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Abstract. Centroid of general type-2 fuzzy set can be used as a measure of uncertainty in
highly uncertain environments. Computing centroid of general type-2 fuzzy set has received
an increasing research attention during recent years. Although computation complexity
of such sets is higher than that of interval type-2 fuzzy sets, with the advent of new
representation techniques, e.g. �-planes and z-Slices, computation e�orts needed to deal
with general type-2 fuzzy sets have decremented. A very �rst method to calculate the
centroid of a general type-2 fuzzy set was to use Karnik-Mendel algorithm on each �-
plane, independently. Because of the iterative nature of this method, running time in
this approach is rather high. To tackle such a drawback, several emerging algorithms
such as Sampling method, Centroid-Flow algorithm, and, recently, Monotone Centroid-
Flow algorithm have been proposed. The aim of this paper is to present a new method
to calculate centroid intervals of each �-plane, independently, while reducing convergence
time compared with other algorithms like iterative use of Karnik-Mendel algorithm on each
�-plane. The proposed approach is based on estimating an initial switch point for each
�-plane. Exhaustive computations demonstrate that the proposed method is considerably
faster than independent implementation of existing iterative methods on each �-plane.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

General Type-2 Fuzzy Sets (GT2 FSs) are Type-2
(T2) fuzzy sets with a secondary membership function
which can take on any value between zero and one.
This concept was �rst introduced by Zadeh [1]. GT2
FSs have more degrees of freedom so that they are
capable of dealing with high level uncertainties in a
more intuitive manner than Interval Type-2 (IT2) fuzzy
sets and traditional type-1 fuzzy sets. As a result, GT2
FSs have received much attention during last years
and they have been successfully applied to many real
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engineering and medical cases [2,3]. Some of the most
successful engineering and medical applications of the
T2 fuzzy systems are data classi�cation [4,5], expert
systems and function approximation [6-9], and medical
treatments [10,11]. Nearly, most of these applications
were based upon IT2 FSs since computational complex-
ity of GT2 FSs was high. Meanwhile, with the advent
of new representation methods, GT2 FSs are going to
be widely applied in various scienti�c areas.

As a crucial uncertainty representation measure,
computing the centroid of GT2 FS is mandatory when
performing type-reduction in Fuzzy Logic Systems
(FLSs) [12,13]. This issue has been an active �eld
of research during recent years, but there are serious
problems in this way since there is not a closed-form
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solution to �nd the centroid of a GT2 FS, directly.
To date, several type-reduction methods have been
proposed to deal with IT2 FSs of which a new geometric
method representing e�ective inference techniques to
deal with T2 fuzzy sets has been presented in [14].
Recently, Kumbasar et al. [15] have presented the exact
inversion of decomposable interval type-2 fuzzy logic
systems. Then, based on the decomposition property
of IT2 FLSs, the analytical formulation of the inverse
of an IT2 FLS is driven for the interval switching point
of Karnik-Mendel (KM) type-reduction algorithm.

Computing the exact value of centroid of a GT2
FS is only possible through considering the entire
embedded sets of the GT2 FS. Such a thing is nearly
impossible since the number of embedded sets are too
large to be considered in a limited time. Hence, other
methods, such as sampling [16], have been proposed
to facilitate the process of type-reduction of GT2 FSs.
In [16], the authors present a sampling method to �nd
the centroid of GT2 FSs, which is close to the exact
optimal centroid of that GT2 FS.

To date, several other practical methods have
been presented to �nd the centroid of a GT2 FS. Coup-
land [17] uses x-coordinate of the geometric centroid of
the 3-D membership function of fuzzy sets. The main
disadvantage of this method lies in the fact that the
GT2 FS is directly converted to a crisp value so that
a huge amount of uncertainty is lost and the resultant
centroid does not provide an appropriate measure of
uncertainty. In another research, Lucas et al. [18]
present an ad hoc method to compute the centroid of
GT2 FSs using the entire vertical slices. Note that
each vertical slice is a T1 FS in itself. Ignoring other
geometric properties of GT2 FSs, this method results
in a centroid whose domain is exactly the same as the
domain of the primary variable of the considered FS.
Therefore, this method can be a reliable measure of
uncertainty.

One of the most prominent representation meth-
ods of GT2 FSs is to decompose them into several �-
planes. The concept of �-planes has been thoroughly
discussed by Mendel et al. [19]. Such a representation
o�ers a computationally e�cient framework to deal
with GT2 FSs. To facilitate the process of type-
reduction, Liu [20] has utilized the concept of �-planes
to �nd the centroid of a GT2 FS. He decomposes
each GT2 FS into several planes which are IT2 FSs.
Then Karnik-Mendel (KM) algorithm is applied to
�nd the centroid of each �-plane. Finally, the entire
obtained centroids are aggregated and the centroid of
the GT2 FS is obtained. This method is appropriate
in theoretical studies, but it is not much useful when
applied to real world problems since it is rather time
consuming. Based on weaknesses of Liu's work, Yeh
et al. [21] present an enhanced algorithm in order to
speed up the process of type-reduction. Their main

concentration is �nding the initial switch point for
each �-plane in order to enhance e�ciency of the
type-reduction process. Recently, Wu et al. [22] also
proposed a new fast type-reduction method based on
improvements performed on the Liu's [20] approach.
In [23], Green�eld et al. conducted a study on
comparing Liu's �-plane decomposition method with
direct approach of sampling presented in [16]. In
another study, Green�eld and Chiclana [24] investi-
gate which of the type-reduction methods working on
IT2 FSs are better to be coupled with the Liu's �-
plane decomposition method. These methods are the
KM algorithm, the collapsing method [25], and the
Nie's approach [26]. A comprehensive description is
represented in [27], which tries to discuss the basic
concepts of GT2 FSs. Also in [28], defuzzi�cation
of GT2 FSs based on discretization process has been
experimentally evaluated.

Recently, based on mathematical properties of �-
planes, two e�cient algorithms have been developed
for computing the centroid of GT2 FSs. The main
di�erence of these methods lies in the fact that despite
previous type-reduction methods, which implement
Enhanced KM (EKM) or KM algorithms on each �-
plane, they do not need to perform iterative time
consuming procedures for each plane. The �rst algo-
rithm is called Centroid Flow (CF) algorithm [29]. CF
algorithm starts from an initial point in the �rst �-
plane and �nds its centroid bounds. This starting point
is the same centroid interval of the lowest �-plane which
is obtained using KM or EKM iterative algorithms.
Then, using derivatives of the secondary membership
functions in each �-plane for the entire discretized
primary variables, centroid intervals of each �-plane
ow to its upper plane while having some changes. It
is proved that the CF algorithm is 75%-80% faster than
the KM algorithm and 50%-75% faster than the EKM
method [30]. Then, Zhai and Mendel enhanced the
CF algorithm and presented a more powerful approach
based on the CF algorithm [30,31]. The CF algorithm
su�ers from some drawbacks. The main drawback
of this algorithm is that due to the interrelations of
this algorithms, computational errors of this algorithm
gradually accumulate as the algorithms goes to other
�-planes. This will de�nitely a�ect the accuracy of
the �nal T1 type-reduced FS. Also, it does not yield
similar results obtained from independent application
of KM/EKM algorithms on each �-plane.

Recently, based on the CF algorithm, Linda and
Manic [30] have proposed an enhanced version of the
CF algorithm called Monotone CF (MCF) algorithm.
In the MCF algorithm, monotonicity of secondary
membership functions has been used towards develop-
ing a fast algorithm for type-reduction purposes. MCF
has several features including: a) It leads to identical
centroids as KM/EKM algorithms; b) It is easy to
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implement; and c) It is faster than its counterpart, i.e.
the CF algorithm. Despite CF algorithm which begins
from the lowest plane and needs to have an initial start-
ing point calculated by KM/EKM algorithms, MCF
eliminates the need for using KM/EKM algorithms and
also can be initiated from any deliberate �-plane. One
of the main advantages of the MCF algorithm is that
it is rather easy to implement and it does not need to
compute the derivatives of the secondary membership
functions on each �-plane.

Both CF and MCF algorithms start to work
from an initial point and both are faster than the
existing procedures, like KM and EKM; but in both
methods, it is necessary to �nd the upper and lower
membership values for each �-plane. On the other
hand, CF algorithm does not yield solutions identical to
the obtained solutions from KM/EKM algorithms. In
this way, two fundamental questions arise: 1) How can
we compute centroid endpoints of each independent �-
plane identical to the results of KM/EKM algorithms,
but in a much faster manner? 2) To speed up the
process, how can we develop a new way to �nd the
centroid of each �-plane without the need to compute
centroids of the upper or the lower planes as occurs
in CF and MCF algorithms? According to these
questions, it can be observed that the capability of
computing centroid of each plane without any need to
�nd the centroids of the preceding planes is achieved
in KM/EKM algorithms, but they are slower than
CF and MCF algorithms. To boost them up, funda-
mental changes are needed to be implemented in the
EKM/KM algorithms so that their starting switching
points in each �-plane be close to the optimal switch
points of that �-plane as much as possible. Since the
proposed method in this paper concentrates on the
initial switch points of each �-plane, it will be called
\Constrained Switching (CS) algorithm". This method
will be discussed in the incoming sections of the paper.

Based on the above discussions, the main contri-
bution of this paper can be listed as follows:

� Presenting novel methods for �nding good initial
switching points for type-reduction of IT2 FSs to
reduce the number of iterations needed to reach the
optimal switching points;

� Providing some lemma and theorems on charac-
teristics of �-planes and their inuences on type-
reduction of GT2 FSs;

� Presenting two fast iterative algorithms based on the
concept of �-planes for the type-reduction of GT2
FSs.

The rest of the paper is organized as follows. In
Section 2, the basic concepts of GT FSs will be re-
viewed. Di�erent type-reduction methods for GT2 FSs
are discussed in Section 3 and the proposed approaches
are discussed in Section 4. In Section 5, comparative
experiments are represented and conclusion remarks
will be given in Section 6.

2. General type-2 fuzzy sets

In this section, we briey review the basic concepts of
GT2 FSs and �-plane representation procedure of GT2
FSs.

2.1. General type-2 fuzzy sets
According to [32], a GT2 FS ~A is expressed on a
universe of discourse X using its corresponding T2
membership function � ~A(x; u), where x 2 X and u 2
Jx:

~A =
Z
x2X

Z
u2Jx

� ~A(x; u)=(x; u); Jx � [0; 1]; (1)

where x is the primary variable value, u denotes the
secondary variable, Jx denotes an interval between
the lower and the upper membership functions, and
� ~A(x; u) denotes the secondary membership function.
Note that

RR
represents union over the entire possible

values of x; u and � ~A(x; u). A schematic view of a GT2
FS with Gaussian secondary is depicted in Figure 1(a).

Figure 1. a) Schematic view of a GT2 FS ~A with mixed Gaussian secondary MF. b) �-plane representation of the GT2
FS ~A.
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According to John and Mendel [33], there are two
important representations for GT2 FSs: the Vertical
Slice representation and the Wavy Slice representation.

A GT2 FS ~A can be represented by its vertical
slices. Vertical slice of ~A can be obtained by consid-
ering a speci�c point in universe of discourse, such as
x = x0. Then, the vertical slice � ~A(x0; u) of the fuzzy
membership function � ~A(x; u) can be obtained. In
fact, vertical slices at each point represent a secondary
membership function, � ~A(x = x0; u), for x0 2 X and
8u 2 Jx0 � [0; 1]:

� ~A(x = x0; u) �
Z
u2Jx0

fx0(u)=u; Jx0 � [0; 1]; (2)

where fx0(u) is amplitude of the secondary membership
function and fx0(u) � [0; 1]. Suppose that the entire
domain has been discretized into N samples. Then, the
GT2 FS ~A can be represented as an aggregation of its
entire vertical slices as follows [30]:

~A =
NX
i=1

"Z
u2Jxi

fxi(u)=u

#
=xi: (3)

The other well-known representation method for a GT2
FS ~A has been provided as follows [30]:

~A =
[
8 ~Ae

~Ae: (4)

Here, ~A has been represented by the union of all its
embedded T2 FSs. An embedded T1 fuzzy set of ~A,
~Ae is described by an MF u ~Ae : X ! [0; 1], where
u ~Ae 2 Jx. ~Ae is expressed as [29]:

~Ae =
Z
x2X

u=x; u 2 Jx; (5)

where the embedded T1 FS ~Ae, which corresponds
to an embedded T2 FS ~Ae, contains the primary
memberships of that ~Ae.

2.2. �-Plane representation of general type-2
fuzzy sets

The concept of �-planes has also been developed by
several other researchers, independently, i.e. Tahayori
et al. [34], Chen and Kawase [35], and Liu [20].
The notations on the concept of �-plane are adopted
from [19].

An �-plane of a GT2 FS ~A is the union of the
entire primary memberships of ~A whose secondary
grades are greater than or equal to � (0 � � � 1).
�-plane of ~A is denoted by ~A�.

~A� =
Z
8x2X

Z
8u2Jx

f(u; x)jfx(u) � �g : (6)

An �-cut of the secondary MF � ~A(x) is represented by

s ~A(xj�):

S ~A(xj�) = [SL(xj�); SR(xj�)] : (7)

As a result, ~A� can be constructed as a composition of
all �-cuts of all of its secondary membership functions,
i.e.:

~A� =
Z
8x2X

S ~A(xj�)=x

=
Z
8x2X

 Z
8u2[SL(xj�);SR(xj�)]

u

!
=x: (8)

Using �-planes, we can rede�ne the well-known de�ni-
tion of Footprint Of Uncertainty (FOU). FOU is equal
to the lowest �-plane, i.e.:

FOU( ~A) = ~A0: (9)

According to Zhai and Mendel [29], each �-plane is
bounded from above by its upper membership function,
�� ~A(xj�), and from below by its lower membership func-
tion, � ~A(xj�) . The upper and the lower membership
functions of a plane ~A� can be described in terms of
�-cuts as follows:

�� ~A(xj�) =
Z
8x2X

SR(xj�); (10)

� ~A(xj�) =
Z
8x2X

SL(xj�): (11)

A schematic view of �-planes for the GT2 FS ~A is
depicted in Figure 1(b). Each �-plane is indeed an
interval T2 FS with the centroid C ~A�(x), e.g. centroid
of ~A on the �-plane `�'. Liu [20] states that the centroid
of a GT2 FS ~A, C ~A(x), is a composition of its all �-
planes, i.e.:

C ~A(x) =
[

�2[0;1]

�=C ~A�(x): (12)

Note that centroid of each �-plane, C ~A�(x), has a lower
and an upper bound so that the centroid of a GT2 FS
~A can be rewritten as Eq. (13):

C ~A(x) =
[

�2[0;1]

�=
h
cl( ~A=�); cr( ~Aj�)

i
: (13)

For a better understanding, a 3D view of a GT2
FS with Gaussian primary membership function and
triangular secondary membership function represented
by its �-planes is illustrated in Figure 2. In this �gure,
there are eight �-planes, each in a di�erent color. These
�-planes are IT2 FSs. For more intuitive �gures, the
reader can refer to [29,30].
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Figure 2. A GT2 FS represented by its �-planes.

3. Type-reduction of general type-2 fuzzy sets

Here, we will have a brief review on the KM type-
reduction algorithm. Although KM is basically devel-
oped for ITS FSs, it can be iteratively used for type-
reduction purposes implemented on each �-plane of a
GT2 FS.

3.1. Karnik-Mendel (KM) algorithm
KM algorithm starts with �nding an initial mean
average, and then iteratively continues until converging
to the left and right endpoints of the centroid intervals.
The KM algorithm to compute Cl( ~A�) is given in
Algorithm 1.

The algorithm to �nd the Cr( ~A�) is quite similar
to the above algorithm, so we leave it behind. In
Algorithm 1, L and N represent the left switch point
and the total number of primary domain members,
respectively.

3.2. Enhanced KM algorithm (EKM)
In order to expedite the computation process of �nd-
ing the centroid endpoints of an IT2 FS, Wu and
Mendel [36] proposed an enhanced version of the KM
(EKM) algorithm which �nds an initial switching point
for the IT2 FS in such a way that the number of iter-
ations for convergence decreases remarkably. However,
EKM is basically designed to deal with IT2 FSs, and
in order to �nd the centroid of a GT2 FS, it should be
iteratively applied to di�erent �-planes of the GT2 FS.
Therefore, it is still time consuming to use EKM in GT2
FSs. Some new works on type-reduction algorithms can
be found in [37,38].

Switch points are members of the primary do-
main. These points are used as a switch between
the lower and the upper membership functions of any
IT2 FS. Switch points were �rst introduced by Karnik
and Mendel to �nd the left and right endpoints of
the corresponding type-reduced T1 FSs of IT2 FSs.
During the iterative procedure of computing the left
and right centroid endpoints, an initial centroid is
obtained using the traditional COG defuzzi�cation
method. Then, using this initial centroid, left and
right switch points are computed until the �nal left
and right centroid endpoints are reached. A schematic
view of left and right switch points are demonstrated
in Figure 3.

In Figure 3, the upper and the lower membership
functions of an IT2 FS accompanied by the primary
domain values are represented. As can be observed, the
right dashed line denotes the initial switch point and
the left dashed line denotes the �nal left switch point
where a shift from the upper membership function
to the lower membership function occurs in order to

Algorithm 1. The KM algorithm for computing the left centroid endpoints of GT2 FS ~A at the plane �.
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Figure 3. A schematic view of the left switch point in an
IT2 FS.

Figure 4. A schematic view of the right switch point in
an IT2 FS.

compute the left centroid endpoint of the IT2 FS. The
same story is true in Figure 4.

Based on the above discussions, we present a fast
iterative procedure, especially designed for GT2 FSs.
The proposed method is able to estimate an initial
value for both left and right switch points in each �-
plane such that the initial switch points are close to the
switch points of the left and right centroid endpoints
in each �-plane and the algorithm converges to these
endpoints faster than the KM/EKM algorithms. The
proposed algorithm tries to �nd a good initial switch
point, but the procedure of converging to the left and
right centroid endpoints of each �-plane is similar to
that of KM/EKM methods.

4. Constrained switching algorithm

Switch points are one of the main tools in �nding the
centroid endpoints of IT2 FSs. Moreover, there is
not a closed form solution to �nd centroid of an IT2
FS. In order to compute centroid endpoints of an IT2
FS, some algorithms, such as EKM/KM, use an initial
switch point and then check other remaining switch
points in order to gain the termination criterion of
the algorithm. Our experiments show that the initial
switch point is crucial in decreasing the number of
iterations to gain the left or right endpoints of each
centroid interval [39,40]. KM and EKM algorithms use
a constant procedure to �nd a starting switch point for

computing centroid intervals of each �-plane. Our aim
is to �nd a good initial switch point in order to expedite
the process of converging to the centroid endpoints of
each �-plane. A comprehensive comparison between
various type-reduction algorithms is presented in [41].
For more information about the applications of T2 FSs,
please refer to [61-64].

In this section, several lemma and theorems are
provided, and then the CS algorithm will be presented.

4.1. Theorems
Secondary membership functions of a GT2 FS ~A can
have di�erent shapes such as triangular, trapezoidal,
Gaussian, and etc. When secondary membership
functions have a single apex, such as Gaussian or
triangular, ~A becomes a T1 FS and its centroid will
be a single point. On the other hand, when secondary
membership functions are trapezoidal, ~A becomes an
IT2 FS so that its centroid will be an interval. Also,
according to the monotonicity property for the GT2
FSs ~A, if �1 � �2, then [30]:

cl( ~Aj�1) � cl( ~Aj�2); cr( ~Aj�1) � cr( ~Aj�2): (18)

Suppose that the apex of the secondary membership
grade of the GT2 FSs ~A in the point x is calculated as
follows:

Apex(x) = Sl(xj1) + w (Sr(xj1)� Sl(xj1)) ;

0 � w � 1; (19)

where Sl(xj1) is the left primary membership value at
the �-plane ~A1 for the primary domain value of x,
Sr(xj1) is the right primary membership value at the
�-plane ~A1 for the primary domain value of x, and w
is a weighting coe�cient.

Suppose that the secondary membership func-
tions are triangular or Gaussian. Also w can take any
value from interval [0, 1]. When w increases from 0 to
1, Apex(x) approaches Sr(xj1). Since Eq. (19) holds
for the entire discrete values of the primary domain,
by increasing w from 0 to 1, Apex(x) gets close to
�� ~A(xj0). On the other hand, when w decrements to 0,
Apex(x) gets close to � ~A(xj0). Moreover, for any value

of w, centroid of ~A is �xed. Suppose ~cl( ~Aj�) to be
an approximation for the left centroid endpoint of the
GT2 FS ~A at the �-plane `�'. This approximated left
centroid endpoint is obtained based on the connection
line between the left centroid endpoints of the �-planes
~A0 and ~A1 as follows:

~cl( ~Aj�) = �(cl( ~Aj1)� cl( ~Aj0)) + cl( ~Aj0); (20)

where ~cl( ~Aj�) denotes an approximation of cl ( ~Aj�),
cl( ~Aj1) represents left centroid endpoint of the GT2
FS ~A at the highest �-plane, and cl( ~Aj0) represents
left centroid endpoint of the GT2 FS ~A at the lowest
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Table 1. The number of left and right switching points for di�erent numbers of planes and discretization levels of the
primary domain.

� = 0:01 � = 0:02 � = 0:04 � = 0:08 � = 0:1 � = 0:5

0.01 (101 planes) R = 101
L = 101

R = 66
L = 66

R = 24
L = 24

R = 17
L = 16

R = 14
L = 13

R = 3
L = 2

0.05 (21 planes) R = 20
L = 20

R = 20
L = 20

R = 20
L = 20

R = 17
L = 16

R = 14
L = 13

R = 4
L = 3

0.1 (11 planes) R = 10
L = 10

R = 10
L = 10

R = 10
L = 10

R = 10
L = 10

R = 10
L = 10

R = 4
L = 3

0.2 (6 planes) R = 5
L = 5

R = 5
L = 5

R = 5
L = 5

R = 5
L = 5

R = 5
L = 5

R = 4
L = 3

�-plane. Now, we can de�ne an initial switching point
for the left endpoints of centroid intervals.

Proposition 1. Consider ~L as the largest value from
the primary domain to be less than or equal to ~cl( ~Aj�)
in Eq. (20). Then, ~L can be used as an initial switching
point in the iterative procedure to �nd the left centroid
endpoint of the GT2 FS ~A at the level �.

Proof of this proposition is represented in Ap-
pendix A.

In a similar way, suppose that KM/EKM algo-
rithms have been applied to ~A1 and ~A0. Then, the
connection line between cr( ~Aj0) and cr( ~Aj1) will be as
follows:

~cr( ~Aj�) = �
�
cr( ~Aj1)� cr( ~Aj0)

�
+ cr( ~Aj0); (14)

where ~cr( ~Aj�) is an approximation for cr( ~Aj�), cr( ~Aj1)
represents the right centroid endpoint of the GT2 FS
~A when � = 1, and cr( ~Aj0) denotes the right centroid
endpoint of the GT2 FS ~A when � = 0.

Proposition 2. Consider ~R; as the smallest value
from the primary domain, to be larger than or equal
to ~cr( ~Aj�) (21). Then, ~R can be used as an initial
switching point in the iterative procedure to �nd the
right centroid of the GT2 FS ~A at the level `�'. Proof of
this proposition is similar to the proof of Proposition 1.

It will be shown in the next section that the pro-
posed initial switch points at any �-level are very good
estimations to be replaced in the iterative procedures
such as KM/EKM algorithms.

Theorem 1. When the apex of the secondary mem-
bership function is bowed to the UMF or LMF of the
lowest �-plane, the connection line between cl( ~Aj1) and
cl( ~Aj0) and also the connection line between cr( ~Aj1)
and cr( ~Aj0) can be an estimation for the left and
right endpoints of the centroid interval of each �-plane,
respectively. Proof of Theorem 1 is represented in
Appendix B.

Theorem 2. Suppose Ts to be the distance between
two consecutive �-planes and � to be the distance be-
tween two consecutive values in the discretized primary
domain. Then, for any value of �, the right and the left
switch points of each centroid interval at each �-level
will be unique if Ts � �.
Proof. To prove this theorem, several exhaustive
experiments have been conducted and precision of the
theorem has been proved, experimentally. These ex-
periments are performed on the dataset ~F represented
in Eqs. (22) and (23).

According to the performed computations repre-
sented in Table 1, as it can be viewed, if the discretiza-
tion distance is small, then the number of �-planes will
not have signi�cant impacts on switching points and
each pair of values of CR and CL will have its unique
switching point at each �-plane. Now, for each �-plane,
if the discretization distance of the primary domain is
large, then switching points for CR and CL in several �-
planes may be identical. According to these exhaustive
computations, it can be concluded that the values of
CR and CL in each �-plane may have unique switching
points when Ts � � where � is the distance between two
consecutive points on the discretized primary domain
and Ts is the distance between two consecutive �-
planes. In Table 1, the secondary membership function
is considered to be triangular, where L is the number
of left switching points and R is the number of right
switching points.

Graphical representations of these experiments
are represented in Figures 5-8. From these �gures it
can apparently be concluded that each �-plane may
have unique switching points when Ts � �. This claim
can be observed in Figures 5-7 apparently.

4.2. Constrained switching algorithm
According to Proposition 1, Proposition 2, Theorem 1,
and Theorem 2, the steps of the CS algorithms are
presented for computing both left and right centroid
endpoints for each �-level.
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Figure 5. Distribution on the right and left endpoints of
centroid intervals when Ts = 0:01.

Figure 6. Distribution on the right and left endpoints of
centroid intervals when Ts = 0:05.

Figure 7. Distribution on the right and left endpoints of
centroid intervals when Ts = 0:1.

Figure 8. Distribution on the right and left endpoints of
centroid intervals when Ts = 0:2.

Steps of the CS algorithm for computing the left
centroid endpoints of the GT2 FS ~A at each �-level are
shown in Algorithm 2.

Also, steps of the CS algorithm for computing the
right centroid endpoints at each �-level are represented
in Algorithm 3.

In the original KM algorithm, the initial switching
point for the entire �-planes is obtained through an
ordinary average of the upper and the lower mem-
bership values for the entire primary domain. Ac-
cording to Theorem 1, when the apex of the sec-
ondary membership function is bowed to the LMF,
the left centroid endpoints in each plane tend to
become less than their corresponding values of ~cl( ~Aj�)
in Eq. (20). In the same manner, right centroid
endpoints tend to become more than ~cl( ~Aj�). Since
the KM algorithm is originally designed for IT2 FSs,
it does not take into account slopes of secondary
membership functions. But our presented algorithms
use these slopes so that their initial switching points
are very close to the optimal switch points for each �-
plane. In contrast to the independent application of
KM/EKM algorithm for each �-plane, this property
leads to a decrease in the number of iterations for
each �-plane to reach the left and right centroid
endpoints.

Indeed, the CS algorithm tries to modify the orig-
inal KM/EKM algorithms through a good estimation
of the initial switch points at each �-plane. This will
de�nitely reduce the number of iterations at each �-
plane, but it does not change the general methodology
of reaching the �nal left and right endpoints of centroid
intervals of the �-plane. Hence, the CS algorithms have
a reasonable computational complexity while reach-
ing the same exact centroid endpoints as KM/EKM
methods. This claim will be analyzed in the next
section.

4.3. Computational complexity
The CS algorithms try to reduce the number of iter-
ations in the original KM/EKM algorithms at each
�-plane through estimating an initial switching point
based on a guess made by the connection line between
the highest and the lowest �-planes. The CS algorithm
for both left and right centroid endpoints is iterated
k times, where k represents the total number of �-
planes. According to Theorem 2, which determines
the appropriate number of discretized values of the
primary domain, suppose that the primary domain is
represented by N discrete values. At each iteration,
for each �-plane, since an initial estimation is obtained
for the starting switch point, the maximum iterations
for each �-plane will be N

2 . On the other hand, since
this process is performed twice for each �-plane, the
maximum iterations will be N . If KM algorithm is
applied independently to each �-plane, we have to
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Algorithm 2. The CS algorithm for computing the left centroid endpoints of the GT2 FS ~A.

Algorithm 3. The CS algorithm for computing the right centroid endpoints of the GT2 FS ~A.

call Eq. (14) twice, which is of order 2N . In the CS
algorithm, this has been eliminated, and after just
one iteration, the initial left and right switch points
are obtained. Therefore, for each �-plane, the total
count will be N + 2. Hence, the entire count for
the CS algorithm will be k(N + 2), which is of order
O(Nk).

In comparison with the CF (and ECF [60]) al-
gorithm, which is of order O (Nk + max(N; k)), the
proposed algorithm has a smaller computational com-
plexity while having the capability of reaching the
values of the left and right endpoints of centroid
intervals at each �-plane.

In Table 2, a brief review on computational
complexities of the existing approaches is presented.
It is apparent that the CS algorithms represent a lower
computational complexity compared with other state-
of-the-art approaches.

5. Comparative studies

This section provides an exhaustive numerical analysis
on the proposed approaches compared to the other
existing methods. To implement the proposed algo-
rithms, two benchmark GT2 FSs, which are widely
used in the literature, are adopted. The �rst GT2 FS
~F is composed of two Gaussian membership functions.
The upper and the lower membership functions are
represented in Eqs. (22) and (23):

UMFFOU( ~F )(x) = max
�

exp
�
� (x� 3)2

8

�
;

0:8 exp
�
� (x� 6)2

8

��
; (22)

LMFFOU( ~F )(x) = max
�

0:5exp
�
� (x� 3)2

2

�
;
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Table 2. Complexity analysis.

No Reference
number

Year Method Computational
complexity

Complexity
compared

with other methods

Time
comparison

criteria
1 [42] 2013 Closed-form method N/A No N/A
2 [43] 2013 LRIT2 N/A No N/A
3 [6] 2013 Uncertainty bounds N/A No N/A
4 [44] 2012 CEKM N/A No N/A
5 [44] 2012 CIEKM N/A No N/A
6 [45] 2012 INT N/A No N/A
7 [46] 2012 Closed-form method N/A No N/A
8 [47] 2012 Approximation method N/A No N/A
9 [30] 2012 MCF O(Nk + max(N; k)) Yes N and k
10 [22] 2012 Fast O(N) Yes N
11 [30] 2012 ECF N/A No N/A
12 [16] 2012 Sampling N/A No N/A
13 [48] 2011 CKM N/A No N/A
14 [49] 2011 Dynamic defuzzi�cation N/A No N/A
15 [29] 2011 CF N/A No N and k
16 [21] 2011 Yeh method (Yeh) O(N) Yes N and k
17 [31] 2011 ECF N/A No N/A
18 [50] 2009 EKM N/A No N
19 [25] 2009 (CM) N/A No N/A
20 [51] 2009 Analytical N/A No N/A
21 [20] 2008 Liu O(4N � n) Yes N and k
22 [52] 2008 Geometric N/A No N/A
23 [53] 2008 IASCO N/A No N/A
24 [26] 2008 NT N/A Yes N
25 [54] 2007 EKM N/A No N
26 [55] 2007 VSCTR N/A No v
27 [17] 2007 Geometric N/A No N/A
28 [56] 2007 Recursive N/A No N/A
29 [57] 2005 Geometric IT2 N/A No N/A
30 [58] 2005 Sampling N/A No N/A
31 [59] 2002 Uncertainty bounds N/A No N/A
32 [36] 2001 KM N/A No N/A

Performance measure:
T: Time; C: Computational complexity; N : Sample size; n: An integer less than 10; k: Number of �-planes; and
v: Number of vertical slice.

0:4 exp
�
� (x� 6)2

2

��
: (23)

The second GT2 FS ~G has a piecewise linear FOU with
the following upper and lower membership functions:

UMFFOU( ~G)(x) = max

8<:
24 (x� 1); 1 � x � 3

(7� x)=4; 3 < x � 7
0; otherwise

35 ;
24 (x� 2)=5; 2 � x � 6

(16� 2x)=5; 6 < x � 8
0; otherwise

359=; ; (24)

LMFFOU( ~G)(x) = max

8<:
24 (x� 1); 1 � x � 4

(7� x)=6; 4 < x � 7
0; otherwise

35 ;
24(x� 3)=6; 3 � x � 5

(8� x)=9; 5 < x � 8
0; otherwise

359=; : (25)

The simulations are performed on an Acer 4750 running
Windows 7 Ultimate and MATLAB 2011a with Intel.
Core i5 CPU at 2.4 GHz and 4 GB RAM.

In this paper, each secondary membership is
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chosen to be trapezoidal and triangular. The tops for
the left and right points of the triangular membership
functions are calculated by Eq. (19) and the left and
right points of the trapezoidal membership functions
are calculated by Eqs. (26) and (27). It should be
noted that in Eqs. (19), (26), and (27), we have
used these values for the weighting coe�cient, w =
0; 0:25; 0:5; 0:75; 1.

Apexleft(x) = LMFFOU( ~A0)(x) + 0:6w�
UMFFOU( ~A0)(x)� LMFFOU( ~A0)(x)

�
; (26)

Apexright(x) = LMFFOU( ~A0)(x)� 0:6(1� w)�
UMFFOU( ~A0)(x)� LMFFOU( ~A0)(x)

�
: (27)

5.1. An illustrative example for Theorem 1
To illustrate Theorem 1, the left and right centroid
endpoints of ~A0 and ~A1 of the GT2 FS ~F are com-
puted when the secondary membership functions are
triangular and trapezoidal. Then, the connection
lines between left centroid endpoints of these two �-
planes and also the connection line between their right
centroids are drawn. Finally, considering Ts = 0:1,
the centroid endpoints of each �-plane are computed
directly using the EKM algorithm. It can be observed
that in Figures 9 and 10, the centroid endpoints are
distributed in the vicinity of the connection lines when
w changes. Connection lines in both Figures 9 and 10
are drawn in blue for di�erent values of w. When w
increases, the left and right centroid endpoints of each
�-plane tend to get into the inner side of connection
line. But for lower values of w, centroid endpoints of
planes get into the outer side of the connection lines.
This implies that the connection lines can be a good
initial estimation for computing the centroid endpoints
of each �-plane and their intersection with each value
of � can play the role of a good initial switching point.

Figure 9. Centroids of the GT2 FS ~F with triangular
secondary membership functions: a) w = 0; b) w = 0:25;
c) w = 0:5; d) w = 0:75; and e) w = 1.

Figure 10. Centroids of the GT2 FS ~F with trapezoidal
secondary membership functions: a) w = 0; b) w = 0:25;
c) w = 0:5; d) w = 0:75; and e) w = 1.

5.2. Accuracy tests
It is important to see whether the proposed approaches
have �ne performance in contrast to the existing
approaches or not. The CS algorithm is iterative,
so its results can be compared with two other well-
known iterative methods, e.g. KM/EKM algorithms.
We have computed centroids of the two GT2 FSs ~F
and ~G with two di�erent kinds of secondary mem-
bership functions: triangular and trapezoidal. In
order to form the apex of the secondary membership
functions, �ve di�erent values for have been consid-
ered. Since KM and EKM algorithms have identical
computational results, the EKM results are reported
in order to make comparisons. Computed centroids
for both GT2 FSs are represented in Figures 11
and 12.

In Figures 11 and 12, EKM is used to �nd
the centroid intervals of six �-planes with Ts = 0:2.
These centroid endpoints are shown by dots. The
primary domains for both EKM and CS algorithms
are discretized into 50 and 80 points for the GT2
FSs ~F and ~G, respectively. The distance between

Figure 11. Centroids of the GT2 FS ~F : (a)-(e) With
trapezoidal secondary membership functions; and (f)-(j)
with triangular secondary membership functions. (a), (f):
w = 0; (b), (g): w = 0:25; (c), (h): w = 0:5; (d), (i):
w = 0:75; and (e), (j): w = 1.
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Figure 12. Centroids of the GT2 FS ~G: (a)-(e) With
trapezoidal secondary membership functions; and (f)-(j)
with triangular secondary membership functions. (a), (f):
w = 0; (b), (g): w = 0:25; (c), (h): w = 0:5; (d), (i):
w = 0:75; and (e), (j): w = 1.

the �-planes for the CS algorithm is considered to be
Ts = 0:1. Centroids computed by the CS algorithm are
represented with bold lines in Figures 11 and 12.

As can be observed, the CS algorithm has
achieved exactly the results of EKM and it can be
reliably applied for type-reduction purposes of GT2
FSs. Now, the main advantages of the proposed CS
algorithm in terms of running time and switching
issues are discussed in comparison to with EKM/KM
algorithms, which are the running time and switching
issues.

5.3. Switching analysis
As noted before, the main advantage of the CS algo-
rithm, compared to its rivals, lies in the fact that in
the CS algorithm, initial switching points for each �-

plane are obtained in such a way that the number of
iterations to reach the �nal switching points is much
less than applying the KM/EKM algorithm in each �-
plane, independently.

To investigate this important characteristic of the
CS algorithm, another experiment is also conducted.
Here, we have obtained the initial switch points and
�nal switch points for both left and right endpoints of
centroid intervals using KM, EKM, and CS algorithms
when w = 0; 0:25; 0:5; 0:75; 1. It is assumed that
the distance between two consecutive �-planes is 0.1.
Then, for each value of w, the di�erence between initial
and �nal switch points for each �-plane is computed
and their averages are recorded. These values are
represented in Figure 13.

It can be observed that the capability of CS
algorithm in contrast to KM and EKM methods is
apparent. Even for some values of w, like 0.5 or 0.6, the
average di�erence between initial and �nal switching
points is zero. This means that for the entire �-
planes, the CS algorithm has just one iteration, while
it is far from the average numbers of iterations of the
KM/EKM algorithms.

The di�erence between the results of CS and
KM/EKM algorithms is apparent that we can even
conclude that there is no need to apply KM/EKM
algorithms, independently, for each �-plane. In such a
situation, one can compute both the left and the right
centroid endpoints with the least number of iterations
in a timely manner using the CS algorithm.

In Tables 3 and 4, it is shown in percent that
how much the CS algorithm has decreased the average
number of switching iterations compared with KM and
EKM algorithms. It can be observed that the CS
algorithm reduces the average number of iterations

Figure 13. Average di�erence between the initial and �nal switching points for the GT2 FSs ~F and ~G.
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Table 3. Reductions in the average number of switching iterations for the CS algorithm against the KM method.

w

Fuzzy set 0 0.25 0.5 0.75 1

Left Right Left Right Left Right Left Right Left Right
~F 84.10% 90% 95.2% 94.30% 100% 100% 91.9% 96.8% 91.4% 83.4%
~G 84.20% 88.3% 94.9% 90.50% 96.8% 100% 92.4% 94.1% 88.5% 71.1%

Table 4. Reductions in the average number of switching iterations for the CS algorithm against the EKM method.

w

Fuzzy set 0 0.25 0.5 0.75 1

Left Right Left Right Left Right Left Right Left Right
~F 91.70% 96% 97.4% 97.80% 100% 100% 95.6% 98.8% 95.4% 94.1%
~G 95.00% 93.7% 98.4% 95.60% 99.0% 100% 97.5% 98.1% 96.8% 94.3%

between 71.10% up to 100%. This is a very appropriate
advantage of the CS method compared with KM/EKM
algorithms.

5.4. Computational time testing
In this experiment, we have divided the secondary
membership domain into 50 parts, which means that
the Ts can take on 50 di�erent values from this set:
f0:02; 0:04; :::; 0:98; 1g. Then for each of these 50 values
of Ts, 1000 simulations are performed and the average
of computational times is recorded for each Ts value.
The computational results are reported in Figure 14.
By increasing the number of discretized values of the
primary domain, simulation times increase, but these
increases are much less for the CS method in contrast
to EKM/KM algorithms.

According to Figure 14, compared to independent
use of KM algorithm for each �-plane, the CS algorithm
performs better. According to the literature, EKM
algorithm is designed to reduce the number of iterations
in order to reach the left and right endpoints of

the centroid intervals in each alpha plane. It has
been proved that EKM performs faster than the KM
algorithm. This has been veri�ed in Figure 14. As
can be observed, the CS algorithm performs better
than the KM and EKM algorithms when applied
independently.

According to the simulations, the CS algorithm
decreased the computational time of the KM algorithm
by the average of 45% to 59%. It also improved the
computational time of the EKM method up to 40%.
This is an impressive result for an iterative method
that makes it capable of competing with other newly
developed fast methods. For a better understanding of
the percentage of time reduction, in Figures 15-18, the
reduction in computational time of the CS algorithm
compared with the KM and EKM algorithms, on both
datasets, are represented.

For a better understanding of the quality of the
CS algorithms, we have provided some other exper-
iments on Nie-Tan (NT), IASC, and EKMANI [62].
Results of this experiment are represented in Figure 19.

Figure 14. Computation times after 1000 simulations for KM, EKM, and CS algorithms.
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Figure 15. Reduction of computational time of the EKM
algorithm when applying the CS algorithm to the dataset
~F .

Figure 16. Reduction of computational time of the KM
algorithm when applying the CS algorithm to the dataset
~F .

Figure 17. Reduction of computational time of the EKM
algorithm when applying the CS algorithm to the dataset
~G.

Figure 18. Reduction of computational time of the KM
algorithm when applying the CS algorithm to the dataset
~G.

Figure 19. Computation times after 1000 simulations for
IASC, EKMANI, NT, and CS algorithms.

Superiority of the CS algorithm over the men-
tioned methods, represented in Figure 19, can be
apparently observed. Here CS performs the best and
IASK, EKMANI, and NT algorithms stand after the
CS algorithm, respectively. This experiment veri�es
fast performance of the CS algorithm versus some of
the highly desirable approaches in the literature.

6. Conclusions

This paper addresses the type-reduction issue of GT2
FSs. The proposed algorithms are iterative and speci�-
cally designed for GT2 FSs. The CS algorithm operates
on �-planes of GT2 FSs and can �nd the centroid
interval of each �-plane by beginning from a near
optimal switching point. Basically, the main advantage
of the proposed CS algorithm, compared to other
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existing algorithms, can be summarized as follows: 1)
The CS algorithm converges faster to the left and right
centroid endpoints of each �-plane, while independent
application of EKM/KM algorithms on each �-plane is
more time consuming; 2) despite some new algorithms,
such as CF and MCF, which cannot compute the
centroid interval of each �-plane independently, the CS
algorithm can compute centroids without any need to
have the centroid endpoints of the previous �-plane in
order to compute centroid interval of the current �-
plane.

We showed that the CS algorithm outperforms
KM-based type-reduction algorithms and some of the
state-of-the-art methods, such as EKMANI, NT, and
IASC. But, still this method is iterative and there is a
long way to reduce the number of iterations, and as a
result, the total computation time. According to [2], z-
Slices are equivalent to IT2 FSs. Therefore, they can be
applied to each �-plane, and as a result, the proposed
method in this paper can be used when representing
the GT2 FSs with z-Slices.

It should be noted that the CS algorithm is
basically designed to deal with Gaussian, triangular,
and trapezoidal secondary membership functions and
does not handle piecewise linear or non-convex sec-
ondary membership functions. Considering non-convex
secondary membership functions will be the subject of
our future research. Since KM-based algorithms are
originally designed for IT2 FSs and as IT2 FSs are
convex, it seems that �-planes can no longer ful�ll
the needs for decomposing GT2 FSs. Hence, other
methods, such as direct algorithms with closed-form
solutions, may be desirable.

Conict of interests. The authors declare no con-
ict of interests.
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Appendix A

Proof of Proposition 1. According to monotonicity
property of the secondary membership functions, this
membership function can be represented as follows:

fx(u) =

8>>>>><>>>>>:
gx(u); u 2 (SL(xj0); SL(xj1))

hx(u); u 2 (SR(xj1); SR(xj0))

1; u 2 [SL(xj1); SL(xj1)]

0; otherwise

(A.1)

where gx(u) (hx(u)) is the function of the left (right)
side of the secondary membership function. SL(xj0)
and SR(xj0) are the lower and upper membership
values of x at the lowest �-plane, respectively. Also,
SL(xj1) and SR(xj1) are the lower and upper member-
ship values of x at the highest �-plane, respectively.

According to Eq. (19), suppose w = 0 and the
secondary membership function is triangular. We have
considered w = 0 since only in such a situation, the left
endpoint of the centroid interval of two consecutive �-
planes will be in the closest condition. Then, for each
�-plane, such as ~A� and its next �-plane ~A�+T , we
have:

8xSL(xj�+ Ts) = SL(xj�); (A.2)

and:

8xSR(xj�jTs) = SR(xj�) +
Ts

h0x(u)
; (A.3)

where h0x(u) is the derivative of the secondary member-
ship (h(u)) value of x at the �-level, `�' represents the
distance between two consecutive �-planes, SL(xj�)
and SR(xj�) represent the left and right membership
values of x at the �-plane `�`, respectively.

Since h0x(u) < 0, the secondary membership val-
ues for each discretized primary domain value between
two subsequent �-planes decreases by Ts

h0x(u) . On the
other hand, since the secondary membership functions
are triangular, the slope for any �-plane is constant:

8� SR(xj�)� SR(xj�+ Ts) � Cons tan t: (A.4)

According to the KM algorithm, the left endpoint of
the centroid interval for the �-plane ~A� is computed
as follows. Note that each discretized value `i' of the
primary domain is represented by xi.

CL� =
PL�
i= xiSR(xij�) +

PN
i=L�+1 xiSl(xij�)PL�

i=1 SR(xij�)j+PN
i=L�+1 SL(xij�)

:
(A.5)

According to the literature [29]:

CL�+Ts � CL� : (A.6)
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CL�+Ts =

L�+TsP
i=1

xiSR(xij�+ Ts) +
NP

i=L�+Ts+1
xiSL(xij�+ Ts)

L�+TsP
i=1

SR(xij�+ Ts) +
NP

i=L�+Ts+1
SL(xij�+ Ts)

: (A.8)

Box I

And also for the entire values of the primary domain:

SR(xj�) > SR(xj�+ Ts): (A.7)

Then, the left endpoint of the centroid interval for the
�-plane ~A�+Ts can be obtained by Eq. (A.8) as shown
in Box I.

Substituting Eqs. (A.2) and (A.3) in Eq. (A.8)
results in Eq. (A.9) as shown in Box II. Then, based on
Eq. (A.6), the non-equality (A.10), as shown in Box III,
is true. According to Eq. (A.2), if the switch points in
both �-planes are the same, then Eq. (A.10) should
be transformed to an equality. Therefore, suppose
that the switch points in both �-planes ~A� and ~A�+Ts
are identical. In such a situation, the proportion
of numerator to denominator in both fractions of
Eq. (A.10) should be the same. In Eq. (A.11), the
di�erence between the numerators of both sides of
Eq. (A.10) is represented: L�X

i=1

xiSR(xij�) +
NX

i=L�+1

xiSL(xij�)

!

�
 L�+TsX

i=1

xiSR(xij�) +
NX

i=L�+Ts+1

xiSL(xij�)

!

= Ts
L�+TsX
i=1

xi
h0u(xi)

: (A.11)

Considering Eq. (A11), and also according to the
assumption of identical switching points, i.e. L� =
L�+Ts , since the denominator of the left hand side of
Eq. (A.10) is less than its corresponding right hand
side value, to make both fractions identical, the value
of numerator in the left fraction should be decreased as
follows:

Numerator decreament =

L�+TsP
i=1

xiSR(xij�) +
NP

i=L�+T+1
s

xiSL(xij�)

L�+TsP
i=1

SR(xij�) +
NP

i=L�+T+1
s

SL(xij�)

�Ts
L�+TsX
i=1

1
h0u(xi)

: (A.12)

Since numerator decreament Ts
L�+TsP
i=1

xi
h0u(xi) ; then:

L�+Ts > L�: (A.13)

CL�+Ts =

L�+TsP
i=1

xiSR(xij�) +
NP

i=L�+Ts+1
xiSL(xiSL(xij�) + Ts

L�+TsP
i=1

xi
h0u(xi)

L�+TsP
i=1

SR(xij�) +
NP

i=L�+Ts+1
SL(xij�) + Ts

L�+TsP
i=1

1
h0u(xi)

(A.9)

Box II

L�+TsP
i=1

xiSR(xij�) +
NP

i=L�+Ts+1
xiSL(xij�) + Ts

L�+TsP
i=1

xi
h0u(xi)

L�+TsP
i=1

SR(xij�) +
NP

i=L�+Ts+1
SL(xij�) + Ts

L�+TsP
i=1

1
h0u(xi)

�
L�P
i=1

xiSR(xij�) +
NP

i=L�+1
xiSL(xij�)

L�P
i=1

SR(xij�) +
NP

i=L�+1
SL(xij�)

(A.10)

Box III



2682 A. Doostparast Torshizi et al./Scientia Iranica, Transactions E: Industrial Engineering 22 (2015) 2664{2683

On the other hand, in the KM algorithm, the initial
switching point is obtained through a simple averaging
of the upper and lower membership values of each �-
plane. Also, based on the computations in Section
5, the computed left switching point `L�+Ts ' in Rela-
tion (A.13) is closer to the left endpoint of the centroid
interval than the initial average switch point created
by the KM/EKM algorithms. Therefore, for each �-
level, the corresponding value of the primary domain
on the left connection line can be a good estimate for
initiating the type-reduction process. �

Appendix B

Proof of Theorem 1: The proof of having connec-
tion line between the lower and the upper left and
right endpoints of the centroid interval is based upon
the left and right slopes of the secondary membership
functions. Suppose the secondary membership function
to be triangular or trapezoidal. Now, according to
Eq. (A.1), the left and right equations of the secondary
membership functions are called g(u) and f(u), respec-
tively.

If the absolute slope of g(u) is more than the
absolute slope of f(u), i.e. jg0(u)j > jf 0(u)j, then
according to Eqs. (A.13) and (A.14), when transferring
from the �-plane `�' to the �-plane `� + Ts, the
decrement in SR(xj� + Ts) for each value of x will be
more than the increments in SL(xj�+ Ts).

SL(xj�+ Ts) = SL(xj�) +
Ts
g0(u)

; (B.1)

SR(xj�+ Ts) = SR(xj�) +
Ts
f 0(u)

: (B.2)

Now, suppose the initial switching point (Teta�) in the
�-plane `�' be as follows:

Teta� =
SR(xj�) + SL(xj�)

2
; 8x: (B.3)

Then the initial switching point in the �-plane `�+Ts'
will be:

Teta�+Ts =
SR(xj�+ Ts) + SL(xj�+ Ts)

2
; 8x:

(B.4)

Now, applying Eqs. (B.1) and (B.2) to Eq. (B.4) results
in:

TetaTs =
SR(xj�) + Ts

f 0(u) + SL(xj�) + Ts
g0(u)

2
; 8x:

(B.5)

By simplifying Eq. (B.5), we have:

TetaTs =
SR(xj�) + SL(xj�)

2

+
Ts
2

�
1

f 0x(u)
+

1
g0x(u)

�
; 8x (B.6)

Figure B.1. Changes in the upper and lower membership
values for di�erent �-planes when jg0(u)j > jf 0(u)j.

Therefore Teta� > Teta�+Ts , so the relation between
the left switching points will be LTs < L0. This result
demonstrates that when going to upper �-planes, the
fraction SR(xj�)+SL(xj�)

2 becomes smaller while getting
farther from the lowest �-plane (this is depicted in
Figure B.1). It means that in di�erent values of �,
the left endpoint of the centroid interval (CL) tends
to get far from CL1 and get closer to CL0. This is
equivalent to drawing the connection line between CL1
and CL0. Then, di�erent left endpoints of the centroid
intervals for each �-plane tend to be located not on the
connection line, but on its left hand side. The same
story happens for the right centroid endpoints of each
�-plane, where each centroid endpoint will be located
at the right hand side of the connection line of CR1 and
CR0. Therefore, the connection line between left and
right endpoints of the lowest and highest �-planes can
be a good estimate for initial switching points for each
�-plane.

In the same manner, when the absolute slope
of g(u) is less than the absolute slope of f(u), i.e.
jg0(u)j < jf 0(u)j (Figure B.2), the left endpoints of the
centroid interval for each �-plane tend to become closer
to CL1 and the right endpoints of the centroid interval
tend to become closer to CR1. So, both right and left
endpoints for each �-plane tend to be in internal side
of the connection lines of the highest and lowest �-
planes.

Figure B.2. Changes in the upper and lower membership
values for di�erent �-planes when jg0(u)j < jf 0(u)j.
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