solve MOLSNLP problems with block
angular structure [1].

VIKOR is another compromise MCDM method
that is extended for solving MOLSNLP prob-
lems [5,14,15]. The VIKOR method was proposed as
a compromised approach to prioritize and select from
among a set of alternatives on the basis of con
icting
or non-commensurable criteria. The VIKOR is uti-
lized to �nd suitable solution based on the particular
measure of closeness to the ideal solution [14,15]. The
VIKOR method was extended in 2007 [16-18]. This
method is employed for making decision about e�ective
information technology outsourcing management in a
real-time decision situation [19]. Moreover, a system-
atic procedure is developed using MCDM compromise
ranking method VIKOR to optimize the multi-response
process [20]. The VIKOR method is also extended to
prioritize alternatives with fuzzy parameter by many
researchers. The fuzzy sets and VIKOR method
is integrated to fuzzy VIKOR for solving the fuzzy
MCDM programming problems [21]. Thus VIKOR is
an interactive method in developing methods and its
applications. Although, a large body of studies has uti-
lized crisp and exact data, uncertainty and vagueness
are the prominent characteristic of many real world
situation decision making problems. In other words
it is obvious that much knowledge in the real world is
uncertain rather than crisp [22,23]. Fuzzy set theory
is a valuable tool for describing this concept. Fuzzy
set theory was proposed as a vagueness concept for
decision-making problems with con
ict of preferences
involved in the selection process [22,24]. Moreover,
the fuzzy set concept and the MCDM method were
manipulated to consider the fuzziness in the decision
making parameter and group decision-making process.
A fuzzy MCDM process was introduced based on
the fuzzy model and concepts of positive and neg-
ative ideal points for solving MCDM problems in

a fuzzy environment [25,26].The studies also focused
on applying MCDM methods for solving MOLSNLP
problems with crisp parameters in objective functions
and constrain [1]. The VIKOR method is utilized for
solving MOLSNLP problems where the formulation of
objective functions and constraints is introduced with
crisp data whereas coe�cient of objective function and
constraint may not be exact and complete. Moreover,
Abo-Sinna and Abou-El-Enien proposed a TOPSIS in-
teractive algorithm to solve large scale multi-objective
programming problems with fuzzy parameters and only
for linear programming problems [27].

In this paper, a new extended VIKOR is proposed
for solving MOLSNLP problems with block angular
structure where the problem is formulated with fuzzy
parameters in the objective functions and constraints.
Since in real situations, the information of decision
maker related to coe�cient of objective function and
constraint may not be exact and complete, a simple
method is proposed which can be applied to formulate
the equivalent crisp model of the fuzzy optimization
problem. Moreover, the proposed method is utilized
for solving nonlinear problems with fuzzy parameters,
whereas the recent research studies focus only on the
linear programming problems with fuzzy parameters.
In the present study, �rst, the decomposition algorithm
is used to reduce the q-dimensional objective space
into a one-dimensional space. Then a multi-objective
identical crisp non-linear programming is derived from
each fuzzy non-linear model for solving the problem.
Second, a model with fuzzy coe�cients in objective
function will be transferred to crisp model. Then,
the method is applied for fuzzy constraints. Fol-
lowing that, a single-objective The logic of VIKOR
method is utilized to aggregate the multi-objective
programming problems into single-objective. In sum,
it transfers n objectives, which are con
icting, into
single-objectives involving the maximum \group util-
ity" for the \majority" and a minimum of an individual
regret for the \opponent", based on the shortest
distance from the PIS and the longest distance from
the NIS, which are commensurable and most of time
con
icting. Following that, a single-objective large-
scale nonlinear programming problem is solved to �nd
the �nal solution. Finally, the Sensitivity analysis is
described.

The remainder of this paper is organized as
follows. The problem formulation is presented in the
next section. In this section, the decomposed problem
is introduced and then the parameters and variables are
described. In Section 3, the VIKOR Solution method
for fuzzy MOLSNLP is introduced. In Section 4,
an example is provided to illustrate the process of
proposed method step by step. Then, the Sensitivity
analysis is described for each sub-problem. The last
section is devoted to conclusion.
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2. Problem formulation

The large-scale problems represent major companies
that are composed of multiple units. The sub systems
are almost independent with respect to each other. In
other words the objective functions can be decomposed
into some objectives.

A fuzzy MOLSNLP problem with the block an-
gular structure can be stated as follows:

p :

max(min)f1(x; ~u1) =
NP
j=1

f1j(xj ; ~u1j)

max(min)f2(x; ~u2) =
NP
j=1

f2j(xj ; ~u2j)

...

max(min)fL(x; ~uL) =
NP
j=1

fLj(xj ; ~uLj);

s.t.:

FS =

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

~gm(x1) � ~B1

m = 1; 2; � � � ; s1

~gm(x2) � ~B2

m = s1; 2; � � � ; s2

...

~gm(xN ) � ~BN
m = sr+1; 2; � � � ; sM

~Hi(x) =
NP
j=1

~hij(xj) � ~B

i = 1; 2; � � � ; w

(1)

fi(x; ~ui)= ~uicix=
NX
j=1

fij(xj ; ~ui)=
NX
j=1

pX
k=1

~uijkcijkvijk(x);
(2)

where Vijk(Xj) is the kth function of jth variable in
the ith objective function. This problem is a fuzzy
MOLSNLP problem with the block angular structure
as a big company which has q sub system. Moreover,
there are N variables. Each sub problem has its own
variables. For example the �rst sub problem has N1
variables. Furthermore, the functions of each sub
problem has several functions.

~gi(xj) = ~uijcijvij are the inequality constraint
functions and ~Hi(x) are the common constraint func-
tions on Rn.
Model parameters:
L The number of objective functions;
q The number of sub problems;

N The number of variables;
Ni The set of variables of the ith sub

problem, i = 1; 2; � � � ; q;
pi ith sub problems;
pitj The number of functions for tth

function of jth variable in ith sub
problem;

R The set of all real numbers;
ci An (N � N) diagonal matrix for the

ith function;
citj An (N � N) diagonal matrix for the

kth function of the jth variable in the
ith function;

cij An (N � N) diagonal matrix for the
ith constraint of jth variable;

dij An (N � N) diagonal matrix for the
ith common constraint for the jth
variable;

~Ui An n-dimensional row vector of fuzzy
parameters for the ith objective
function;

~Uij An n-dimensional row vector of fuzzy
parameters for the ith constraint of
jth variable;

~Uijk An n-dimensional row vector of fuzzy
parameters for the kth function of the
jth variable in the ith function;

W The number of common constraints on
RN ;

M The number of constraints;
Si the number of constraints for the ith

variable;
~B An w-dimensional column vector

of right-hand sides of the common
constraints whose elements are
constants;

~Bj An Si-dimensional column vector of
independent constraints right-hand
sides whose elements are fuzzy
parameters for the ith subproblem,
i = 1; 2; � � � ; q.

X = (x1; x2; � � � ; xN ) is the N -dimensional decision
vector. fi(x; ~ui), i = 1; 2; � � � ; L are the objective
functions. It is assumed that the objective functions
have an additively separable form. It is pointed out
that any (or all) of the functions may be nonlinear.
The fuzzy MOLSNLP problem can be decomposed into
q sub-problems based on Dantzig-Wolfe decomposition
algorithm. The objective functions break into q sub
problems. The ith sub-problem for i = 1; � � � ; q is
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de�ned as:

Pi =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

max(min)f1(x; ~u1) =
X
j2Ni

pi1jX
k=1

f1k(xj ; ~u1k)

=
X
j2Ni

pi1jX
k=1

~u1kc1kv1k(xj)

max(min)f2(x; ~u2) =
X
j2Ni

pi2jX
k=1

f1k(xj ; ~u2k)

=
X
j2Ni

pi2jX
k=2

~u2kc2kv2k(xj)

...

max(min)fL(x; ~uL) =
X
j2Ni

piLjX
k=1

fLk(xj ; ~uLk)

=
X
j2Ni

piLjX
k=1

~uLkcLkvLk(xj)

S:T:

FSi =

8>>>><>>>>:
P
j2Ni

~gj(xj) � ~Bj

~Hi(x) =
NP
j=1

~hij(xj) � ~B

i = 1; 2; � � � ; w

(3)

As shown in Problem (3), the ith sub problem consists
of L objective functions. There are Pitj functions
for jth variable of tth objective function in ith sub
problem. Moreover, ~hij(Xj) = ~Uijdijhij , where hij is
the function of jth variable in ith common constraint
and ~U is the coe�cient of the objective function, ~C
and ~Z are the coe�cients of the left-hand side of
constraints, and ~B is the coe�cient of the right-hand
side of constraint in Problem (3). It is pointed out that
all of the coe�cients are presented as triangular fuzzy
numbers.

3. The VIKOR solution method for fuzzy
MOLSNLP

In this section, a compromised method based on
VIKOR is presented for solving fuzzy MOLSNLP
problems. The basic methodology is to decompose
the original problem into smaller sub-problems. In
other words this method is employed when the original
problem is split into some sub-problems. In order to
obtain a compromise solution, �rst, the MOLSNLP
problem is decomposed into q sub-problems as shown in
Eq. (3). Then by considering the individual minimum
and maximum of each objective function, the Positive
Ideal Solution (PIS) and Negative Ideal Solution (NIS)
for jth sub-problem are computed. By Computing

Sj ; Rj ; Qj , the L-dimensional problem is transferred
into a single-objective. The proposed method is
administered through the following steps:

Step 1. Decompose the proposed problem into the q
sub-problems based on the Dantzig-Wolfe decomposi-
tion algorithm for objective functions and constraints.
Then transfer each fuzzy sub problem into three crisp
sub problems as follows:

~Ui = (ai;bi;ci);

is a triangular fuzzy number.

fi(x; ~ui) = ~uicix =
NX
j=1

piX
k=1

~uijkcijkvijk(xj)

=
NX
j=1

piX
k=1

(aijk;bijk;cijk)cijkvijk(xj); (4)

i = 1; 2; � � � ; L;

Pi =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

max(min)f1(x; ~u1) =
X
j2Ni

pi1jX
k=1

(aijk;bijk;cijk)cijkvijk(xj)

max(min)f2(x; ~u2) =
X
j2Ni

pi2jX
k=1

(aijk;bijk;cijk)cijkvijk(xj)
...

max(min)fL(x; ~uL) =
X
j2Ni

piLjX
k=1

(aijk;bijk;cijk)cijkvijk(xj)

S.T:

FSi =

8>>>>>>>>><>>>>>>>>>:

P
j2Ni

~gj(xj) � ~Bj

m = sj�1 + 1; � � � ; sj

~Hi(x) =
NP
j=1

~hij(xj) � ~B

i = 1; 2; � � � ; w

(5)

s.t. (x1; x2; � � � ; xN ) 2 FS:
The sub problems can be solved independently and
their solution could be used to compute Sj ; Rj ; Qj .
So, using a simple approach which is adopted by some
researchers [28-30], each fuzzy problem is converted to
three crisp problems. In other words, we introduce
three crisp sub problems (Pij) instead of each fuzzy
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sub problem (Pi) as follows:

Pi1 :

8>>>>><>>>>>:
min(max)(b1 � a1)(c1v1(xj))

min(max)(b2 � a2)(c2v2(xj))
...
min(max)(bL � aL)(cLvL(xj))

(6)

Pi2 :

8>>>>><>>>>>:
max(min)b1(c1v1(xj))

max(min)b2(c2v2(xj))
...
max(min)bL(cLvL(xj))

(7)

Pi3 :

8>>>>><>>>>>:
max(min)(c1 � b1)(c1v1(xj))

max(min)(c2 � b2)(c2v2(xj))
...
max(min)(cL � bL)(cLvL(xj))

(8)

Moreover, transfer each fuzzy constraint into three
crisp constraints as follow:

We can consider the fuzzy constraint as bellow:

~gm(xj) � ~Bm; m = sj�1 + 1; � � � ; sj ;
j = 1; 2; � � � ; N;

~gm(xj) = ~cmgi(xj) = (cm1; cm2; cm3)gm(xj);

~cm = (cm1; cm2; cm3);

~bm = (cm1; cm2; cm3);8>>><>>>:
~cm1gm(xj) � ~bm1

~cm2gm(xj) � ~bm2

~cm3gm(xj) � ~bm3

(9)

where ~cm is fuzzy coe�cient of objective function and
~Bm is fuzzy coe�cient of constraints.

~Hi(x) =
NX
j=1

~hij(xj) � ~B; (10)

~hij(xj) = ~zij(xj)hij(xj); (11)

~Hi(x) =
NX
j=1

~zij(xj)hij(xj) � ~B; (12)

~zij = (zij1; zij2; zij3); (13)

~B = (rij ; sij ; tij); (14)

NX
j=1

zij1hij(xj) � ri;
NX
j=1

zij2hij(xj) � si;

NX
j=1

zij3hij(xj) � ti;

i = 1; 2; :::; w j = 1; 2; � � � ; N: (15)

Therefore, the constraints of sub problem (Pi) are
transferred to the following form:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8><>:r11gm(x1) � b11

r12gm(x1) � b12 m = 1 � � � ; s1

r13gm(x1) � b138><>:r21gm(x2) � b21

r22gm(x2) � b22 m = s1 + 1; � � � ; s2

r23gm(x2) � b23
...8><>:rq1gm(xq) � bq1
rq2gm(xq) � bq2 m = sr + 1; � � � ; sM
rq3gm(xq) � bq3

NP
j=1

zi1hij(xj) � ri
NP
j=1

zi2hij(xj) � si i = 1; 2; � � � ; w
NP
j=1

zi3hij(xj) � ti

(16)

Step 2. Using VIKOR approach, �rst calculate the
maximum f�ij value as Positive Ideal Solution (PIS) and
the minimum ~f�ij value as Negative Ideal Solution (NIS)
of each objective function under the given constraints
for variable xj . The bene�t and cost objectives are
indexed as:

f�bj = fmax(min)fbj(xj)(fcj(xj)); 8 b(8 c)g;
f�bj = fmin(max)fbj(xj)(fcj(xj)); 8 b(8 c)g; (17)

fbj(xj) Bene�t objective for maximization,
fcj(xj) Cost objective for maximization.

Then Compute the amount of Sj , Rj and Qj as
follows:

Sj =
X
b2B

wb

 
f�bj � fbj(Xj)
f�bj � f�bj

!
+
X
c2B

wc

 
fcj(Xj)� f�cj
f�cj � f�cj

!
; (18)
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Rj = max

(
wb

 
f�bj � fbj(xj)
f�bj � f�bj

!
;

wc

 
fbj(xj)� f�bj
f�bj � f�bj

!)
; (19)

min�

s.t.

wb

 
f�bj � fbj(xj)
f�bj � f�bj

!
� �;

wc

 
fbj(xj)� f�bj
f�bj � f�bj

!
� �; (20)

s�j = min(sj); s�j = max(sj);

R�j = min(Rj); R�j = max(Rj); (21)

Qj = �

 
sj � s�j
s�j � s�j

!
+ (1� �)

 
Rj �R�j
R�j �R�j

!
; (22)

where, Wb(Wc) represents weights of objective func-
tions, Sj represents the distance of the jth objective
function achievement to the positive ideal solution, and
Rj implies maximal regret of each objective function,
and � is a weight of the strategy for Sj and Rj . In
other word, the decision making strategy can be used
with maximum group utility (� > 0:5), with consensus
(� = 0:5), or with minimum individual regret (� < 0:5)
(Vahdani et al., 2010; Opricovic, 1998).

Step 3. From the results of Step 2, determine the
constraints corresponding to the each Qij . Afterward
construct the �nal single-objective problem according
to the values of Qij , for each problem as will be shown
in Eq. (30). Then solve it to obtain the �nal optimal
solution.

min�1 + �2 + � � �+ �q;

s.t.

Q11 � �1
Q12 � �1
Q13 � �1
...
Qq1 � �q
Qq2 � �q
Qq3 � �q
X 2 FS

(23)

Find the optimal solution vector X�, where X� =
(x�1; x�2; � � � ; x�n) is the best value of the original MODM
problem. Finally, the 
owchart of the proposed VIKOR

Figure 1. The 
owchart of proposed VIKOR solution
method.

method for solving MOLSNLP problem is depicted in
Figure 1. The proposed method is illustrated through
a numerical example.

4. Illustrative numerical example

In this section, we give an example to illustrate the
stages of proposed model. There are three objectives
functions on R3, where the coe�cient of the objective
functions and constraints are proposed as triangular
fuzzy numbers. It is assumed that the importance of
weight is the same (w = 1=3) among the objective
functions of all sub problems. The original problem
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is proposed as:

P :

max f1(x) =(1; 2; 3)(x1 � 1)2 + (2; 3; 4)x2
2

+ (1; 3; 5)(x3 + 1)2;

max f2(x)=(2; 4; 6)x1+(1; 2; 3)x2+(1; 3; 5)(x3)2;

min f3(x)=(1; 2; 3)(x1)2+(1; 3; 5)x2+(1; 2; 3)(x3)2;

s.t.

FS =

8>>>>>>>>><>>>>>>>>>:

(1; 2; 3)x1 � (1; 2; 3)x2 + (2; 4; 6)x3� (6; 7; 8)
(1; 2; 3)x2

1 + (1; 3; 5)x2 + (1; 2; 3)x3� (10; 11; 12)
(0; 0; 0) � (1; 2; 3)x1 � (3; 4; 5)
(0; 0; 0) � (1; 2; 3)x2 � (4; 5; 6)
(0; 0; 0) � (1; 2; 3)x3 � (2; 3; 4)

9>>>>>>>>>=>>>>>>>>>;
:
(24)

The problem can be split into three sub-problems.
Therefore the new method is exploited to obtain
optimal solution in the following steps:

Step 1. In the �rst stage, consider problem (P )
and decompose it into three fuzzy sub problems
(P1; P2; P3). Because the coe�cient of the objective
functions and constraints are proposed as triangular
fuzzy numbers, each objective function is transferred
into three crisp functions for each fuzzy sub problem.
Moreover, each fuzzy constraint is transferred to three
crisp constraints. Based on the proposed method, this
problem can be decomposed as the following program.
First sub problem (P1) is proposed based on variable
x1.

P1 :

max f1(x) = (1; 2; 3)(x1 � 1)2;

max f2(x) = (2; 4; 6)x1;

min f3(x) = (1; 2; 3)(x1)2;

s.t.

FS1 =

8>>>>>>>><>>>>>>>>:

(1; 2; 3)x1 � (1; 2; 3)x2 + (2; 4; 6)x3� (6; 7; 8)

(1; 2; 3)x2
1 + (1; 3; 5)x2 + (1; 2; 3)x3� (10; 11; 12)

(0; 0; 0) � (1; 2; 3)x1 � (3; 4; 5)

9>>>>>>>>=>>>>>>>>;
:
(25)

Similar to sub problem P1, sub problems P2 and P3

can be formulated as:
P2 :

max f1(x) = (2; 3; 4)x2
2;

max f2(x) = (1; 2; 3)x2;

min f3(x) = (1; 3; 5)x2;

s.t.

FS =

8>>>>>>>><>>>>>>>>:

(1; 2; 3)x1 � (1; 2; 3)x2 + (2; 4; 6)x3� (6; 7; 8);

(1; 2; 3)x2
1 + (1; 3; 5)x2 + (1; 2; 3)x3� (10; 11; 12)

(0; 0; 0) � (1; 2; 3)x2 � (4; 5; 6)

9>>>>>>>>=>>>>>>>>;
;
(26)

P3 :

max f1(x) = (1; 3; 5)(x3 + 1)2;

max f2(x) = (1; 3; 5)(x3)2;

min f3(x) = (1; 2; 3)(x3)2;

s.t.

FS =

8>>>>>>>><>>>>>>>>:

(1; 2; 3)x1 � (1; 2; 3)x2 + (2; 4; 6)x3� (6; 7; 8)

(1; 2; 3)x2
1 + (1; 3; 5)x2 + (1; 2; 3)x3� (10; 11; 12)

(0; 0; 0) � (1; 2; 3)x3 � (2; 3; 4)

9>>>>>>>>=>>>>>>>>;
:
(27)

Now, using Relations (6) and (20), convert each sub
problem of fuzzy MONLFP (31) into its non-fuzzy
version sub problem. As will be shown in Eqs. (35),
(36), and (37), the sub problems P11; P12, and P13 are
constructed as:
P1 :

P11 :

8>>>>>><>>>>>>:
min f1(x) = (x1 � 1)2

min f2(x) = 2x1

max f3(x) = (x1)2

s.t.
X 2 FS1

(28)

P12 :

8>>>>>><>>>>>>:
max f1(x) = 2(x1 � 1)2

max f2(x) = 4x1

min f3(x) = 2(x1)2

s.t.
X 2 FS1

(29)
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P13 :

8>>>>>>>><>>>>>>>>:

max f1(x) = 2(x1 � 1)2

max f2(x) = 4x1

min f3(x) = 2(x1)2

s.t.

X 2 FS1

(30)

The above three crisp objectives programming are
equivalent to the fuzzy problem P1. Similar to P1, the
above procedure is utilized to obtain P2 as:

P2 :

P21 :

8>>>>>>>><>>>>>>>>:

min f1(x) = x2
2

min f2(x) = x2

max f3(x) = 2x2

s.t.

X 2 FS2

(31)

P22 :

8>>>>>>>><>>>>>>>>:

max f1(x) = 3x2
2

max f2(x) = 2x2

min f3(x) = 3x2

s.t.

X 2 FS2

(32)

P23 :

8>>>>>>>><>>>>>>>>:

max f1(x) = x2
2

max f2(x) = x2

min f3(x) = 2x2

s.t.

X 2 FS2

(33)

It is clear that by Eqs. (8) and (20), the fuzzy sub
problem P3 can be transferred to three crisp problem
as bellow:
P3 :

P31 :

8>>>>>>>><>>>>>>>>:

min f1(x) = 2(x3 + 1)2

min f2(x) = 2(x3)2

max f3(x) = (x3)2

s.t.

X 2 FS3

(34)

P32 :

8>>>>>>>><>>>>>>>>:

max f1(x) = 3(x3 + 1)2

max f2(x) = 3(x3)2

min f3(x) = 2(x3)2

s.t.

X 2 FS3

(35)

P33 :

8>>>>>>>><>>>>>>>>:

max f1(x) = 2(x3 + 1)2

max f2(x) = 2(x3)2

min f3(x) = (x3)2

s.t.

X 2 FS3

(36)

Step 2. Calculate the Positive Ideal Solution (PIS)
and the Negative Ideal Solution (NIS) of each objective
function for all sub problems of P1; P2, and P3 as shown
in Tables 1 and 2. Next, compute the amount of
Sij ; Rij , and Qij for all sub problems under the given
constraints for all variables as follows:

PIS : f�11 = (f�1 ; f�2 ; f�3 ) = (0; 0; 2:7778);

f�12 = (f�1 ; f�2 ; f�3 ) = (2; 6:6667; 0);

f�13 = (f�1 ; f�2 ; f�3 ) = (1; 3:3334; 0);

Table 1. PIS payo� table of (P1).

f1 f2 f3 x1 x2 x3

P11

max f1 0� 2 1 1 0 0

max f1 1 0� 0 0 0 0

max f1 0.4445 3.3333 2:7778� 1.6667 0 0

P12

max f1 2� 0 0 0 0 0

max f1 0.8890 6:6667� 5.5558 1.6667 0 0

max f1 2 0 0� 0 0 0

P13

max f1 1� 0 0 0 0 0

max f1 0.4445 3:3334� 2.7779 1.6667 0 0

max f1 1 0 0� 0 0 0

Table 2. NIS payo� table of (P1).

f1 f2 f3 x1 x2 x3

P11

max f1 1� 0 0 0 0 0

max f1 0.4445 3:3333� 2.7779 1.6667 0 0

max f1 1 0 0� 0 0 0

P12

max f1 0� 4 2 1 0 0

max f1 2 0� 0 0 0 0

max f1 0.8890 6.6667 5:5556� 1.6667 0 0

P13

max f1 0� 2 1 1 0 0

max f1 1 0� 0 0 0 0

max f1 0.4445 3.3333 2:7778� 1.6667 0 0
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Table 3. The values of S�, S�, R� and R� for (P1).

PIS NIS S� S� R� R�

P11 (0,0,2.7778) (1,3.3333,0) 0.4114 0.6667 0 0.3333
P12 (2,6.6667,0) (0,0,5.5556) -0.3333 -0.0781 0 0.3333
P13 (1,3.3334,0) (0,0,2.7778) 0.3333 0.4534 0 1

NIS : f�11 = (f�1 ; f�2 ; f�3 ) = (1; 3:3333; 0);

f�12 = (f�1 ; f�2 ; f�3 ) = (0; 0; 5:5556);

f�13 = (f�1 ; f�2 ; f�3 ) = (0; 0; 2:7778):

The obtained PIS and NIS are shown in Table 3. Then
S11 is obtained using Relation (23) as follows:

S11 = 0:2133(x1)2 � 0:4667X1 + 0:6667: (37)

Moreover, R11 is obtained using Eqs. (24) and (26) as:

min�

s.t.

1
3

�
(x1 � 1)2 � 0

1� 0

�
� �;

1
3

�
2x1 � 0

3:3333� 0

�
� �;

1
3

�
2:7778� (x1)2

2:7778� 0

�
� �;

X 2 FS1; ��=0:2060; X�=(1:030; 0; 0): (38)

The second and third constraints are active in point
x� = (1:030; 0; 0). Moreover, the values of R�; R� for
both constraints are the same. Therefore, each of the
second and third constraints can be chosen anyas R11.
Here we choose the second constraint, so simpli�ed R11
is as follows:

R11 = 0:2x1: (39)

Suppose that the compromise is selected with \consen-
sus" (� = 0:5). Then Q11 is obtained by computing
Relation (29).The simpli�ed result is as follows:

Q11 = 0:4177x2
1 � 0:6140X1 + 0:5: (40)

Similar to P11, the values of S, R, and Q are obtained
for problems P12 and P13, as follow:

S12 = �0:2133x2
1 + 0:4666X1 � 0:3333; (41)

R12 = �0:3333x2
1 + 0:6666X1; (42)

Q12 = �0:9179x2
1 + 1:9142X1; (43)

S13 = �0:4533x2
1 + 0:4666X1 + 0:3333; (44)

R13 = �0:3333x2
1 + 0:6666X1; (45)

Q13 = �2:0539x2
1 + 0:05667X1: (46)

The amounts of S�; S�; R�, and R� are obtained for
problems P11; P12, and P13, as shown in Table 3, where:

S�ij(S�ij ) = max(minSij);

R�ij(R�ij) = max(minRij);

s.t. X 2 FSi:
Similar to P1, the values of PIS and NIS of each
objective function for all sub problems of P2 are
calculated in Tables 4 and 5.

Table 4. PIS payo� table of (P2).

f1 f2 f3 x1 x2 x3

P21

max f1 0� 0 0 0 0 0
max f1 0 0� 0 0 0 0
max f1 4 2 4� 0 2 0

P22

max f1 12� 4 6 0 2 0
max f1 12 4� 6 0 2 0
max f1 0 0 0� 0 0 0

P23

max f1 4� 2 4 0 2 0
max f1 4 2� 4 0 2 0
max f1 0 0 0� 0 0 0

Table 5. NIS payo� table of (P2).

f1 f2 f3 x1 x2 x3

P21

max f1 4� 2 4 0 2 0
max f1 4 2� 4 0 2 0
max f1 0 0 0� 0 0 0

P22

max f1 0� 0 0 0 0 0
max f1 0 0� 0 0 0 0
max f1 12 4 6� 0 2 0

P23

max f1 0 0 0 0 0 0�

max f1 0� 0 0 0 0 0
max f1 2 4� 0 2 0 4
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Table 6. The values of S�, S�, R� and R� for (P2).

PIS NIS S� S� R� R�

P21 (0,0,4) (4,2,0) 0.3333 0.6665 0 0.3333
P22 (12,4,0) (0,0,6) 0.3335 0.6667 0.2060 0.3333
P23 (4,2,0) (0,0,4) 0.3335 0.6667 0.2060 0.3333

The values of PIS and NIS are shown in Table 6.
The values of S, R, and Q are obtained for problems
P2 as follow.

First, the values of S21 and R21 are obtained as:

S21 = �0:0833x2
2 + 0:3333; (47)

min�;

s.t.

1
3

�
(x2)2

4� 0

�
� �;

1
3

�
x2

2� 0

�
� �;

1
3

�
4� 2x2

4� 0

�
� �;

X 2 FS2;

��=0:1667; X�=(1; 0; 0); R21 =0:1667X2: (48)

The simpli�ed result of Q21 is as follow:

Q21 = 0:375X2
2 � 0:5002: (49)

Similar to sub problem P21, S�, S�, R� and R� are
obtained for problems P22 and P23. The values of S22
and R22 are obtained similar to privies steps as:

S22 = �0:0833X2
2 + 0:6667; (50)

R22 = 0:6667X2: (51)

The value of Q22 is calculated as:

Q22 = �0:125X2
2 + 0:6546X2 � 0:3091: (52)

In last step for sub problem P2, the values of S23 and
R23 are calculated as:

S23 = �0:0833X2
2 + 0:6667; (53)

R23 = 0:6667X2; (54)

Q23 = �0:125X2
2 + 0:6546X2 � 0:3091: (55)

S�, S�, R�, and R� are obtained for problems P21,
P22, and P23 as shown in Table 6.

Table 7. PIS payo� table of (P3).

f1 f2 f3 x1 x2 x3

P31

max f1 2� 0 0 0 0 0
max f1 2 0� 0 0 0 0
max f1 10.8889 3.5556 1:7778� 0 0 1.3333

P32

max f1 16:3333� 5.3333 3.5556 0 0 1.3333
max f1 16.3333 5:3333� 3.5556 0 0 1.3333
max f1 3 0 0� 0 0 0

P33

max f1 10:8889� 3.5556 1.7778 0 0 1.3333
max f1 10.8889 3:5556� 1.7778 0 0 1.3333
max f1 2 0 0� 0 0 0

Table 8. NIS payo� table of (P3).

f1 f2 f3 x1 x2 x3

P31

max f1 10:8889� 3.5556 1.7778 0 0 1.3333
max f1 10.8889 3:5556� 1.7778 0 0 1.3333
max f1 2 0 0� 0 0 0

P32

max f1 3� 0 0 0 0 0
max f1 3 0� 0 0 0 0
max f1 16.3333 5.3333 3:5556� 0 0 1.3333

P33

max f1 0 0 0 0 0 2�

max f1 0� 0 0 0 0 2
max f1 3.5556 1:7778� 0 0 1.3333 10.8889

Consequently, the values of PIS and NIS of each
objective function for all sub problems of P3 are
calculated in Tables 7 and 8.

The values of PIS and NIS are shown in Tables 7
and 8.

S31 = 0:075X2
3 + 0:075X3 + 0:3333; (56)

min�;

s.t.

1
3

�
2(x3 + 1)2 � 2

10:8889� 2

�
� �;

1
3

�
2x2

3 � 0
3:5556� 0

�
� �;

1
3

�
1:7778� (x3)2

1:7778� 0

�
� �;

X 2 FS2;

�� = 0:2081; X� = (0; 0; 0:9428); (57)
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Table 9. The values of S�, S�, R� and R� for (P3).

PIS NIS S� S� R� R�

P31 (2,0,1.7778) (10.8889,3.5556,0) 0.3333 0.6667 0 0.3333

P32 (16.3333,5.3333,0) (3,0,3.5556) 0.3333 0.6666 0 0.3333

P33 (10.8889,3.5556,0) (2,0,1.7778) 0.3333 0.6666 0 0

R31 = 0:0375X2
3 + 0:075X3: (58)

Similar to sub problem P21, S�, S�, R�, and R� are
obtained for problems P22 and P23, as shown in Table 9.

Q31 = 0:15X2
3 + 0:3X3: (59)

Also similar to sub problem P31, the values for S32,
R32, and Q32 are obtained as:

S32 = �0:075X2
3 � 0:15X3 + 0:6667; (60)

R32 = 0:1875X2
3 ; (61)

Q32 = 0:0:3938X2
3 � 0:2250X3 + 0:5: (62)

In last step for sub problem P3, the values of S33, R33,
and Q33 are calculated as:

S33 = �0:075X2
3 � 0:15X3 + 0:6667; (63)

R33 = 0:1875x2
3; (64)

Q33 = 0:1688X2
3 � 0:2250X3 + 0:5: (65)

S�, S�, R�, and R� are obtained for problems P31,
P32, and P33 as shown in Table 9.

Step 3. From the results of Step 2 determine the
constraints corresponding to the each Qij . Afterward
construct the �nal single-objective problem according
to the values of Qij for each problems shown in
Eq. (74). Then solve it to obtain the �nal optimal
solution. The crisp single-objective problem for the
numerical example is as follows:

min�1 + �2 + �3;

0:4177x2
1 � 0:6140x1 + 0:5 � �1;

�0:9179x2
1 + 1:9142x1 � �1;

�2:0539x2
1 + 0:5667x1 � �1;

0:375x2
2 � 0:5002x2 � �2;

�0:125x2
2 + 0:6546x2 � 0:3091 � �2;

�0:0833x2
2 + 0:6667 � �2;

0:15x2
3 + 0:3x3 + 0:5 � �3;

0:3938x2
3 � 0:2250x3 � �3;

0:1688x2
3 � 0:2250x3 � �3;

x2
1 � x2 + 2x3 � 6; 2x1 � 2x2 + 4x3 � 7;

3x1 � 3x2 + 6x3 � 8; x2
1 + x2 + x3 � 10;

2x2
1 + 3x2 + 2x3 � 11; 3x2

1 + 5x2 + 3x3 � 12;

0�x1�3; 0�2x1�4; 0�3x1�5;

0�x2�4; 0�2x2�5; 0�3x2�6;

0�x3�2; 0�2x3�3; 0�3x3�4: (66)

Find the optimal solution vector X�, where X� =
(x�1; x�2; � � � ; x�n) is the best value of the original MODM
problem. By solving Problem (74), we obtain the
optimum minimum value of �1, �2, and �3, as follows:

z� = 0:4679; X� = (0:2244; 1:5957; 0:2857);

�1 = 0:3833; �2 = 0:4546; �3 = 0:2857:

4.1. Sensitivity analysis
In this example, as it was observed, there are three
objectives on R3. Moreover, the optimal solution
vector X� = (x�1; x�2; � � � ; x�n) where x�1, x�2, and x�3
are obtained from sub problems P1, P2, and P3,
respectively. Considering Problem (74), the inequality
constraint is proposed in three categories. First group
of them are constructed based on the Q11, Q12, and
Q13 where Qij is applied as functions of the left-hand
side of the inequality constraints. The amount of
��1 is determined according to objective function and
constraints. When x1 increases from 0.2244, the values
of functions Q12 and Q13 will be decreased but the �rst
inequality is impossible because the amount of Q11 is
more than right-hand side of constraint. Therefore,
simultaneously according to the objective function and
constraint, x1 = 0:2244, is optimal solution for x1.
Figure 2 represents the behavior of Q11, Q12, and Q13
based on x1.

Similar to P1, the problems P2 and P3 are solved.
When x2 increases from 1.5957 the values of functions
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Figure 2. The values of function Qij for problem P1.

Figure 3. The values of function Qij for problem P2.

Figure 4. The values of function Qij for problem P3.

Q22 and Q23 will be decreased but the amount of
Q21 is more than right-hand side of �rst constraint.
Moreover, When x2 decreases from 1.5957 the amount
of Q21 will be decreased but the values of functions
Q22 and Q23 is more than right-hand side of �rst and
second constraints, respectively, as shown in Figure 3.
Therefore, x2 = 1:5957 is the best solution of problem
P2.

Also similar to the problems P1 and P2, the
optimal solution of P3 is x3 = 0:2857, as shown in
Figure 4.

5. Conclusion

In this paper, the focus was on extending and applying
a VIKOR approach as a compromise decision making
method to deal with MOLSNLP problems with block

angular structure under uncertainty. The proposed
method was introduced for solving large scale nonlinear
programming in fuzzy environment for �rst time. The
new method employed the advantages of VIKOR as
a compromised method for solving nonlinear prob-
lems. First, Dantzig-Wolfe decomposing algorithm was
applied to decompose the n-dimensional space fuzzy
MOLSNLP into n sub problems. In the proposed
approach, the sub problems in fuzzy environment were
solved by converting them into crisp environment. In
other words, each fuzzy problem can lead to three crisp
problems. Then the proposed VIKOR method was
applied to obtain an equation for each sub problem
in a crisp single-objective problem. Therefore, it can
be argued that this method combines LSMONLP and
VIKOR approach to obtain a compromise solution of
the problem. In sum, it transfers n objectives, which
are con
icting, into single-objectives involving the
maximum \group utility" for the \majority" and a min-
imum of an individual regret for the \opponent", based
on the shortest distance from the PIS and the longest
distance from the NIS, which are commensurable and
most of time con
icting. In other words, the VIKOR
has been applied in MADM for ranking the alternatives
versus some criteria whereas this paper applied VIKOR
in MODM problems. The logic of VIKOR method was
utilized to aggregate the multi-objective programming
problems into single-objective. The MODM problems
were considered with fuzzy parameters in objective
function and constraints. Moreover, the constraints
could be considered as non-linear equation. Finally, to
justify the proposed method, an illustrative example
was provided. The numerical example has three
sub problems. The new method is utilized to solve
each problem. The optimum solution and satisfaction
value of each sub problem was proposed in sensitivity
analysis. The optimum value of objective function
is Z� = 0:4679. Moreover the amounts of variables
are x� = (0:2244; 1:5957; 0:2857) and the satisfaction
values of each sub problem are ��1 = 0:3833, ��2 =
0:4546, and ��3 = 0:2857. For the future research, an
MCDM method can be presented with interval data
for solving the multi-objective nonlinear programming
problems in large scale context.
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