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Abstract. This study proposes a new, robust multi-objective model for capacitated multi-
vehicle allocation of customers to potential Distribution Centers (DCs) under uncertain
environment. Uncertainty is de�ned by discrete scenarios on demands where occurrence
probability of each scenario is known. The optimization objectives are to minimize transit
time and total cost, including opening cost, assumed for opening potential DCs and shipping
cost from DCs to the customers, where considering di�erent types of vehicles leads to a
more realistic model and causes more conict in these two objectives. A swarm intelligence-
based algorithm named Non-dominated Sorting Ant Colony Optimization (NSACO) is
used as the optimization tool. The proposed methodology is based on a new variant of
Ant Colony Optimization (ACO) customized in multi-objective optimization problem of
this research. For ensuring the authenticity of the proposed method, the computational
results are compared with those obtained by NSGA-II. Results show the advantages and
the e�ectiveness of the used method in reporting the optimal Pareto front of the proposed
model. Moreover, the optimal solutions of the robust optimization model are insensitive
to the disturbance of parameters under di�erent scenarios, thus the risk of decision can be
e�ectively reduced.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Supply Chain Management (SCM) is a set of ap-
proaches utilized to e�ciently integrate the suppliers,
manufacturers, warehouses, and stores, so that the
merchandise is produced and distributed at the right
quantities, to the right locations, and at the right time,
in order to minimize system-wide costs while satisfying
service level requirements [1]. The above de�nition
reveals that there are many independent entities in a
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supply chain, each of which tries to maximize its own
inherent objective functions in business transactions.
This is a complicated problem as too many factors
are involved and need more than one objective to be
satis�ed, simultaneously. In traditional SCM, the focus
of the designs of supply chain network is usually on
single objective, minimum cost, or maximum pro�t.
However, the design, planning, and scheduling projects
usually involve trade-o�s among di�erent incompatible
goals such as fair pro�t distribution among all mem-
bers, customer service levels, �ll-rates, safe inventory
levels, volume exibility, etc. Hence, real supply chains
are to be optimized simultaneously considering more
than one objective. Many of the problems that occur in



J. Bagherinejad and M. Dehghani/Scientia Iranica, Transactions E: Industrial Engineering 22 (2015) 2604{2620 2605

supply chain optimization are combinatorial in nature,
and picking a set of optimal solutions in the case
of multi-objective formulations requires an algorithm
that can e�ciently search the entire objective space,
using small amounts of computation time. Literature
shows that evolutionary and swarm intelligence-based
algorithms perform well in this respect and give good
optimal results when applied to many combinatorial
problems.

E�cient allocation of customers to Distribution
Centers (DCs) always plays an important role in
developing a awless and reliable supply chain. In
this paper, two-stage supply chain network, including
the distribution centers and the customers are consid-
ered. There are customers with uncertain demands
and potential places which are candidates to serve as
distribution centers called potential DCs.

Each of the potential DCs can be shipped to any
of the customers. This study proposes the utility of
a new swarm intelligence-based algorithm called Non-
dominated Sorting Ant Colony Optimization algorithm
(NSACO) and the Non-dominated Sorting Genetic
Algorithm (NSGA-II) for simultaneous robust opti-
mization of two objectives, including minimizing the
total transit time and total cost.

2. Prior related works

Since this research concentrates on location-allocation
decisions, robust multi-objective optimization using
ant colony optimization algorithm and NSGA-II, this
section deals with prior works related to all these areas.

Many researchers worked on basic facility loca-
tion problem formulations recognized as static and
deterministic which take constant, known quantities as
inputs and derive a single solution to be implemented
at one point in time. These fundamental location
problems are categorized into median problems [2],
covering problems [3], center problems [3], etc. Later,
focus was shifted to location-allocation problems which
simultaneously locate facilities and dictate ows be-
tween facilities and demands. Warszawski and Peer
(1973) [4] are among the �rst who studied the multi-
commodity location problem. Their models consider
�xed location costs and linear transportation costs and
assume that each warehouse can be assigned at most
one commodity.

In literature, another set of problems is called
�xed charge facility location problems which consider
�xed charge associated with locating at each poten-
tial facility site. There are two types of problems,
including capacitated and uncapacitated plant loca-
tion problems. Uncapacitated and capacitated plant
location models are extensively dealt with in [5] and
capacitated plant location models in [6]. Hajiaghaei-
Keshteli (2011) [7] considered two stages of supply

chain network including Distribution Centers (DCs)
and customers. His proposed model selects some
potential places as distribution centers in order to
supply demands of all customers; and in order to solve
the given problem, two algorithms, genetic algorithm
and arti�cial immune algorithm, were developed.

Di�erent methodologies are found in the literature
for treating multi-objective optimization problems.
These are the weighted-sum method, the "-constraint
method, the goal-programming method, fuzzy method,
etc. [8]. Zhou et al. (2003) [9] proposed a mathe-
matical model and an e�cient solution procedure for
the bi-criteria allocation problem involving multiple
warehouses with di�erent capacities. The Bi-criteria
Multiple Warehouse Allocation Problem (BMWAP)
is similar to the well-known generalized assignment
problem, but it is more challenging to solve due to its
multiple criteria structure.

Ordonez and Zhao (2007) [10] investigated the
robust capacity expansion problem of network ows
under demand and travel time uncertainty. They
provided complexity results for the two-stage network
ow and design problem. Further, the problem of
locating a competitive facility in the plane in the
presence of uncertain demand was studied in [11] with a
deviation robustness criterion. Baron et al. (2011) [12]
applied robust optimization to the problem of locating
facilities in a network facing uncertain demand over
multiple periods. They considered a multi-period
�xed-charge network location problem for which they
show that di�erent models of uncertainty lead to very
di�erent solution network topologies, with the model
with box uncertainty set opening fewer, larger facilities.
Gabrel et al. (2011) [13] investigated a robust version of
the location transportation problem with an uncertain
demand using a two-stage formulation. The resulting
robust formulation is a convex (nonlinear) program,
and the authors apply a cutting plane algorithm to
solve the problem exactly. Gulpinar et al. (2013) [14]
considered a stochastic facility location problem in
which multiple capacitated facilities serve customers
with a single product, with uncertain customer de-
mand and a constraint on the stock-out probability.
Ghahtarani and Naja� (2013) [15] proposed a robust
optimization model for the multi-objective portfolio
selection problem that uses a Goal Programming (GP)
approach.

Non-dominated Sorting Genetic Algorithm II
(NSGA-II), multi-objective ACO (MOACO), and
Multi-Objective PSO (MOPSO) are few examples of
multi-objective metaheuristic optimization algorithms
of this type [16]. Chan and Kumar (2009) [17] dis-
cussed a Multiple Ant Colony Optimization (MACO)
approach in an e�ort to design a balanced and e�cient
supply chain network that maintains the best balance
of transit time and customer service. The focus of their
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paper is on the e�ective allocation of the customers to
the DCs with the two-fold objective of minimization
of the transit time and degree of imbalance of the
DCs. Kalhor et al. (2011) [18] proposed a non-
dominated archiving ant colony approach to solve the
stochastic time-cost trade-o� optimization problem.
Mostafavi and Afshar (2011) [19] used a powerful ant
colony algorithm known as non-dominated archiving
multi-colony ant algorithm (NA-ACO) to solve the
optimal Waste Load Allocation as a multi-objective
optimization problem. Srinivas and Deb (1994) [20]
used the non-dominated sorting concept on the GA.
Then, NSGA-II, which was proposed by Deb et al.
(2000) [21], is one of the most e�cient and famous
multi-objective evolutionary algorithms. Bhattacharya
and Bandyopadhyay (2010) [22] solved the conicting
bi-objective facility location problem with certain de-
mand by NSGA II evolutionary algorithm. Shankar et
al. (2013) [23] proposed a bi-objective optimization
of supply chain design and distribution operations
using Multi-Objective Hybrid Particle Swarm Opti-
mization algorithm (MOHPSO). This heuristic incor-
porates non-dominated sorting procedure to achieve
bi-objective optimization of two conicting objectives.
Sadeghi et al. (2014) [24] proposed a hybrid vendor
managed inventory and redundancy allocation opti-
mization problem in supply chain management, and
they used NSGA-II for solving their problem.

The above literature review indicates that very
little research has been carried out to implement swarm
intelligence-based algorithms in robust multi-objective
optimization for supply chain network. The purpose
of this paper is to formulate and analyze a location-
allocation model for a multi-vehicle single product in
two-stage Supply Chain (SC) network with respect to
the conicting objectives including minimizing total
transit time and total cost, using NSACO and NSGA-
II algorithms. The total cost involves opening cost
assumed for opening potential DCs and shipping cost
from DCs to the customers. The proposed model
should lead to a �nal two-stage SC design which would
represent the desired compromise among the di�erent
objectives from the decision-maker's perspective.

3. Background

3.1. Multi-objective optimization
Multi-objective optimizations concerned with mathe-
matical optimization problems involve more than one
objective function to be optimized simultaneously. To
obtain the optimal solution, there will be a set of
optimal trade-o�s between the conicting objectives,
where the set of optimal solution is known as Pareto
front. A multi-objective optimization problem is
de�ned as the maximization or the minimization of
many objectives subject to equality and inequality

constraints. The multi-objective optimization problem
can be formulated as follows:

Max:=Min:fi(x); i = 1; :::; Nobj: (1)

Subject to constraints:

gj(x) = 0; j = 1; :::;M;

hk(x) � 0; k = 1; :::;K; (2)

where fi is the ith objective function, x is the decision
vector, Nobj is the number of objectives, gj is the
jth equality constraint, and hk is the kth inequality
constraint.

There are techniques such as weighting methods
and "-constraint method which transfer multi-objective
problems to a single-objective one, using di�erent com-
binations of a weighting vector and constraints. Thus,
each optimal solution can be assigned to a speci�c
combination of weighting vector and constraint. Hence,
in each run of the algorithm, a single solution can
be achieved. However, multi-objective metaheuristic
algorithms are capable of �nding almost all candidate
solutions (Pareto) in a single run. Metaheuristic
algorithms can perform optimal/near-optimal solu-
tions in all types of problems (linear/nonlinear, dis-
crete/continuous, convex/non-convex) especially with
incomplete or imperfect information or limited compu-
tation capacity.

A set of solutions resulting from a program run,
without using any techniques such as the weight-
ing approach that are directly related to decision-
makers' opinions, is the most important advantage
of metaheuristic algorithms in the �eld of multi-
objective optimization. In this paper, two multi-
objective metaheuristic algorithms, the NSGA-II and
NSACO algorithm are used as optimization tools in
extraction solution of the developed deterministic and
non-deterministic models.

3.2. Robust multi-objective optimization
Many real-world optimization problems are subject
to uncertainties and noise. These uncertainties and
noise are caused by manufacturing errors, measurement
errors, external factors, and inability to predict the
future events. The uncertainties emerge in di�erent
parts of the optimization process.

One of the basic assumptions in stochastic pro-
gramming is that the probability distribution function
of the uncertain parameter is known. The goal of
the stochastic model is often to obtain an optimal
solution, which can minimize the expected value of
the objective. However, in robust optimization, the
uncertain parameters are described by the discrete
scenarios or a continuous range. Robust optimization is
an approach that deals with the uncertainty parameters
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Figure 1. E�ects of robust and sensitive solutions on
objective functions.

in mathematical models and guarantees the feasibility
of the solutions. The goal of this optimization method
is to obtain an optimal solution, which is insensitive
to almost all the samples of the uncertain parameters.
Some minor deviations in the input variables of a
system to be optimized may result in great deviations
in the objective function values. The goal of robust
optimization is not only to optimize the objectives, but
also to take care of deviations of objective function val-
ues caused by small or large changes or uctuations in
the input variables. For multi-objective optimization,
this means that, instead of looking for the global non-
robust Pareto front, one is looking for the global robust
Pareto front that means the Pareto fronts for di�erent
levels of uncertainty. Figure 1 illustrates the concept
of the robustness of the solutions, where Figure 1(a)
corresponds to the solution space (x1 and x2) and
Figure 1(b) represents the objective space (f1 and f2).

For illustration purpose, it is assumed that we
deal with minimization problem of two objective func-
tions for which solutions A and B are found. As seen
in Figure 1, solution A is better than solution B since
both objective functions of solution A are smaller than
those of solution B. However, let us assume that any
uctuation occurs in the solutions as depicted by a
circle in Figure 1(a). The uctuation of solution A
is denoted by light gray circle and that for solution B
is shaded by dark gray circle. Under these uctuated
conditions, the corresponding objective functions also
show some perturbations which are depicted by ellipses
in Figure 1(b). It is noteworthy that solution A shows
large dispersion in objective space, whereas solution
B is just perturbed by a small amount in objective
space. Considering the worst condition, solution B is
preferred to solution A, because the maximally per-
turbed objective functions of solution A are larger than
those of solution B. Thus, solution A is inferior to the
solution B in the worst case. In other words, solution
B is more insensitive to the perturbation in terms
of objective functions, and such insensitive solutions
are said to be robust [25]. The robust optimization
includes some formulations as regret model, variability
model, and some other de�nitions such as the worst case

analysis, which includes two principles named minimax
and maximin [26].

To achieve robustness in the solutions, the regret
model is used in this research. In regret model,
the regret value of the scenario is described by the
di�erence between the objective value of the feasible
solution and the best objective value. It can be
denoted by the absolute di�erence or relative di�erence.
In the bi-objective problem, let S denote the set of
scenarios. For 8s 2 S, x is the feasible solution of
the deterministic programming model, Ps, while Z1s(x)
and Z2s(x) are the objective values of Ps with the
solution x; Z�1s and Z�2s are the optimal objective
values of Ps. Given a constant !1, !2 > 0, if
[Z1s(x)� Z�1s] =Z�1s � !1 and [Z2s(x)� Z�2s] =Z�2s � !2
under every scenario s 2 S, then x is the robust
solution of Ps. (Z1s(x)� Z�1s) and (Z2s(x)� Z�2s) are
the absolute regret values and [Z1s(x)� Z�1s] =Z�1s and
[Z2s(x)� Z�2s] =Z�2s are the relative regret values. !1
and !2 are the regret coe�cients. There might be
several robust solutions, and the best robust solution
should be found out. Thus, the following model can be
obtained:

Pro : min
X
s

�sZ1s(x);

min
X
s

�sZ2s(x): (3)

Subject to:

[Z1s(x)� Z�1s] =Z�1s � !1;

[Z2s(x)� Z�2s] =Z�2s � !2: (4)

For 8s 2 S, �s denotes the probability of scenario s,
where

Ps
s=1 �s = 1. The optimal Pareto solutions of

the above model are the best robust solutions (robust
Pareto front) of the original problem [26].

4. Description of problem and model

In this paper, a location-allocation model for multi-
vehicle single product in two-stage supply chain net-
work is developed. This model includes distribution
centers, and customers with respect to two conicting
objectives consist of minimizing total transit time and
total cost. The total cost here involves opening cost,
assumed for opening potential DCs, and shipping cost,
from DCs to the customers. The proposed model
selects some potential places as distribution centers in
order to supply demands of all customers. It is assumed
that distribution centers have unequal capacities, and
each customer must be served from a single distribution
center. Uncertainty is de�ned by discrete scenarios on
demands where occurrence probability of each scenario
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is known. Considering di�erent types of vehicles lead
to a more realistic model and cause more conict in
the two objectives of the proposed problem, since a
fast vehicle (because of high technology or having low
capacity) has more cost, and a vehicle with low cost
can lead to higher transit time.

According to Section 3.2, to solve the robust
optimization model, we need the optimal objective
values of the deterministic optimization model; we �rst
de�ne the multi-objective model with deterministic
demand, and then, we formulate the robust multi-
objective model with uncertain demand.

4.1. Multi-objective model with deterministic
demand

Let us denote I as a set of nodes representing m
customers, J as a set of nodes representing p potential
distribution centers (locations), V as a set of types of
vehicles for transferring process so that the number of
vehicles is assumed to be unlimited, and E as a set
of edges representing a connection between customers
and DCs. di denotes the demand of customer i; fj
is the �xed cost for opening a potential DC at site
j; qv is the capacity of type of vehicle v, v 2 V ;
and the associated capacity qj for such DC; dij is the
distance between DC j and customer i; cvij is the cost
of assigning customer i to DC located at site j with
type of vehicle v; and tvij is the transit time between
customer i to DC located at site j with type of vehicle
v. All parameters introduced above are assumed to
be non-negative. The binary variable yj is 1 if a DC
is located at site j and 0 otherwise. Similarly, binary
variable xvij is equal to 1 if customer i is served by
the DC located at site j with type of vehicle v 2 V
and 0 otherwise. The bi-objective capacitated multi-
vehicle allocation of customers to distribution centers
problem can be formulated as the following binary
integer programming:

min z1 =
VX
v=1

pX
j=1

mX
i=1

didijcvijx
v
ij +

pX
j=1

fjyj ; (5)

min z2 =
VX
v=1

pX
j=1

mX
i=1

tvijx
v
ij : (6)

Subject to:
VX
v=1

pX
j=1

xvij = 1; i = 1; :::;m; (7)

VX
v=1

mX
i=1

dixvij � qjyj ; j = 1; :::; p; (8)

mX
i=1

pX
j=1

dixvij � qv; v = 1; :::; V; (9)

xvij ; yj 2 f0; 1g; 8i = 1; :::;m; 8j = 1; :::; p;

8v = 1; :::; V: (10)

The objective function (Eq. (5)) minimizes the total
cost of opening distribution centers and assigning
customers to such distribution centers, while objective
function (Eq. (6)) minimizes total transit time between
distribution centers and customers allocated to them.
Constraints (Eq. (7)) guarantee that each customer
is served by exactly one DC and also guarantee that
each customer's demand is transferred by exactly one
vehicle, while capacity constraints (Eq. (8)) ensure that
the total demand assigned to a DC cannot exceed its
capacity. The constraints (Eq. (9)) ensure that the
total demand transferred by a vehicle cannot exceed
its capacity. In this paper, capacity constraints of
DCs have been relaxed through considering penalty
function. In general, a penalty function approach is
as follows. Given an optimization problem:

min f(X);

s.t. X 2 A;
X 2 B; (11)

where X is a vector of decision variables, the con-
straints \X 2 A" are relatively easy to satisfy, and the
constraints \X 2 B" are relatively di�cult to satisfy.
The problem can be reformulated as:

min f(X) + p (d(X;B)) ;

s.t. X 2 A; (12)

where d(X;B) is a metric function describing the
distance of the solution vector X from the region B,
and p(0) is a monotonically non-decreasing penalty
function such that p(0) = 0. Furthermore, any optimal
solution of Eq. (12) will provide an upper bound on the
optimum for Eq. (11), and this bound will be in general
tighter than that obtained by simply optimizing f(X)
over A.

In this paper, the objective functions are as
follows:

min ẑ1 = z1 + �1:V i;

min ẑ2 = z2 + �2:V i; (13)

where �1:V i and �:V i are penalty functions. �1 and
�2 are two positive coe�cients where they are usually
considered greater than max(z1) and max(z2), respec-
tively. Also, V i represents relatively the violation of the
value of capacity constraints related to DCs (Eq. (8)):

V i =

 
VX
v=1

mX
i=1

dixvij � qjyj
!
=qjyj ;
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if
VX
v=1

mX
i=1

dixvij > qjyj ; j = 1; :::; p: (14)

And also:

V i = 0; if
VX
v=1

mX
i=1

dixvij � qjyj ; j = 1; :::; p:

Besides ful�lling other constraints (Eqs. (7) and (9)),
the solutions with V i = 0 are feasible, otherwise the
solutions are infeasible.

4.2. The robust multi-objective model with
uncertain demand

As mentioned in Section 3.2, the formulation of the
regret model is applied in this paper. It is assumed
that the demand is uncertain in the future with several
possible scenarios, while the other parameters are
deterministic. The parameters in the robust model are
all deterministic under a certain scenario s. Hence,
in each scenario, the distribution center location and
allocation problem can be described as a deterministic
optimization model. In other words, for a non-
deterministic model with S scenarios on demand, S
deterministic models should be considered. For 8s 2
S, the optimal objective values of the deterministic
optimization model is denoted by Z�1s and Z�2s. x is
feasible under all scenarios, and Z1s(x) and Z2s(x)
denote the objective values of x under scenario s.
Given the regret coe�cients (con�dence level), !1, and
!2 > 0, if and only if [z1s(x)� z�1s] =z�1s � !1 and
[z2s(x)� z�2s] =z�2s � !2 under every scenario s 2 S, x
is the robust solution of this problem. There might be
several robust solutions, and the best robust solutions
should be found out. Thus, the robust multi-objective
optimization model (Pro) of capacitated multi-vehicle
location and allocation problem can be formulated as
follows:

Pro : min z1 =
SX
s=1

�sz1s(x); (15)

min z2 =
SX
s=1

�sz2s(x): (16)

Subject to:

z1s(x) =
VX
v=1

pX
j=1

mX
i=1

disdijcvijx
v
ij +

pX
j=1

fjyj ;

8s = 1; :::; S; (17)

z2s(x) =
VX
v=1

pX
j=1

mX
i=1

tvijx
v
ij ; 8s = 1; :::; S; (18)

VX
v=1

pX
j=1

xvij = 1; 8i = 1; :::;m; 8s = 1; :::; S; (19)

VX
v=1

mX
i=1

disxvij � qjyj ; 8j = 1; :::; p; 8s = 1; :::; S;
(20)

mX
i=1

pX
j=1

disxvij � qv; 8v = 1; :::; V; 8s = 1; :::; S;
(21)

[z1s(x)� z�1s] =z�1s � !1; (22)

[z2s(x)� z�2s] =z�2s � !2; (23)

xvij ; yj 2 f0; 1g; 8i = 1; :::;m; 8j = 1; :::; p;

8v = 1; :::; V: (24)

In the above model, Eq. (15) is the �rst objective,
which is aiming at the total average cost in all sce-
narios, while the second objective function Eq. (16)
is aiming at the total average transit time in all
scenarios. Eq. (22) and Eq. (23) ensure that the
feasible solution of model Pro should meet the re-
quirement of the robust solution. The optimal Pareto
solutions of the above model are the best robust
solutions (robust Pareto front) of the original prob-
lem.

5. Solution procedure

A main branch in the theory of computation, named
computational complexity, considers classifying com-
putational problems regarding their inherent di�culty.
Some important complexity classes are P, NP, NP-
complete, NP-hard, EXP-space, EXP-time, P-space,
etc. Many real-world optimization problems belong to
the class of NP-hard, and in order to solve NP-hard
problems, there are no provably e�cient algorithms,
i.e. exact methods cannot solve the problems in
normal time. According to the performed studies,
metaheuristic algorithms are suitable tools to optimize
this class of problems [27]. Mirchandani and Francis
(1990) [28] showed that Capacitated Facility Location
Problem (CFLP) is NP-hard. Minoux (2010) [29]
proved that the robust network design problem with
uncertain demand is NP-hard. Since the proposed
bi-objective models known in Sections 4.1 and 4.2
consist of the above NP-hard problems, these are
NP-hard as well. This justi�es the use of a meta-
heuristic algorithm. In this section, the well-known
Multi-Objective Evolutionary Algorithm (MOEA) of
NSGA-II and a new swarm intelligence based al-
gorithm called Non-dominated Sorting Ant Colony
Optimization (NSACO) are presented to solve the
problem.
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5.1. Non-dominated Sorting Genetic
Algorithm-II (NSGA-II)

A population-based search MOEA can present a set
of Pareto optimal solutions of multi-objective opti-
mization problems involving two or more conicting
objectives. One of these MOEAs that is frequently used
in many optimization problems as the best technique to
generate Pareto frontiers is the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) proposed by Deb et
al. (2000) [21]. To start NSGA-II, one �rst randomly
generates a population P1 with size nPop chromosomes
(solutions) and then sorts the chromosomes in P1
into several fronts of non-dominated solutions. All
chromosomes in this population are sorted into dif-
ferent front levels based on the domination of pair
comparison. Each front level is assigned a �tness
(or a rank) which equals its non-domination level.
Level 1 is the top level in which the individual is
dominated by none of the other chromosomes; level
2 is the secondary level in which the chromosome is
dominated by some chromosomes only in level 1, and
so on. Considering the obtained chromosomes using
the tournament selection operator for P1, the o�spring
population O1 is created with respect to the crossover
probability (Pc) and the mutation probability (Pm).
Moreover, the algorithm obtains the objective values
of each chromosome in P1 and O1.

After merging P1 and O1 to form Rt, the al-
gorithm sorts Rt in several non-dominated fronts Fi,
where the best Fis form the next population Pt+1.
Since the size of Pt+1 is equal to the size of Pt,
all of the elements from a front cannot be in Pt+1.
Hence, when a front is added to Pt+1 incompletely, the
crowding distance approach is applied. The crowding
distance is an important concept proposed by Deb et
al. (2000) [21] in his algorithm NSGA-II. It serves
for getting an estimate of the density of solutions
surrounding a particular solution in the population.
Figure 2 shows the calculation of the crowding distance
of point i which is an estimate of the size of the largest
cuboid enclosing I without including any other points.

Figure 2. Crowding distance computation.

Figure 3. Graphical representation of NSGA-II.

In fact, the crowding distance is a measure of how close
an individual is to its neighbors. Consequently, the
required population is organized from the top elements
of the front without losing good solutions (elitism).
The algorithm creates Ot+1 from Pt+1 using a crowding
distance method and crossover and mutation operators.

Regarding the stopping criteria and iterating the
above stages, the algorithm hopefully presents the best
Pareto optimal solutions. Figure 3 shows a graphical
representation of NSGA-II. For more details on the
implementation of NSGA-II see [21,30].

5.2. Non-dominated sorting ant colony
optimization method

Ant Colony Optimization (ACO) algorithms are the
most successful and widely recognized algorithmic tech-
niques based on real ant behaviors [31]. Several papers
were proposed to extend the Ant Colony Optimization
(ACO) method in order to handle a multi-objective
optimization problem [17-19].

In this paper, a swarm intelligence-based al-
gorithm named Non-dominated Sorting Ant Colony
Optimization (NSACO) is proposed to tackle the bi-
objective capacitated multi-vehicle allocation of cus-
tomers to distribution centers problem in uncertain
environment. NSACO algorithm is based on the
same non-dominated sorting concept used in NSGA-II.
The proposed methodology is based on a new variant
of ACO specialized in multi-objective optimization
problem. Steps of the NSACO are as follows.

In the �rst step, a colony of ants with size nAnt
is considered. Then, ACO parameters such as �, �, �,
etc. are initialized, where � and � are parameters used
for controlling the exponential weight of the pheromone
trail and the heuristic exponential weight, respectively,
and � is evaporation rate [31]. Also in this step, the
value of the initial pheromone trail, �0, is determined
and the tabu lists of all ants are constructed, which
contain all the unvisited nodes for each ant and the
list of optimal paths traversed by the ants. The initial
pheromone intensity, �ij , or the path from nodes i to j
is set equal to �0, that is �ij = �0 and ��ij = 0.



J. Bagherinejad and M. Dehghani/Scientia Iranica, Transactions E: Industrial Engineering 22 (2015) 2604{2620 2611

In the second step, for each ant of the colony, a
new solution using ACO probabilistic rule is created.
It means that, for each ant, a DC vector, an allocation
matrix and a vehicle vector are assigned. The DC vec-
tor is a binary vector that indicates the opening or not
opening DCs, the allocation matrix is a binary matrix
that indicates the allocation of customers to the located
DCs, and the vehicle vector is an integer vector that
indicates the type of vehicle for transferring customer's
demand. The allocation matrix and vehicle vector form
a three-dimensional decision variable named xvij . Then,
objective values for this solution are calculated and
evaluated.

In order to construct the solution, ant k currently
at node i determines the next node to visit, node
j, by applying the sampling approach known as the
Roulette Wheel Selection. For this purpose, �rst,
movement probability for ant k from node i to other
nodes including the neighbors of the node i, must be
calculated. Sk(i) is a Tabu list to avoid creating a loop,
containing those unvisited nodes for ant k currently
at node i. Therefore, node j 2 Sk(i) is the node
randomly chosen from the list Sk(i) according to the
pseudo random proportional distribution rule Eq. (25)
and the Roulette wheel selection [31]:

P kij = ��ij�
�
ij=

X
u2Sk(i)

�
��iu�

�
iu

�
;

if j 2 Sk(i); otherwise P kij = 0; (25)

where P kij is the probability that ant k chooses to move
from node i to node j, and �ij is a heuristic value which
equals to the inverse of the length from node i to node
j, �ij is the amount of pheromone trail of the path from
node i to node j, � and � are two parameters used for
controlling the exponential weight of the pheromone
trail and the heuristic value. Then, after calculating
the probability values, the Roulette wheel selection is
used to select next node among these existing neighbor
nodes [32]. In this paper, this process is occurred three
times for constructing the DC vector, the allocation
matrix, and the vehicle vector.

In the third step, after all the ants of the
colony traversed their paths, the non-dominated sort-
ing method is applied, where the entire population
is sorted into various non-domination fronts. In a
minimization problem, a vector x(1) is partially less
than another vector x(2),

�
x(1) < x(2)� when no value

of x(2) is less than x(1) and at least one value of x(2)

is strictly greater than x(1) [33]. A solution which
is not partially less is a dominated solution and a
solution which cannot be dominated throughout an
existing solution set is called a non-dominated solution
or Pareto front. The �rst front being completely a non-
dominant set in the current population and the second

front being dominated by the individuals in the �rst
front only and the front goes so on. Each individual
in each front is assigned �tness values or based on
front in which they belong to. Individuals in the �rst
front are given a �tness value of 1 and individuals in
the second are assigned a �tness value of 2 and so
on. A major di�erence of NSACO and NSGA-II is
that in NSACO, an additional population because of
operators like crossover and mutation is not generated,
and population size always equals nAnt. Also, all ants
of a colony are sorted based on quality and discipline
factors, simultaneously. Therefore, in addition to the
�tness value, a parameter called crowding distance is
calculated for each ant to ensure the best distribution
of the non-dominated solutions.

Once the non-dominated solutions are found,
other (dominated) solutions are discarded and once
again the pheromone trails are updated and evapora-
tion process is occurred according to non-dominated
solutions. In this paper, three pheromone trails matrix
are designed for DC vector, allocation matrix and
vehicle vector. The pheromone trails matrix for DC
vector is a 2 � p dimensions matrix, in which 2 is
identi�ed as open or closed state of each DC, that the
�rst row and the second row are considered for closing
and opening the DCs, respectively, and p is identi�ed
as the number of DCs (Eq. (26)). The pheromone
trails matrix for allocation matrix is a p�m dimensions
matrix, in which p and m are identi�ed as number of
DCs and number of customers, respectively (Eq. (27)),
and the pheromone trails matrix for vehicle vector is
a V � m dimensions matrix, in which V and m are
identi�ed as types of vehicles and number of customers,
respectively (Eq. (28)).

�1 =
�
�11 : : �1p
�21 : : �2p

�
; (26)

�2 =
�
�11 : : �1m
�p1 : : �pm

�
; (27)

�3 =
�
�11 : : �1m
�v1 : : �vm

�
: (28)

The heuristic information matrix for DC vector is a 2�
p dimensions matrix, in which 2 is identi�ed as closed
or open state of each DC, in which the �rst row and
the second row are considered for �xed cost for opening
potential DCs and inverse of �xed cost for opening
potential DCs, respectively, and p is identi�ed as the
number of DCs (Eq. (29)). The heuristic information
matrix for allocation matrix is a P � m dimensions
matrix, in which p and m are identi�ed as number
of DCs and number of customers, respectively, which
contains inverse of distance values between customers
and DCs (Eq. (30)), and the heuristic information
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matrix for vehicle vector is a V �m dimensions matrix,
in which V and m are identi�ed as types of vehicles
and number of customers, respectively, which contains
inverse of shipping cost from DCs to customers. There
are three heuristic information matrices 8j = 1; :::; p
(Eq. (31)).

�1 =
�
f1 :: fp

1=f1 :: 1=fp

�
; (29)

�2 =

241=d11 :: 1=d1m
: :: :

1=dp1 :: 1=dpm

35 ; (30)

�3 =

241=c1j1 :: 1=cmj1
: :: :

1=c1jv :: 1=cmjv

35 : (31)

The pheromone trails are updated according to the
non-dominated solutions in the Pareto front, and
in order to prevent unlimited accumulation of the
pheromone trails and help the algorithm to forget bad
decisions of formers, evaporation process is applied on
pheromone trails. This updating process a�ects the
selection of new solutions using ACO probabilistic rule
in the next iteration. This cycle is repeated for a pre-
de�ned number of iterations known as Cycle Iteration.
At the end of running this algorithm, the present non-
dominated solutions in the last iteration are the opti-
mal solutions of the multi-objective problem. Figure 4
shows a graphical representation of NSACO.

Figure 4. Graphical representation of NSACO.

5.3. Adaptive algorithms for solving the
multi-objective robust optimization

In this paper, two metaheuristic algorithms, NSGA-II
and NSACO, are proposed as the optimization tools.
The algorithms are coded in MATLAB software and
tested on a Core 2 Duo/2.66 GHz processor. Steps
of adaptive algorithms for solving the multi-objective
robust optimization model by NSGA-II and NSACO
are as follows:

Step 1. Considering a for loop over the number of
scenarios for demand;

Step 2. Solving the bi-objective deterministic model
in all scenarios by NSGA-II or NSACO and
saving the objective values of Pareto front, Z�1s
and Z�2s, in memory of algorithms;

Step 3. After optimizing the deterministic models in
all scenarios, the �rst three fronts of solutions
for each model (each scenario) are considered
together in a set named good solutions;

Step 4. For each solution in the set good solutions,
feasibility survey is done according to the
constraints (Eqs. (19), (20) and (21));

Step 5. The solutions that are feasible in all scenarios
of demands simultaneously are stored in an
archive named feasible solutions;

Step 6. For each solution in feasible solutions archive:
Step 6.1. Calculating objective values for

each scenario (z1s(x) and z2s(x))
according to Eqs. (17) and (18);

Step 6.2. Feasibility survey according to
the regret constraints (Eqs. (22)
and (23));

Step 6.3. If all regret constraints are satis-
�ed for a solution, that solution is
stored in an archive named robust
solutions, as a robust solution.

Step 7. After �nding all robust solutions and saving
them to robust solutions archive, the objective
values of each robust solution are calculated
according to Eqs. (15) and (16);

Step 8. Non-dominated sorting and crowding distance
methods are done on robust solutions archive;

Step 9. The robust Pareto front is found.

In this paper, sixteen numerical examples, in-
cluding eight cases in small scale and eight cases in
large scale are considered for experimental study which
presents di�erent levels of di�culty for alternative
solution approaches.

Initial population size is assumed 100 and 200 for
small and large scales, respectively. Problem size di�ers
from each other by changing DCs/customer's numbers,
types of vehicles, and number of scenarios of demand.
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6. Parameter tuning

In order to obtain solutions with better quality, the
parameters of both algorithms are adjusted in this
section using an auto tuning approach. For NSGA-II
parameters, �rst, some random numbers, for example,
10 numbers in the range 0.55 to 0.85, are selected
randomly for Pc. This range is considered according
to existing literature in the �eld of genetic algorithms.
It could be considered in 0 to 1 in the most pessimistic
case. For each random number in the range, NSGA-
II algorithm runs, and the results are saved. Then,
by observing the best solutions, we tried the next
random numbers that could be close to the Pc of
the best solutions. In fact, after observing the best
solutions, lower and upper bound of the range are
updated according to good values of Pc. Exactly the
same procedure in the range 0 to 0.45 is repeated for
Pm. This process is performed by an external NSGA-II
program for auto tuning parameters. Figures 5 and 6
show that Pc equals 0.73, and Pm equals 0.37.

As shown in these �gures, Pc and Pm are tuned
in 15th iteration, approximately. If in each iteration,
10 random numbers are considered, Pc and Pm are
tuned with considering 150 times running of NSGA-
II algorithm. As previously mentioned, for NSACO

Figure 5. Auto tuning parameters (crossover
probability).

Figure 6. Auto tuning parameters (mutation
probability).

parameters, some numbers, for example, 10 numbers
in the range 0.8 to 1.8, are selected randomly for �1,
pheromone exponential weight for DC vector, and then
by observing the best solutions, we tried the next
random numbers that could be close to the �1 of the
best solutions.

Exactly the same procedure in the range 0.05
to 0.6 is repeated for �1, heuristic exponential weight
for DC vector. These initial ranges are considered
according to both existing literature in the �eld of
ACO algorithm and some tentative running of NSACO
program. This procedure is repeated for other parame-
ters. This process is performed by an external NSACO
program for auto tuning parameters.

The parameters of NSACO for all optimization
cases are summarized in Table 1.

7. Performance evaluation of the algorithms

To illustrate the performance of the used procedures
to optimize the proposed models, problem 1 in small
scale is considered as an example. As mentioned
before, for solving the bi-objective robust model, �rst,
the deterministic models 8s 2 S should be solved.
Figures 7 and 8 show the performance of the proposed

Table 1. NSACO parameters.

�1 (Pheromone exponential weight for DC vector) 1.30
�1 (Heuristic exponential weight for DC vector) 0.40
�2 (Pheromone exponential weight for allocation matrix) 1.58
�2 (Heuristic exponential weight for allocation matrix) 0.33
�3 (Pheromone exponential weight for vehicle vector) 1.34
�3 (Heuristic exponential weight for vehicle vector) 0.52
� (Evaporation rate) 0.05
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Figure 7. Pareto front of problem 1 in small scale by NSACO (3rd iteration with nAnt = 100).

Figure 8. Pareto front of problem 1 in small scale by NSACO (200th iteration with nAnt = 100).
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Figure 9. Robust Pareto solutions by NSACO &
NSGA-II (problem 2 in small scale, in 200th iteration with
npop = 100).

algorithm, NSACO, in the 3rd and 200th iterations
with �ve scenarios on demand.

Figure 9 shows all robust solutions and robust
Pareto solutions for problem 2 in small scale as an
example. Also, to view the output of the decision
variables, the robust Pareto solutions of problem 6 in
small scale are given in the Appendix.

To check the quality of solutions obtained by the
NSACO, four evaluation metrics including: (1) Num-
ber of Pareto solutions (NOS), (2) Maximum spread
or diversity metric [34], (3) Mean Ideal Distance (MID)
metric [35], and (4) time of running have been used.
Diversity and MID metrics are formulated as follows:

Diversity =

vuut mX
j=1

�
max
n

f jn �min
n
f jn
�2
; (32)

MID =
nX
i=1

Ci
n
; (33)

Figure 10. MID metric comparisons for problem 2 in
small scale.

where in Eq. (32), m is the number of objectives, n
is the number of Pareto solutions, and in Eq. (33),
n is the number of Pareto solutions and Ci is the
distance of ith Pareto solution from ideal point ((0,0)
in bi-objective minimization).

Figure 10 shows MID metrics comparison for
problem 2 in small scale for �rst scenario (determin-
istic optimization). For better display, MID axis
is considered under logarithmic scale. As shown in
Figure 10, in the �rst iterations, there are more
infeasible solutions and they cause adding large penalty
functions to objective values, but during the process
of algorithm, the infeasible solutions, because of great
objective values are discarded and objective values are
more real and then convergence process goes smoothly.

Tables 2 and 3 show the algorithms comparison re-
sults for some small and large scale bi-objective robust
optimization problems with iteration number 1000.
From these results, it can be seen that the NSACO
is more e�cient than NSGA-II in the viewpoint of
optimality, but, according to the Diversity and NOS,

Table 2. Algorithms comparison results for small scale cases.

Problems Number of
customers

Number of
DCs

Types of
vehicles

NSACO with 1000
iterations (nAnt = 100)

NSGA-II with 1000
iterations (nPop = 100)

NOS Diversity Time
(min)

NOS Diversity Time
(min)

Problem 1 21 7 3 2 105431.27 10.09 3 149360.85 15.93
Problem 2 8 3 2 3 10942.25 5.65 3 21692.69 9.34
Problem 3 15 3 2 2 19982.57 9.11 4 37299.6 12.15
Problem 4 10 4 2 3 21503.86 7.03 4 34390 11.62
Problem 5 12 5 2 3 18559.97 7.86 4 40290 13.74
Problem 6 14 6 3 2 12982.57 8.69 3 22644.23 11.88
Problem 7 20 5 2 3 1074.63 9.49 4 1474.63 14.06
Problem 8 26 4 2 3 958.78 11.37 5 1548.52 17.09
Average - - - 2.625 23929.49 8.66 3.725 38587.57 13.23
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Table 3. Algorithms comparison results for large scale cases.

Problems Number of
customers

Number of
DCs

Types of
vehicles

NSACO with 1000
iterations (nAnt = 200)

NSGA-II with 1000
iterations (nPop = 200)

NOS Diversity Time
(min)

NOS Diversity Time
(min)

Problem 1 32 7 3 3 33058.6 34.77 4 52176 47.96

Problem 2 40 11 3 2 24265.1 43.25 4 46206 68.26

Problem 3 24 6 3 2 34265.05 27.86 5 43890.5 38.32

Problem 4 70 9 3 3 26744.7 65.13 4 38730 71.4

Problem 5 62 9 3 2 10300 57.56 3 37996 68.23

Problem 6 80 7 3 3 115782.5 70. 3 5 223900 88.2

Problem 7 68 11 3 2 10256 61.68 3 18957 76.9

Problem 8 60 10 3 3 11541 55.23 4 13628 73.2

Average - - - 2.5 33276.62 51.97 4 59435.44 66.56

Table 4. Statistical comparison results (� = 5%).

Mann-Whitney test
Small scale cases Large scale cases
P -value results P -value results

NOS 0.005
NSGA-II

is preferred
to NSACO

0.002
NSGA-II

is preferred
to NSACO

Diversity 0.115
There were

no signi�cant
di�erences

0.074
There were

no signi�cant
di�erences

MID 0.048
NSACO is

preferred to
NSGA-II

0.041
NSACO is

preferred to
NSGA-II

Time 0.002
NSACO is

preferred to
NSGA-II

0.046
NSACO is

preferred to
NSGA-II

the NSGA-II has better distribution of solutions in the
trade-o� surface.

In this paper, in order to evaluate the performance
of the two algorithms, the Mann-Whitney test is done
by Statistical Package for the Social Sciences (SPSS
16.0) software (Table 4).

The regret coe�cients (con�dence level), !1 and
!2, are assumed the same (!, in this paper), where it
takes values between 0 and 100%. Figure 11 depicts the
robust multi-objective results for capacitated multi-
vehicle allocation of customers to DCs problem with
considering four values for !, including 5%, 10%, 15%,
and 20%. When looking at the robust results, it is
clear that the Pareto front shifts to higher values for
both objectives when ! increases. The nominal case is
related to the Pareto solutions of deterministic models
in all scenarios.

Figure 11. Bi-objective location allocation: Pareto set by
NSGA-II & NSACO (problem 1 in small scale in 500th
iteration with npop = 100).

It has to be mentioned that the robust opti-
mization model can obtain more insensitive solutions
than the stochastic optimization like mean expected
value model (M.E.V model, with considering mean ex-
pected values of demand and solving with deterministic
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Table 5. Comparison between the results of stochastic optimization model and robust optimization model for problem 5
in small scale.

Scenario Objective
functions

Z�s Zros Zsos
"ro�d
(%)

"so�d
(%)

1

Total cost

287055.47 289889.31 313891.44 0.99 9.35
2 264934.74 309011.22 320197.39 16.64 20.86
3 265999.90 334929.45 301672.11 25.91 13.41
4 296305.81 296418.94 296496.34 0.038 0.06
5 353423.26 355750.82 496563.70 0.66 40.50

1

Total transit time

1.68 1.88 1.71 11.90 1.78
2 1.73 1.88 1.75 8.67 1.16
3 1.77 1.88 1.79 6.21 1.13
4 1.67 1.88 1.69 12.57 1.19
5 1.71 1.88 2.38 9.94 39.00

model), especially when the data distribution is large
compared to the average. The robust optimization
model in the both objectives does not change a lot
under all scenarios, thus the risk of decision can be
e�ectively reduced.

Table 5 shows the comparison between the results
of stochastic optimization model (M.E.V model) and
robust optimization model. As an example, the �rst
member of Pareto front in each scenario for problem 5
in small scale is considered. The relative di�erence
between Zsos and Z�s can be obtained by:

"so�d = f(Zsos � Z�s )=Z�s g � 100%:

The relative di�erence between Zros and Z�s can be
obtained by:

"ro�d = f(Zros � Z�s )=Z�s g � 100%;

where Z�s , Zsos and Zros are the objective values of deter-
ministic model, stochastic optimization model (M.E.V
model), and robust optimization model, respectively.

It can be concluded from Table 5 that the "so�d
for 1st objective and 2nd objective is uctuating from
0.06 to 40.5% and 1.13 to 39%, respectively, while "ro�d
for 1st objective and 2nd objective is uctuating from
0.038 to 25.91% and 6.21 to 12.57%, respectively. The
latter is more stable.

8. Discussion and conclusion

Nowadays, the competition is vital for the �rms'
survival in SCs. Then, the basic priority for supply
chain management should be designing the SC network
properly, to gain competitive advantage. In this paper,
a multi-objective robust optimization model for ca-
pacitated multi-vehicle allocation of customers to DCs
in two-stage SC considering distribution centers and
customers is proposed. The optimization objectives are

to minimize transit time and total cost. Results show
the trade-o� between total transit time and total cost,
since the di�erent types of vehicles used in the model
cause more conict in these two objectives.

In this paper, swarm intelligence-based algorithm
named Non-dominated Sorting Ant Colony Optimiza-
tion (NSACO) is presented to �nd Pareto fronts. The
proposed methodology is based on a new variant of
Ant Colony Optimization (ACO) customized in multi-
objective optimization problem. The crowding distance
technique is used to ensure the best distribution of the
non-dominated solutions.

For ensuring the robustness of the proposed
method and giving a practical sense of this study,
the computational results are compared with those
obtained by Non-dominated Sorting Genetic Algo-
rithms (NSGA-II). Results show the advantages and
e�ectiveness of the used procedures in reporting the
optimal Pareto front of the proposed deterministic and
non-deterministic models.

Moreover, it can be seen that the NSACO is more
e�cient than NSGA-II in the viewpoint of optimality
and running time saving, but the NSGA-II has bet-
ter distribution of solutions in the trade-o� surface.
Also, the optimal solutions of the robust optimization
model are insensitive to the disturbance of parameters
under di�erent scenarios, and the robust optimization
model can obtain better solutions than the stochastic
optimization model, thus the risk of decision can be
e�ectively reduced.

Future research may develop the NSACO to
increase the diversity of solutions. Additionally, it may
be combined routing with location-allocation problem.
Furthermore, given the successful application of a
NSACO to the bi-objective warehouse allocation prob-
lem, the used algorithm can be modi�ed to obtain non-
dominated solutions for warehouse allocation problems
with more than two objectives.
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Appendix A

The robust Pareto solutions for problem 6 in small scale
in 200th iteration by NSACO algorithm are as follows
(where number of customers = 14, number of DCs =
6, types of vehicles = 3):

Number of robust Pareto front members = 2.

Robust Pareto front:

For the 1st element of Robust Pareto front, depot
vector is: y = 1 1 1 1 1 1.
Allocation matrix for the 1st element of Robust Pareto
front is shown in Table A.1.

For the 2nd element of robust Pareto front, depot
vector is: y = 1 1 1 1 0 1.
Allocation matrix for the 2nd element of Robust Pareto
front is shown in Table A.2.

Final objective values:
For the 1st element of robust Pareto front, objective
values are:

Total cost = 1.1391e+006,
Transit time = 3.2200.

For the 2nd element of robust Pareto front, objective
values are:

Total Cost = 1.1747e+006,
Transit Time = 3.1300.

Table A.1. Allocation matrix for the 1st element of
robust Pareto front.

x =

DC1 DC2 DC3 DC4 DC5 DC6 Types of
vehicles

Customer 1 0 0 1 0 0 0 3

Customer 2 0 0 1 0 0 0 2

Customer 3 0 0 0 1 0 0 2

Customer 4 0 0 1 0 0 0 3

Customer 5 0 1 0 0 0 0 1

Customer 6 0 0 0 0 0 1 3

Customer 7 1 0 0 0 0 0 3

Customer 8 0 1 0 0 0 0 2

Customer 9 0 0 0 0 0 1 3

Customer 10 1 0 0 0 0 0 1

Customer 11 0 0 0 0 0 1 3

Customer 12 0 1 0 0 0 0 2

Customer 13 0 0 0 1 0 0 3

Customer 14 0 0 0 0 1 0 3

Table A.2. Allocation matrix for the 2nd element of
robust Pareto front.

x =

DC1 DC2 DC3 DC4 DC5 DC6 Types of
vehicles

Customer 1 0 0 0 0 0 1 3

Customer 2 0 0 1 0 0 0 1

Customer 3 0 0 0 1 0 0 3

Customer 4 0 1 0 0 0 0 2

Customer 5 0 0 1 0 0 0 3

Customer 6 0 1 0 0 0 0 3

Customer 7 0 0 0 0 0 0 1

Customer 8 0 0 0 0 0 1 3

Customer 9 0 0 1 0 0 0 3

Customer 10 1 0 0 0 0 0 2

Customer 11 0 0 0 0 0 1 3

Customer 12 1 0 0 0 0 0 2

Customer 13 0 0 1 0 0 0 3

Customer 14 1 0 0 0 0 0 3
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