
Scientia Iranica E (2015) 22(6), 2702{2715

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

Interval-valued trapezoidal intuitionistic fuzzy
generalized aggregation operators and application to
multi-attribute group decision making

J.-Y. Donga,b and S.-P. Wanc;�

a. College of Information Technology, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
b. Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China.
c. College of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.

Received 29 April 2014; received in revised form 10 August 2014; accepted 10 March 2015

KEYWORDS
Multi-attribute group
decision making;
Interval-valued
trapezoidal
intuitionistic fuzzy
number;
Generalized
aggregation operator;
Barycenter.

Abstract. An Interval-Valued Trapezoidal Intuitionistic Fuzzy Number (IVTrIFN) is
a special case of an Intuitionistic Fuzzy Set (IFS), which is de�ned on a real number
set. From a geometric viewpoint, the expectation and expectant score of an IVTrIFN
are de�ned using the notion of a barycenter, and a new method is developed to rank
IVTrIFNs. Hereby, some generalized aggregation operators of IVTrIFNs are de�ned,
including the generalized ordered weighted averaging operator and the generalized hybrid
weighted averaging operator, which are employed to solve multi-attribute group decision
making problems. Using the weighted average operator of IVTrIFNs, the attribute values
of alternatives are integrated into the individual comprehensive ratings, which are further
aggregated into the collective one by the generalized hybrid weighted averaging operator
of IVTrIFNs. The ranking orders of alternatives are then generated according to the
expectation and expectant score of the collective comprehensive ratings of alternatives.
A numerical example is examined to demonstrate the applicability and implementation
process of the decision method proposed in this paper.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Atanassov [1] introduced the Intuitionistic Fuzzy Set
(IFS), which is a generalization of the fuzzy set [2].
The IFS has received considerable attention since its
appearance. Gau and Buehrer [3] proposed the notion
of vague set, which is identi�ed with that of IFS, as
pointed out by Bustince and Burillo [4]. Atanassov
and Gargov [5] further generalized the IFS in the spirit
of the ordinary Interval-Valued Fuzzy Set (IVFS), and
de�ned the notion of an Interval-Valued Intuitionistic
Fuzzy Set (IVIFS). There is much research regarding
IFS and IVIFS in the applications of Multi-Attribute
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Decision Making (MADM) [6-10] and Multi-Attribute
Group Decision Making (MAGDM) [11-19].

Fuzzy numbers are a special case of fuzzy sets. As
a generalization of fuzzy numbers [20], an Intuitionistic
Fuzzy Number (IFN) seems to suitably describe an ill-
known quantity [21-34]. Shu et al. [22] de�ned the
concept of a Triangular IFN (TIFN) in a similar way
to that of the fuzzy number [20] and developed an
algorithm for intuitionistic fuzzy fault tree analysis.
Li [21] pointed out and corrected some errors in the
de�nition of the four arithmetic operations over the
TIFNs in [22]. Li [23] discussed the concept of
the TIFN and ranking method on the basis of the
concept of a ratio of the value index to the ambiguity
index, as well as applications to MADM problems in
depth. Li et al. [24] proposed a value and ambiguity
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based method to rank TIFNs and applied it to solve
MADM problems, in which the ratings of alternatives
on attributes are expressed using TIFNs. Nan et
al. [25] de�ned the ranking order relations of TIFNs and
investigated the matrix games with payo�s of TIFNs.
Chen and Li [26] constructed a dynamic MADM model
based on TIFNs. Wan et al. [27] introduced the
possibility mean, variance and covariance of TIFNs.
Subsequently, Wan and Li [28] developed a possibility
mean and variance based method for MADM with
TIFNs. Further, Wan [29] proposed the possibility
variance coe�cient method for MADM with TIFNs.
Wan et al. [30] extended the classical VIKOR method
for solving MAGDM with TIFNs. Wang et al. [31]
proposed new arithmetic operations and logic operators
for TIFNs and applied them to fault analysis of a
printed circuit board assembly system. Dong and
Wan [32] investigated a new method for MAGDM
with TIFNs. Wan and Dong [33] de�ned Choquet
integral operator of TIFNs and applied to MADM with
TIFNs. Wan and Dong [34] proposed the possibility
method for MAGDM with TIFNs and incomplete
weight information.

In a similar way to TIFNs, Wang [35] de�ned the
Trapezoidal IFN (TrIFN) and Interval-Valued Trape-
zoidal IFN (IVTrIFN). Both TrIFN and IVTrIFN are
extensions of TIFNs. Wang and Zhang [36] investi-
gated the weighted arithmetic averaging operator and
weighted geometric averaging operator on TrIFNs and
their applications to MADM problems. Wei [37] in-
vestigated some arithmetic aggregation operators with
TrIFNs and their applications to MAGDM problems.
Du and Liu [38] extended the fuzzy VIKOR method
with TrIFNs. Wu and Cao [39] developed some fam-
ilies of geometric aggregation operators with TrIFNs
and applied them to MAGDM problems. Wan and
Dong [40] de�ned the expectation and expectant score,
ordered weighted aggregation operator and hybrid
aggregation operator for TrIFNs and employed them
for MAGDM. Ye [41] developed the expected value
method for intuitionistic trapezoidal fuzzy multicrite-
ria decision-making problems. Ye [42] proposed the
MAGDM method using vector similarity measures for
TrIFNs. Wan [43] developed four kinds of power av-
erage operator of TrIFNs, involving the power average
operator, weighted power average operator of, power
order weighted average operator of, and power hybrid
average operator of TrIFNs. Wan [44] �rstly de�ned
some operational laws and the weighted arithmetical
average operator of IVTrIFNs. Based on the score
function and accurate function, an approach is pre-
sented to rank IVTrIFNs. The MAGDM method using
IVTrIFNs is then proposed. Wan [45] constructed non-
linear fractional programming models to estimate the
alternative's relative closeness. After transformation
into linear programming models, the interval of the

alternative's relative closeness is obtained through
solving these linear programming models. Then, the
fractional programming method is proposed for the
MADM with IVTrIFNs. Wu and Liu [46] de�ned
some interval-valued trapezoidal intuitionistic fuzzy
geometric aggregation operators and applied to them
MAGDM with IVTrIFNs. Wei et al. [47] de�ned
the interval trapezoidal intuitionistic fuzzy ordered
weighted geometric operator and the interval trape-
zoidal intuitionistic fuzzy hybrid geometric operator.
An approach based on these operators is developed to
solve the MAGDM problems with IVTrIFNs.

It is worthwhile to mention that the domains of
the IFS and IVIFS are discrete sets, which are also
the same as fuzzy sets. TIFN, TrIFN and IVTrIFN
extend the domain of IFS from the discrete set to
the continuous set. They are the extensions of fuzzy
numbers [36]. Compared with the IFS, both TrIFN and
IVTrIFN are de�ned by using trapezoidal fuzzy num-
bers expressing their membership and non-membership
functions. Hence, TrIFN and IVTrIFN may better
re
ect the information of decision problems than IFS.
Some practical decision problems generally involve
multiple attributes with di�erent physical dimensions
and units, such as risk investment and performance
evaluation of military systems, as well as partner
selection of supply chain management. For example,
during the process of evaluating the supplier quality
of the product, Decision Makers (DMs) have some
hesitancy or lack of knowledge, due to the knowledge
structure and specialty, as well as the complexity of the
evaluation object. The evaluation results often present
three aspects: a�rmation, negation, and hesitancy,
between the a�rmation and negation. Thus, DMs
may give an evaluation in the format of IVTrIFN ([1-
4]; [0.6,0.8], [0.1,0.2]), which means that the most
possible value is [2,3], and the lower and upper limits
are 1 and 4, respectively. Meanwhile, the maximum
membership degree for the most possible value [2,3] is
between 0.6 and 0.8, the minimum non-membership
degree for the most possible value [2,3] is between
0.1 and 0.2, and the indeterminacy is between 0 and
0.3. An IVTrIFN, described using three characteristic
functions: membership degree, non-membership degree
and hesitancy degree, is just a strong instrument to
represent the information of these three aspects. The
ability of an IVTrIFN to capture vagueness and uncer-
tainty is stronger than that of the TIFN and TrIFN.
The IVTrIFN can subtly and e�ectively describe the
decision information with di�erent dimensions and
units. Therefore, IVTrIFNs are of great importance in
scienti�c research and real life applications. Although
Wan [44], Wu and Liu [46], and Wei et al. [47]
investigated some arithmetic aggregation operators and
geometric aggregation operators for IVTrIFNs, there
exists no investigation about the generalized aggrega-
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Figure 1. Membership function, non-membership function and hesitancy function for IVTrIFN.

tion operators for IVTrIFNs. The aim of this paper is
to study the expectation and expectant score and new
ranking method for IVTrIFNs from the geometry point
of view, and develop some generalized aggregation
operator of IVTrIFNs, as well as their application to
MAGDM problems. The main contributions of this
paper are as follows:

(i) A new ranking method for IVTrIFNs is developed
from a geometric viewpoint, which is very intu-
itive, simple and e�ective;

(ii) The generalized ordered weighted average oper-
ator for IVTrIFNs and the generalized hybrid
weighted averaging operator of IVTrIFNs are
investigated and the desirable properties are dis-
cussed. These operators are helpful extensions of
the intuitionistic fuzzy aggregation operators;

(iii) The MAGDM method proposed in this paper
enriches the research content and decision ap-
proaches for MAGDM in intuitionistic fuzzy en-
vironments.

This paper is structured as follows. Section 2 in-
troduces the de�nition and operation laws of IVTrIFNs
and presents their new ranking method. Section 3
develops some generalized aggregation operators over
IVTrIFNs. Section 4 gives the problem description
of MAGDM with IVTrIFNs and proposes the corre-
sponding group decision making method. A numerical
example and comparison analysis are given in Section 5.
Concluding remarks are given in Section 6.

2. Interval-valued trapezoidal intuitionistic
fuzzy numbers and barycenter based
ranking method

In this section, the de�nition, operation laws and
properties for IVTrIFNs are reviewed. Then, a ranking
method of IVTrIFNs is proposed based on barycenter.

2.1. Operation laws and properties for
IVTrIFNs

De�nition 1 [35]. Let ~a be an IFN in the set of
real numbers whose membership function and non-
membership function are de�ned as:

�~a =

8>>>>><>>>>>:
x�a
b�a�; if a � x < b

�; if b � x � c
d�x
d�c�; if c < x � d
0; else

and:

v~a(x) =

8>>>>><>>>>>:
b�x+(x�a)v

b�a ; if a � x < b

v; if b � x � c
x�c+(d�x)v

d�c ; if c < x � b
1; else

respectively (see Figure 1), where a, b, c, and d
are all real numbers, � = [�; �] and v = [v; v] are
intervals, which represent the maximum membership
degree interval and the minimum non-membership
degree interval, respectively, such that they satisfy the
following conditions:

0 � � � 1; 0 � � � 1; 0 � v � 1;

0 � v � 1 and �+ v � 1:

Then, the IFN ~a is called IVTrIFN, denoted by ~a =�
[a; b; c; d]; [�; �]; [v; v]

�
. Let the function �~a(x) = 1 �

�~a(x) � v~a(x) denote the hesitation of ~a. The smaller
�~a(x), the more certain ~a.

If a � 0 and one of the four values, a, b, c and d, is
not equal to 0, then the IVTrIFN, ~a, is called a positive
IVTrIFN, denoted by ~a > 0. Likewise, if d � 0 and one
of the four values, a, b, c and d, is not equal to 0, then
the IVTrIFN, ~a, is called a negative IVTrIFN, denoted
by ~a < 0. If � = � and v = v, then, the IVTrIFN, ~a,
is called the TrIFN. When b = c, a TrIFN reduces to
a TIFN. Therefore, both TrIFN and TIFN are special
cases of the IVTrIFN.

For example, there is an IVTrIFN ~6 =([4; 5;
7; 8]; [0:5; 0:7], [0:1; 0:2]). Then, when x = 5, its
membership degree being an IVTrIFN ~6 is [0.5, 0.7],
its non-membership degree not being an IVTrIFN ~6
is [0:1; 0:2], and its hesitation being or not being an
IVTrIFN ~6 is [0:1; 0:4].
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De�nition 2 [44]. Let:

~a1 =
�

[a1; b1; c1; d1]; [�1; �1]; [v1; v1]
�
;

and:

~a2 =
�

[a2; b2; c2; d2]; [�2; �2]; [v2; v2]
�
;

be two IVTrIFNs and � � 0. Then the operation laws
for IVTrIFNs are de�ned as follows:

1. ~a1 + ~a2 =
�

[a1 + a2; b1 + b2; c1 + c2; d1 + d2]; [�1

+�2��1�2��1�2; �1 + �2 � �1�2]; [v1v2; v1v2]
�

;

2. ~a1:~a2 =
�

[a1a2; b1b2; c1c2; d1d2]; [�1�2; �1�2]; [v1

+v2�v1v2; v1+v2 � v1v2]
�

, where ~a1 > 0, ~a2 > 0;

3. �~a1 =
�

[�a1; �b1; �c1; �d1]; [1 � (1 � �1)�; 1� (1

��1)�]; [v�1 ; v�1 ]
�

;

4. ~a�1 =
�

[a�1 ; b�1 ; c�1 ; d�1 ]; [��1 ; �
�
1 ]; [1� (1� v1)�; 1� (1

�v1)�]
�

, where ~a1 > 0.

From De�nition 2, the following properties are proven:

1. ~a1 + ~a2 = ~a2 + ~a1;

~a1:~a2 = ~a2:~a1;

2. �(~a1 + ~a2) = �~a1 + �~a2,

�1~a1 + �2~a1 = (�1 + �2)~a1,

~a�1
1 :~a�2

1 = ~a�1+�2
1 , where �; �1; �2 � 0;

3. (~a�1 )k = ~a�k1 , where ~a1 > 0 and �; k � 0.

2.2. A new ranking method of IVTrIFNs based
on barycenter

Since the three characteristic functions of IVTrIFNs
are all piecewise continuous, their function images are
the plain regions, as depicted in Figure 1. We view
them as sheets with uniform density and calculate
their barycentric coordinates. For the MAGDM in
intuitionistic fuzzy environments, the ranking of in-
tuitionistic fuzzy numbers plays an important role.
In order to compare the IVTrIFNs, it is necessary
to develop a method to rank the IVTrIFNs. Mo-
tivated by the score and accuracy functions of IFS
[48], we de�ne the expectation and expectant score of
IVTrIFNs and thereby propose a new ranking method
of IVTrIFNs.

De�nition 3. Let P1(x1; y1), P2(x2; y2) and P3(x3,
y3) be the barycentric coordinates of the images of
membership, non-membership and hesitation functions
for an IVTrIFN, ~a =

�
[a; b; c; d]; [�; �]; [v; v]

�
, respec-

tively. Then, the expectation of ~a is de�ned as follows:

E(~a) = x1y1 + x2y2 + x3y3: (1)

The expectant score of ~a is de�ned as follows:

S(~a) = E(~a)y1(2� y1 � y2): (2)

As the three characteristic functions of an IVTrIFN are
equal in characterizing the IVTrIFN, the total mass
of the sheet focuses on the barycenter. If the three
characteristic functions of the IVTrIFN are regarded
as the three states of a discrete random variable in
probabilistic theory, then, the horizontal and vertical
coordinates of each barycenter represent, respectively,
the value (or state value) and its membership (or cor-
responding state probability) of the IVTrIFN. Eq. (1)
de�nes the expectation of the IVTrIFN by summing
the products of horizontal and vertical coordinates of
each barycenter, which is similar to the mathematical
expectation of a discrete random variable. So, the
expectation de�ned by Eq. (1) re
ects accurately the
value distribution of the IVTrIFN and its geometrical
meaning is very clear.

Eq. (2) may be interpreted by a vote model as
follows. The values, �~a(x), v~a(x) and �~a(x), can be
interpreted as proportions of the a�rmation, dissension
and abstention in a vote, respectively. By considering
the possibility that in the abstention group some people
tend to cast a�rmative votes, others are dissenters
and still others tend to abstain from voting, we can
divide the abstention proportion, �~a(x), into three
parts: �~a(x)�~a(x), v~a(x)�~a(x) and �~a(x)�~a(x), which
express the proportions of the a�rmation, dissension
and abstention in the original part of abstention. Thus,
the total a�rmative proportion is �~a(x)+�~a(x)�~a(x) =
�~a(x)[2 � �~a(x) � v~a(x)]. As aforementioned, the
vertical coordinates, y1 and y2, of membership function
�~a(x) and non-membership function v~a(x) represent,
respectively, the corresponding state probabilities of
the IVTrIFN. Then, we can use y1 to replace �~a(x),
and y2 to replace v~a(x). So, �~a(x)[2 � �~a(x) �
v~a(x)] = y1(2 � y1 � y2). We use y1(2 � y1 � y2) in
Eq. (2) to characterize the score function under the
situation without considering domain [a; b; c; d], where
y1 and y2 correspond to �~a(x) and v~a(x), respectively.
Consequently, the expectant score de�ned by Eq. (2)
considers both the score function and the domain
[a; b; c; d] of the IVTrIFN and is more reasonable and
comprehensive.

Remark 1. Using calculous, the barycentric coor-
dinates are easily obtained. We take the image of
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the membership function �~a(x) (see Figure 1) as an
example to illustrate the computing process.

The area of the sheet is:

M =
Z b

a

x� a
b� a �dx+

Z c

b
�dx+

Z d

c

d� x
d� c �dx

�
�Z b

a

x� a
b� a �dx+

Z c

b
�dx

+
Z d

c

d� x
d� c �dx

�
=

1
2

(�a� b+ c+ d)(�� �):

The static moment to the x-axis is:

Mx =
1
2

�Z b

a

�
x� a
b� a �

�2

dx+
Z c

b
�2dx

+
Z d

c

�
d� x
d� c �

�2

dx�
�Z b

a

�
x� a
b� a �

�2

dx

+
Z c

b
�2dx+

Z d

c

�
d� x
d� c �

�2

dx
��

=
1
2

(�a� 2b+ 2c+ d)(�2 � �2):

The static moment to the y-axis is:

My =
Z b

a
x
�
x� a
b� a �

�
dx+

Z c

b
x�dx

+
Z d

c
x
�
d� x
d� c �

�
dx�

�Z b

a
x
�
x� a
b� a �

�
dx

+
Z c

b
x�dx+

Z d

c
x
�
d� x
d� c �

�
dx
�

=
1
2

(�a2 � ab� b2 + c2 + d2 + dc)(�� �):

Hence, the horizontal and vertical coordinates of the
barycenter P1(x1; y1) are obtained as:

x1 =
My

M
=
�a2 � ab� b2 + c2 + d2 + dc

3(�a� b+ c+ d)
;

and:

y1 =
Mx

M
=

(�a� 2b+ 2c+ d)(�+ �)
3(�a� b+ c+ d)

;

respectively.
In a similar way, the coordinates of barycenters,

P2(x2; y2) and P3(x3; y3), for the non-membership and
hesitation functions, can be obtained as follows:

x2 =
�a2 � ab� b2 + c2 + d2 + dc

3(�a� b+ c+ d)
;

y2 =
(c� b)(v + v)

(�a� b+ c+ d)
+

(�a+ b� c+ d)(1+ v+ v)
3(�a� b+ c+ d)

;

x3 =
�a2 � ab� b2 + c2 + d2 + dc

3(�a� b+ c+ d)
;

y3 = 1� L
3(�a� b+ c+ d)(�� �+ v � v)

;

where:

L =(�a+ b� c+ d)(2v�� 2v�+ v2 � v2 + �

� �+ v � v) + 3(c� b)(2v�� 2v�+ v2 � v2)

+ (�a� 2b+ 2c+ d)(�2 � �2):

Let ~a1 and ~a2 be two IVTrIFNs. According to the
concepts of the expectation and expectant score, a
ranking method can be summarized as follows:

- If E(~a1) > E(~a2), then ~a1 is bigger than ~a2, denoted
by ~a1 > ~a2;

- If E(~a1) < E(~a2), then ~a1 is smaller than ~a2, denoted
by ~a1 < ~a2;

- If E(~a1) = E(~a2), then
(i) if S(~a1) > S(~a2), then ~a1 > ~a2;

(ii) if S(~a1) = S(~a2), then ~a1 and ~a2 represent the
same information, denoted by ~a1 = ~a2;

(iii) if S(~a1) < S(~a2), then ~a1 < ~a2.

Example. Let ~a1 =([4; 5; 7; 8]; [0:5; 0:7], [0:1; 0:2])
and ~a2 =([3; 4; 6; 7]; [0:6; 0:8], [0:0; 0:1]) be
two IVTrIFNs. Using the above formulas, we can
get their barycentric coordinates for the images of
membership, non-membership and hesitancy functions
as follows: P11(6:0; 0:53), P12(6:0; 0:24), P13(6:0; 0:22),
P21(5:0; 0:47), P22(5:0; 0:16) and P23(5:0; 0:22), respec-
tively. By Eqs. (1) and (2), we have E(~a1) = 6:0,
E(~a2) = 4:22, S(~a1) = 3:91 and S(~a2) = 2:71. Since
E(~a1) > E~a2 , we get ~a1 > ~a2.

3. Some generalized aggregation operators for
IVTrIFNs

In a group decision, di�erent DM play di�erent roles.
To emphasize the individual in
uence on the deci-
sion results, some generalized aggregation operators of
IVTrIFNs are developed on the basis of De�nition 2
and the ranking method in Subsection 2.2, in this
section. For convenience, let I be the set of all
IVTrIFNs.
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De�nition 4 [44]. Assume that ~aj (j = 1; 2; :::; n) is
a collection of the IVTrIFNs. Let IVTrIFWA: In ! I.
If:

IVTrIFWA (~a1; ~a2; :::; ~an) =
nX
j=1

wj~aj ; (3)

where w = (w1; w2; :::; wn)T is the weight vector of
~aj (j = 1; 2; :::; n), satisfying that 0 � wj � 1
(j = 1; 2; :::; n) and

Pn
j=1 wj = 1, then, the func-

tion, IVTrIFWA, is called the n-dimensional weighted
averaging operator of the IVTrIFNs. Especially, if
wj = 1=n (j = 1; 2; :::; n), then the IVTrIFWA operator
is reduced to the arithmetic averaging operator of the
IVTrIFNs.

Theorem 1 [44]. Let ~aj(j = 1; 2; :::; n) be a collec-
tion of IVTrIFNs, then, their aggregated value, using
the IVTrIFWA operator, is also an IVTrIFN, and:

IVTrIFWA (~a1; ~a2; :::; ~an) =
�� nX

j=1

wjaj ;
nX
j=1

wjbj ;

nX
j=1

wjcj ;
nX
j=1

wjdj
�
;
�
1��n

j=1(1��j)wj ;

1��n
j=1(1��j)wj

�
;
�
�n
j=1(vj)

wj ;

�n
j=1(vj)wj

��
: (4)

De�nition 5. Assume that ~aj (j = 1; 2; :::; n) is a
collection of IVTrIFNs. Let IVTrIFOWA: In ! I. If:

IVTrIFOWA (~a1; ~a2; :::; ~an) =
nX
j=1

!j~a�(j); (5)

where ! = (!1; !2; :::; !n)T is the weight vector as-
sociated with IVTrIFOWA, satisfying that 0 � !j �
1 (j = 1; 2; :::; n) and

Pn
j=1 !j = 1, ~a�(j) is the

jth largest IVTrIFN of ~aj (j = 1; 2; :::; n), then,
the function IVTrIFOWA is called the n-dimensional
ordered weighted average operator of the IVTrIFNs.
Especially, if !j = 1=n (j = 1; 2; :::; n), then the
IVTrIFOWA operator is reduced to the arithmetic
averaging operator of the IVTrIFNs.

Theorem 2. Let ~aj (j = 1; 2; :::; n) be a collec-

tion of IVTrIFNs, ~a�(j) =
��
a�(j); b�(j); c�(j); d�(j)

�
;h

��(j); ��(j)

i
;
h
v�(j); v�(j)

i�
. Then, their aggregated

value, using the IVTrIFOWA operator, is also an
IVTrIFN, and:

IVTrIFOWA (~a1; ~a2; :::; ~an) =
�� nX

j=1

!ja�(j);

nX
j=1

!jb�(j);
nX
j=1

!jc�(j);
nX
j=1

!jd�(j)

�
;

�
1��n

j=1(1� ��(j))
!j ; 1��n

j=1

(1� ��(j))
!j
�
;
�
�n
j=1(v�(j))

!j ;

�n
j=1(v�(j))!j

��
: (6)

De�nition 6. Assume that ~aj (j = 1; 2; :::; n) is a
collection of IVTrIFNs. Let IVTrIFGOWA: In ! I.
If:

IVTrIFGOWA (~a1; ~a2; :::; ~an)=

0@ nX
j=1

!j(~a�(j))�
1A1=�

;
(7)

where ! = (!1; !2; :::; !n)T is the weight vector associ-
ated with IVTrIFGOWA, satisfying that 0 � !j � 1
(j = 1; 2; :::; n) and

Pn
j=1 !j = 1, ~a�(j) is the jth

largest IVTrIFN of ~aj (j = 1; 2; :::; n), � 2 [0;+1) is a
parameter, then, function IVTrIFGOWA is called the
n-dimensional generalized ordered weighted averaging
operator of the IVTrIFNs.

Theorem 3. Let ~aj (j = 1; 2; :::; n) be a collec-

tion of IVTrIFNs, ~a�(j) =
��
a�(j)b�(j); c�(j); d�(j)

�
;�

��(j); ��(j)
�
,
�
v�(j); v�(j)

��
. Then, their aggregated

value, using the IVTrIFGOWA operator, is also an
IVTrIFN, and:

IVTrIFGOWA (~a1; ~a2; :::; ~an)=
��� nX

j=1

!ja��(j)

�1=�

;

� nX
j=1

!jb��(j)

�1=�

;
� nX
j=1

!jc��(j)

�1=�

;

� nX
j=1

!jd��(j)

�1=��
;
��

1��n
j=1

(1� ���(j))
!j
�1=�; �1��n

j=1

(1� ���(j))
!j
�1=��; �1� �1��n

j=1(1

� (1� v�(j))
�)!j

�1=�; 1� �1
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��n
j=1(1� (1� v�(j))�)!j

�1=���: (8)

According to De�nitions 2 and 4, proofs of Theorems 2
and 3 can be easily completed by using the mathemat-
ical induction on n.

The weight vector, ! = (!1; !2; :::; !n)T , as-
sociated with IVTrIFOWA (or IVTrIFGOWA), can
be obtained by the fuzzy linguistic quanti�er [49] as
follows:

!i = Q
�
i
n

�
�Q

�
i� 1
n

�
(i = 1; 2; :::; n); (9)

where Q is the fuzzy linguistic quanti�er and:

Q(t) =

8>>><>>>:
0; t < �

(t� �)=(� � �); � � t < �

1; t � �
with �; t; � 2 [0; 1]. For the criteria \at least half",
\most", and \as many as possible", the parameter pair
(�; �) takes the values (0,0.5), (0.3,0.8), and (0.5,1),
respectively.

Combined with De�nition 2 and Theorem 3, the
following theorems can be obtained.

Theorem 4 (idempotency). Let ~aj (j = 1; 2; :::; n)
be a collection of IVTrIFNs. If all the ~aj (j = 1; 2; :::; n)
are equal, i.e. ~aj = ~a for all j, then IVTrIFGOWA
(~a1; ~a2; :::; ~an) = ~a.

Theorem 5 (boundedness). Let ~aj (j = 1; 2; :::; n)
be a collection of IVTrIFNs,

~a� =
��

min
1�j�nfajg; min

1�j�nfbjg; min
1�j�nfcjg min

1�j�nfdjg
�
;�

min
1�j�nf�jg; min

1�j�nf�jg
�
;

�
max

1�j�nfvjg; max
1�j�nfvjg

��
;

and:

~a+ =
��

max
1�j�nfajg; max

1�j�nfbjg; max
1�j�nfcjg max

1�j�nfdjg
�
;�

max
1�j�nf�jg; max

1�j�nf�jg
�
;

�
min

1�j�nfvjg; min
1�j�nfvjg

��
:

Then, ~a� � IVTrIFGOWA (~a1; ~a2; :::; ~an) � ~a+.

Theorem 6 (monotonicity). Let ~aj and ~a0j (j =
1; 2; :::; n) be two collections of IVTrIFNs. If ~aj � ~a0j
(j = 1; 2; :::; n), then, IVTrIFGOWA (~a1; ~a2; :::; ~an) �
IVTrIFGOWA (~a01; ~a02; :::; ~a0n).

Theorem 7. Let ~aj (j = 1; 2; :::; n) be a collection
of IVTrIFNs and ! = (!1; !2; :::; !n)T be the weighted
vector correlating with IVTrIFGOWA. Then:

1. If � = 0, then;

IVTrIFGOWA (~a1; ~a2; :::; ~an) = �n
i=1
�
~a�(j)

�!i ;
which is called the interval-valued trapezoidal
intuitionistic fuzzy ordered weighted geometrical
(IVTrIFOWG) operator;

2. If � = 1, then:

IVTrIFGOWA (~a1; ~a2; :::; ~an) =
nX
i=1

!i~a�(j);

which is reduced to the IVTrIFOWA operator;
3. If �! +1 and !i 6= 0(i = 1; 2; ::; n), then:

IVTrIFGOWA (~a1; ~a2; :::; ~an) =

max f~aiji = 1; 2; :::; ng ;
which is called the Max operator of IVTrIFNs;

4. If !j = 1=n (j = 1; 2; :::; n), then:

IVTrIFGOWA (~a1; ~a2; :::; ~an)=

0@ nX
j=1

1
n

(~a�(j))�
1A1=�

;

which is called the generalized mean operator of the
IVTrIFNs;

5. If !1 = 1, then IVTrIFGOWA (~a1; ~a2; :::; ~an) =
maxf~aiji = 1; 2; :::; ng;

6. If !n = 1, then VTrIFGOWA (~a1; ~a2; :::; ~an) =
minf~aiji = 1; 2; :::; ng;

7. If !j = 1, then VTrIFGOWA (~a1; ~a2; :::; ~an) = ~a�(j),
where ~a�(j) is the jth largest of ~ai (i = 1; 2; :::; n).

De�nition 7. Let ~aj (j = 1; 2; :::; n) be a collection
of IVTrIFNs. If IVTrIFGHWA: In ! I, so that:

IVTrIFGHWAw;!(~a1; ~a2; :::; ~an)=

0@ nX
j=1

!j(~a0�(j))
�

1A1=�

;
(10)

where ! = (!1; !2; :::; !n)T is the weight vector associ-
ated with IVTrIFGHWA, satisfying that 0 � !j � 1
(j = 1; 2; :::; n) and

Pn
j=1 !j = 1, ~a0�(j) is the jth

largest number of IVTrIFNs ~a0i (i = 1; 2; :::; n) with
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~a0i = nwi~ai, w = (w1; w2; :::; wn) is the weighting vector
of ~ai (i = 1; 2; :::; n) with 0 � wj � 1 (j = 1; 2; :::; n)
and

Pn
j=1 wj = 1, n is the balancing coe�cient, then,

function IVTrIFGHWA is called the n-dimensional
generalized hybrid weighted averaging operator of the
IVTrIFNs.

Especially, if wj = 1=n (j = 1; 2; :::; n), the
IVTrIFGHWA operator is reduced to an IVTrIFGOWA
operator. Therefore, the 'Hw;! operator generalizes
both 'Gw and 'Ow operators and re
ects the important
degrees of both the given IVTrIFNs and the ordered
position of the IVTrIFNs.

It is easy to obtain the following theorem by
De�nition 2.

Theorem 8. Let ~aj (j = 1; 2; :::; n) be a collection of
IVTrIFNs, ~a0i =

�
[a0i; b0i; c0i; d0i]; [�0i; �

0
i]; [v0i; v0i]

�
, ~a0�(j) =�

[a0�(j); b
0
�(j); c

0
�(j); d

0
�(j)]; [�0�(j); �

0
�(j)]; [v

0
�(j); v

0
�(j)]

�
.

Then, the aggregated value, using the IVTrIFGHWA
operator, is also an IVTrIFN, and:

IVTrIFGHWAw;!(~a1; ~a2; :::; ~an)

=

 "0@ nX
j=1

!ja0��(j)

1A1=�

;

0@ nX
j=1

!jb0��(j)

1A1=�

;

0@ nX
j=1

!jc0��(j)

1A1=�

;

0@ nX
j=1

!jd0��(j)

1A1=�#
;

�
(1��n

j=1(1� �0��(j))
!j )1=�;

(1��n
j=1(1� �0��(j))

!j )1=�
�
;
�
1� �1��n

j=1(1

� (1� v0��(j)))
!j
�1=�; 1� �1��n

j=1(1

� (1� v0�(j))
�)!j

�1=��!: (11)

4. MAGDM method using IVTrIFNs

A MAGDM problem is one which �nds a best com-
promise solution from all feasible alternatives assessed
on multiple attributes. Assume that there is a group
consisting of k DMs fP1; P2; :::; Pkg, which has to
choose one of (or rank) m alternatives fA1; A2; :::; Amg
based on n attributes fa1; a2; :::; ang. Denote an
alternative set by A = fA1; A2; :::; Amg and an
attribute set by F = fa1; a2; :::; ang. Suppose
that the intuitionistic fuzzy rating of alternative Ai
on attribute aj , given by DM Pt, is an IVTrIFN

~a(t)
ij =

��
h(t)

1i (aj); h
(t)
2i (aj); h

(t)
3i (aj); h

(t)
4i (aj)

�
;�(t)
ij ; v

(t)
ij
�

where �(t)
ij =

�
�(t)
ij ; �

(t)
ij
� � [0; 1] denotes the ex-

tent to which alternative Ai belongs to trapezoidal
fuzzy number

�
h(t)

1i (aj); h
(t)
2i (aj); h

(t)
3i (aj); h

(t)
4i (aj)

�
on

attribute aj by DM Pt, and v(t)
ij =

�
v(t)
ij ; v

(t)
ij
� �

[0; 1] denotes the extent to which alternative
Ai does not belong to the trapezoidal fuzzy
number

�
h(t)

1i (aj); h
(t)
2i (aj); h

(t)
3i (aj); h

(t)
4i (aj)

�
on at-

tribute aj by DM Pt and v(t)
ij =

h
v(t)
ij ; v

(t)
ij

i �
[0; 1] denotes the extent to which alternative Ai
does not belong to the trapezoidal fuzzy number�
h(t)

1i (aj); h
(t)
2i (aj); h

(t)
3i (aj); h

(t)
4i (aj)

�
on attribute aj by

DM Pt, satisfying �(t)
ij + v(t)

ij � 1. Hence, a MAGDM
problem using IVTrIFNs can be concisely expressed in
matrix format as follows:

~D(t) =
�

~a(t)
ij

�
m�n (t = 1; 2; :::; k); (12)

which are the interval-valued trapezoidal intuitionistic
fuzzy decision matrixes.

An algorithm and process of MAGDM problems
with IVTrIFNs may be summarized as follows:

Step 1. Identify the evaluation attributes and alter-
natives;

Step 2. Pool the DM's opinion to get the ratin-
gs of alternatives on attributes, i.e. to obtain the
interval-valued trapezoidal intuitionistic fuzzy decision
matrixes, ~D(t) =

�
~a(t)
ij

�
m�n (t = 1; 2; :::; k).

Step 3. Normalize matrixes ~D(t) =
�

~a(t)
ij

�
m�n (t =

1; 2; :::; k).
In general, attributes can be classi�ed into two

types: bene�t attributes and cost attributes. In other
words, attribute set F can be divided into two subsets:
F1 and F2, which are the subsets of bene�t attributes
and cost attributes, respectively. Since the physical
dimensions and ranges of the n attributes are di�erent,
the attribute values need to be normalized. In this
paper, the attribute value:

~a(t)
ij =

��
h(t)

1i (aj); h
(t)
2i (aj); h

(t)
3i (aj); h

(t)
4i (aj)

�
;�(t)
ij ; v

(t)
ij
�
;

is normalized as:

~r(t)
ij =

��
r(t)
1i (aj); r

(t)
2i (aj); r

(t)
3i (aj); r

(t)
4i (aj)

�
;�(t)
ij ; v

(t)
ij
�
;

where:

r(t)
si (aj) =

h(t)
si (aj)� min

1�j�nfh
(t)
1i (aj)g

max
1�j�nfh

(t)
4i (aj)g � min

1�j�nfh
(t)
1i (aj)g

(s = 1; 2; 3; 4; j 2 F1); (13)
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r(t)
si (aj) =

max
1�j�nfh

(t)
4i (aj)g � h(t)

5�s;i(aj)

max
1�j�nfh

(t)
4i (aj)g � min

1�j�nfh
(t)
1i (aj)g

(s = 1; 2; 3; 4; j 2 F2): (14)

Note that the second term of the numerator of Eq. (14)
is h(t)

5�s;i(aj), and the subscript is 5� s (s = 1; 2; 3; 4),
which can ensure that r(t)

1i (aj) � r(t)
2i (aj) � r(t)

3i (aj) �
r(t)
4i (aj), i.e. [r(t)

1i (aj); r
(t)
2i (aj); r

(t)
3i (aj); r

(t)
4i (aj)] is still a

trapezoidal fuzzy number. Thus, the normalized value,
~r(t)
ij , is still an IVTrIFN. Furthermore, all r(t)

si (aj) 2
[0; 1] (i = 1; 2; :::;m; j = 1; 2; :::; n; t = 1; 2; :::; k; s =
1; 2; 3; 4), i.e. ~r(t)

ij is a normalized IVTrIFN. Then, the
matrix ~D(t) can be transformed into the normalized
interval-valued trapezoidal intuitionistic fuzzy decision
matrix, ~R(t) = (~r(t)

ij )m�n (t = 1; 2; :::; k).

Step 4. Aggregate the intuitionistic fuzzy ratings
of each alternative on all attributes given by the
DM. Using the IVTrIFWA operator, the individual
comprehensive rating of alternative Ai for DM Pt is
obtained as follows:

~a(t)
i = IVTrIFWA (~r(t)

i1 ; ~r
(t)
i2 ; :::; ~r

(t)
in )

=
nX
j=1

wj~r
(t)
ij (i = 1; 2; :::;m; t = 1; 2; :::; k);

(15)

where w = (w1; w2; :::; wn)T is the weight vector of
attributes.

Step 5. Compute the collective comprehensive ratings
of alternatives for the group. According to the method
of the fuzzy linguistic quanti�er [49], weight vector ! =
(!1; !2; :::; !k)T associated with the IVTrIFGHWA op-
erator can be obtained. A collective comprehensive
rating of alternative Ai is aggregated by Eq. (11) as
follows:

~ai = IVTrIFGHWAv;!(~a(1)
i ; ~a(2)

i ; :::; ~a(k)
i )

(i = 1; 2; :::;m); (16)

where v = (v1; v2; :::; vk)T is the weight vector of DMs.

Step 6. The ranking orders of alternatives are gen-
erated by the ranking method based on barycenter for
IVTrIFNs ~ai (i = 1; 2; :::;m). Also the best alternative
can be determined.

5. A numerical example and comparison
analysis of computational results

A numerical example is analyzed and the comparison
analysis is conducted in this section.

5.1. A numerical example and the analysis
process

In this section, a problem concerning a manufacturing
company searching for the best global supplier for a
critical part used in its assembly process is designed to
verify and illustrate the method proposed in this paper.

These attributes are considered in selection of
three potential global suppliers, Ai (i = 1; 2; 3), as:
quality of product, a1, service performance of supplier,
a2, and supplier pro�le, a3. These attributes are
all bene�t attributes. An expert group consists of
three experts, Pt (t = 1; 2; 3), who are invited to
evaluate the three potential global suppliers. Assume
that the weight vector of the attributes is w =
(0:26; 0:32; 0:42)T , and the weight vector of the ex-
perts is v = (0:33; 0:36; 0:31)T . The experts give
the characteristics of the potential global suppliers
by the IVTIFNs. Thereby, the interval-valued trape-
zoidal intuitionistic fuzzy decision matrices, ~D(t)(t =
1; 2; 3), are given in Tables 1-3. For example, ~a(1)

11 =
([1; 2; 3; 4]; [0:6; 0:8], [0:1; 0:2]) may be explained as
stated in Section 1: Introduction.

We solve this problem using the proposed method
in this paper. The solving process is summarized as
follows:

Table 1. Interval-valued trapezoidal intuitionistic fuzzy decision matrix ~D(t) given by expert Pt.

a1 a2 a3

A1 ([1, 2, 3, 4];[0.6,0.8],[0.1,0.2]) ([4, 5, 6, 8];[0.3,0.5],[0.2,0.4]) ([1, 4, 5, 6];[0.1,0.3],[0.3,0.5])
A2 ([5, 6, 7, 8];[0.3,0.5],[0.2,0.4]) ([2, 4, 6, 7];[0.4,0.6],[0.1,0.3]) ([2, 4, 6, 7];[0.1,0.3],[0.4,0.6])
A3 ([2, 3, 4, 5];[0.1,0.3],[0.4,0.6]) ([2, 4, 5, 7];[0.5,0.7],[0.2,0.3]) ([3, 4, 6, 8];[0.4,0.6],[0.0,0.2])

Table 2. Interval-valued trapezoidal intuitionistic fuzzy decision matrix, ~D(2), given by expert P2.

a1 a2 a3

A1 ([3, 5, 6, 8];[0.1,0.3],[0.4,0.6]) ([2, 3, 4, 5];[0.6,0.8],[0.0,0.1]) ([2, 4, 5, 7];[0.4,0.7],[0.1,0.3])
A2 ([2, 3, 4, 6];[0.4,0.6], [0.2,0.3]) ([1, 3, 5, 8];[0.3,0.5],[0.2,0.4]) ([1, 2, 4, 6];[0.1,0.2],[0.3,0.6])
A3 ([1, 2, 3, 4];[0.1,0.2],[0.4,0.7]) ([ 3, 4, 5, 8];[0.2,0.4],[0.2,0.5]) ([3, 4, 6, 7];[0.3,0.4],[0.4,0.5])
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Table 3. Interval-valued trapezoidal intuitionistic fuzzy decision matrix, ~D(3), given by expert P3.

a1 a2 a3

A1 ([2, 4, 5, 8];[0.1,0.2],[0.3,0.6]) ([2, 3, 4, 5];[0.3,0.4],[0.2,0.4]) ([1, 3, 6, 7];[0.2,0.4],[0.4,0.6])

A2 ([4, 5, 6, 7];[0.2,0.3],[0.3,0.5]) ([1, 3, 5, 6];[0.4,0.6],[0.0,0.2]) ([4, 6, 7, 9];[0.5,0.7],[0.1,0.3])

A3 ([1, 2, 3, 4];[0.4,0.7],[0.1,0.3]) ([2, 3, 4, 5];[0.2,0.4],[0.3,0.5]) ([3, 4, 6, 7];[0.1,0.4],[0.2,0.5])

Table 4. Normalized decision matrix, ~R(1), given by expert P1.

a1 a2 a3

A1 ([0,0.14,0.29,0.43];[0.6,0.8],[0.1,0.2]) ([0.43,0.57,0.71,1.0];[0.3,0.5],[0.2,0.4]) ([0,0.43,0.57,0.71];[0.1,0.3],[0.3,0.5])

A2 ([0.5,0.67,0.83,1.0];[0.3,0.5],[0.2,0.4]) ([0,0.33,0.67,0.83];[0.4,0.6],[0.1,0.3]) ([0,0.33,0.67,0.83];[0.1,0.3],[0.4,0.6])

A3 ([0,0.17,0.33,0.50];[0.1,0.3],[0.4,0.6]) ([0,0.33,0.50,0.83];[0.5,0.7],[0.2,0.3]) ([0.17,0.33,0.67,1.0];[0.4,0.6],[0.0,0.2])

Table 5. Normalized decision matrix, ~R(2), given by expert P2.

a1 a2 a3

A1 ([0.17,0.50,0.67,1.0];[0.1,0.3],[0.4,0.6]) ([0,0.17,0.33,0.50];[0.6,0.8],[0.0,0.1]) ([0,0.33,0.50,0.83];[0.4,0.7],[0.1,0.3])

A2 ([0.14,0.29,0.43,0.71];[0.4,0.6], [0.2,0.3]) ([0,0.29,0.57,1.0];[0.3,0.5],[0.2,0.4]) ([0,0.14,0.43,0.71];[0.1,0.2],[0.3,0.6])

A3 ([0,0.14,0.29,0.43];[0.1,0.2],[0.4,0.7]) ([0.29,0.43,0.57,1.0];[0.2,0.4],[0.2,0.5]) ([0.29,0.43,0.71,0.86];[0.3,0.4],[0.4,0.5])

Table 6. Normalized decision matrix, ~R(3), given by expert P3.

a1 a2 a3

A1 ([0.14,0.43,0.57,1.0];[0.1,0.2],[0.3,0.6]) ([0.14,0.29,0.43,0.57];[0.3,0.4],[0.2,0.4]) ([0,0.29,0.71,0.86];[0.2,0.4],[0.4,0.6])

A2 ([0.38,0.50,0.63,0.75];[0.2,0.3],[0.3,0.5]) ([0,0.25,0.50,0.63];[0.4,0.6],[0.0,0.2]) ([0.38,0.63,0.75,1.0];[0.5,0.7],[0.1,0.3])

A3 ([0,0.17,0.33,0.50];[0.4,0.7],[0.1,0.3]) ([0.17,0.33,0.50,0.67];[0.2,0.4],[0.3,0.5]) ([0.33,0.50,0.83,1.0];[0.1,0.4],[0.2,0.5])

Step 1. Step 1 is omitted.

Step 2. Step 2 is omitted.

Step 3. According to Eqs. (13) and (14), the nor-
malized interval-valued trapezoidal intuitionistic fuzzy
decision matrices are obtained as in Tables 4-6.

Step 4. Combining the weight vector of attributes
w = (0:26; 0:32; 0:42)T with the IVTrIFWA operator,
the individual comprehensive rating of alternative A1
for expert P1 is calculated by Eq. (15) as follows:

~a(1)
1 = IVTrIFWA (~r(1)

11 ; ~r
(1)
11 ; ~r

(1)
13 ) = �3

j=1

�
~r(1)
1j

�Wj

=
�
[0:1376; 0:3994; 0:542; 0:73] ;

[0:3274; 0:5462] ; [0:1980; 0:3669]
�
:

In a similar way, the individual comprehensive ratings
of each alternative Ai (i = 1; 2; 3) for experts Pt (i =
1; 2; 3) are obtained as:

~a(1)
2 =

�
[0:13; 0:4184; 0:7116; 0:8742]; [0:2595; 0:4638];

[0:2144; 0:4326]
�
;

~a(1)
3 =

�
[0:0714; 0:2884; 0:5272; 0:8156];

[0:3711; 0:5780]; [0; 0:3030]
�
;

~a(2)
1 =

�
[0:0442; 0:323; 0:4898; 0:7686];

[0:4144; 0:6716]; [0; 0:2528]
�
;

~a(2)
2 =

�
[0:0364; 0:227; 0:4748; 0:8028];

[0:2526; 0:4252]; [02371; 0:4401]
�
;

~a(2)
3 =

�
[0:2146; 0:3546; 0:556; 0:793];

[0:2201; 0:3534]; [0:3204; 0:5457]
�
;

~a(3)
1 =

�
[0:0812; 0:3264; 0:584; 0:8036];

[0:2096; 0:3534]; [0:2973; 0:5270]
�
;

~a(3)
2 =

�
[0:2584; 0:4746; 0:6388; 0:8166];

[0:4011; 0:5900]; [0; 0:3009]
�
;

and:
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~a(3)
3 =

�
[0:193; 0:3598; 0:5944; 0:7644];

[0:2200; 0:4989]; [0:1902; 0:4378]
�
;

respectively.

Step 5. According to Eq. (9), we choose the \al-
most" criteria and determine that the weight vector
associated with the IVTrIFGHWA operator is ! =
(0:067; 0:667; 0:267)T . The collective comprehensive
rating of alternative A1 for the group is obtained by
Eq. (16) as:

~a1 = IVTrIFGHWAv;!(~a(1)
1 ; ~a(2)

1 ; ~a(3)
1 )

=
�
[0:0611; 0:3402; 0:5338; 0:8016];

[0:3751; 0:6182]; [0; 0:2571]
�
;

where v = (0:33; 0:36; 0:31)T is the weight vector of the
experts, and � = 1.

Analogously, the collective comprehensive ratings
of alternatives A2 and A3 are obtained, respectively,
as:

~a2 =
�
[0:1124; 0:3713; 0:6466; 0:8596];

[0:2697; 0:4657]; [0; 0:3948]
�
;

and:

~a3 =
�
[0:1541; 0:3251; 0:5483; 0:7471];

[0:2553; 0:4976]; [0:2434; 0:4243]
�
:

Step 6. By De�nition 3, we calculate the barycenters
of three characteristic functions of ~a1 for the alternative
A1 as P11 = (0:4363; 0:3997), P12 = (0:4363; 0:2986)
and P13 = (0:4363; 0:3017), respectively.

Analogously, the barycenters of characteristic
functions of ~a2 and ~a3 are obtained as follows:

P21 = (0:5040; 0:3111);

P22 = (0:5040; 0:3209);

P23 = (0:5040; 0:3680);

P31 = (0:4641; 0:3196);

P32 = (0:4641; 0:4344);

P33 = (0:4641; 0:2460):

Then, by Eqs. (1) and (2), the expectation and
expectant scores for ~a1, ~a2 and ~a3 are obtained as
E(~a1) = 0:4363, S(~a1) = 0:2270, E(~a2) = 0:5040,
S(~a2) = 0:2145, E(~a3) = 0:4641 and S(~a3) = 0:1848,
respectively.

According to Subsection 2.2, the ranking order of
the suppliers for the group is A2 � A3 � A1, and the
best supplier is A2.

Similarly, for di�erent parameter values, � 2
[0;+1), we can obtain the ranking order of the
suppliers. The computation results and ranking orders
of suppliers are listed in Table 7.

Table 7 shows that the ranking orders of alterna-
tives may be di�erent for di�erent parameter values of
�. If � � 50, the rank order is A2 � A3 � A1, and
the best supplier is A2, while, for � ! +1, the rank
order is A3 � A2 � A1 and the best supplier is A3.
This observation implies that DMs can select di�erent
parameter values according to their preferences in
making decisions, which greatly enhances the 
exibility
of the decision process.

5.2. Comparison analysis of the obtained
results

In this subsection, we compare the results obtained by
the proposed method in this paper and the method
of Wei [37]. Since [37] utilized TrIFNs to express the
attribute values, we �rst take the interval middle-points
of the maximum membership degree interval and the

Table 7. The computation results for di�erent parameter values and ranking orders of suppliers.

� E(~a1) S(~a1) E(~a2) S(~a2) E(~a3) S(~a3) Ranking order Best supplier

0 0.4339 0.1998 0.4935 0.1938 0.4562 0.1819 A2 � A3 � A1 A2

0.1 0.4386 0.2254 0.4998 0.2124 0.4619 0.1824 A2 � A3 � A1 A2

0.2 0.4366 0.2246 0.4983 0.2117 0.4603 0.1819 A2 � A3 � A1 A2

0.5 0.4358 0.2251 0.4998 0.2125 0.4612 0.1827 A2 � A3 � A1 A2

1 0.4363 0.2270 0.5040 0.2145 0.4641 0.1848 A2 � A3 � A1 A2

5 0.4469 0.2437 0.5311 0.2308 0.4799 0.2010 A2 � A3 � A1 A2

10 0.4584 0.2556 0.5546 0.2513 0.4910 0.2150 A2 � A3 � A1 A2

20 0.4692 0.2642 0.5745 0.2786 0.5092 0.2322 A2 � A3 � A1 A2

50 0.4808 0.1882 0.5899 0.2039 0.5360 0.1722 A2 � A3 � A1 A2

+1 0.4610 0.1947 0.5645 0.2827 0.5647 0.1797 A3 � A2 � A1 A3
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minimum non-membership degree interval in Tables 4-
6 to transform the IVTrIFNs into TrIFNs. Then, using
method [37], the collective comprehensive ratings of
alternatives, Ai(i = 1; 2; 3), are obtained as:

~r1 =
�
[0:0786; 0:2491; 0:3387; 0:7602]; 0:4557; 0:2365

�
;

~r2 =
�
[0:1562; 0:3455; 0:4013; 0:8453]; 0:4059; 0:2773

�
;

and:

~r3 =
�
[0:1384; 0:3231; 0:3280; 0:7312]; 0:4114; 0:2677

�
;

respectively.
The distances between the collective comprehen-

sive ratings of alternatives and the trapezoidal intu-
itionistic fuzzy positive ideal solution, ~r+, [37] are
calculated as: d(~r1; ~r+) = 0:7826, d(~r2; ~r+) = 0:7534
and d(~r3; ~r+) = 0:7826, respectively.

Therefore, the suppliers are ranked as A2 � A3 =
A1, and the best supplier is A2.

Obviously, the ranking results obtained by the
method proposed in this paper are remarkably di�erent
from those obtained by the method [37]. Compared
with the method in [37], the proposed method in this
paper has the following advantages:

(i) The abilities of representing uncertainty are very
di�erent for IVTrIFN and TrIFN. The former uses
the intervals to express the maximum member-
ship degree and the minimum non-membership
degree, while the latter uses crisp real numbers to
express the maximum membership degree and the
minimum non-membership degree. Consequently,
the latter is only a special case of the former.

(ii) The method in [37] can only obtain a single rank-
ing result, while the proposed method in this pa-
per can generate di�erent ranking results through
choosing di�erent parameter values. Thus, the
latter is more 
exible and agile than the former.

(iii) If there exist two di�erent alternatives, with
equal distances relative to the fuzzy positive
ideal solution, then, the method in [37] cannot
distinguish these two alternatives. For example,
because d(~r1; ~r+) = d(~r3; ~r+) = 0:7826, A3 is
the same as A1 when using the method in [37].
However, if there exist two di�erent alternatives
with equal expectations, the method of this paper
can further distinguish these two alternatives,
according to expectant scores. For example,
though E(~a1) = E(~a2) = 0:4460, and S(~a1) =
0:3175 > S(~a2) = 0:2967, A1 is superior to A2
when using the method proposed in this paper.
From this point of view, the distinguishing power
of this paper's method is stronger than that of
[37].

6. Conclusion

As stated previously, the IVTrIFN is a useful gen-
eralization of the IFS. From a geometric viewpoint,
the expectation and expectant scores of IVTrIFNs
are de�ned by using the notion of barycenter. A
new method based on barycenter is presented to rank
IVTrIFNs. Then, the IVTrIFOWA, IVTrIFGOWA,
and IVTrIFHWA operators for IVTrIFNs are devel-
oped and employed to solve a MAGDM problem with
IVTrIFNs. Though a supplier, a selected example is
used to illustrate the applicability and implementation
process of the decision method proposed in this paper.
It is expected to be applicable to decision problems
in many areas, such as risk investment and per-
formance evaluation of military systems, engineering
management, and partner selection of supply chain
management.

However, constructing IVTrIFNs (i.e., extracting
the membership and non-membership functions, whose
values depend on both di�erent intervals and trape-
zoidal fuzzy number) is a key problem when apply-
ing the proposed methodology to practical decision
problems. Generating methods of IVTrIFNs will be
investigated in the near future.
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