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Abstract. This article proposes an e�cient method based on the Fibonacci functions for
solving nonlinear stochastic Itô-Volterra integral equations. For this purpose, we obtain
stochastic operational matrix of Fibonacci functions. We use the proposed basis function
in combination with stochastic operational matrix. This problem is then reduced into a
system of nonlinear equations which can be solved by Newton's method. Also, the existence,
uniqueness, and convergence of the proposed method are discussed. Furthermore, in order
to show the accuracy and reliability of the proposed method, the new approach is applied
to some practical problems.

© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Some mathematical objects are de�ned by a formula
or an expression. Some other mathematical objects
are de�ned by their properties, not explicitly by an
expression. That is, the objects are de�ned by how they
act, not by what they are, such as Brownian motion.
Brownian motion is the physical phenomenon named
after the English botanist Robert Brown who discov-
ered it in 1827. Brownian motion is the zigzag motion
exhibited by a small particle, such as a grain of pollen,
immersed in a liquid or a gas. Albert Einstein gave
the �rst explanation of this phenomenon in 1905. He
explained Brownian motion by assuming the immersed
particle was constantly bu�eted by the molecules of
the surrounding medium. Since then, the abstracted
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process has been used for modeling the stock market
and in quantum mechanics. The French mathematician
and father of mathematical �nance Louis Bachelier
initiated the mathematical equations of Brownian mo-
tion in his thesis \Th�orie de la Sp�culation" (1900).
Later, in the mid-seventies, the Bachelier theory was
improved by the American economists Fischer Black,
Myron Scholes, and Robert Merton, which has had
an almost indescribable inuence on today's derivative
pricing and international economy. Here, Brownian
motion is still very important as it is in many other
more recent �nancial models.

In many problems that involve modeling the
behavior of some system, we lack su�ciently detailed
information to determine how the system behaves; or
the behavior of the system is so complicated that an
exact description of it becomes irrelevant or impossible.
In that case, a probabilistic model is often useful. A
probability space (
;F ; P ) consists of:

(i) A sample space, whose points label all possible
outcomes of a random trial;
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(ii) A �-algebra F of measurable subsets of 
, whose
elements are the events about which it is possible
to obtain information;

(iii) A probability measure P : F ! [0; 1], where 0 �
P (A) � 1 is the probability that the event A 2 F
occurs.

If P (A) = 1, we almost surely say that an event
A occurs.

Stochastic Volterra Integral Equations (SVIEs)
are the natural extension of deterministic ones that
were �rst studied by Berger and Mizel [1,2] for equa-
tion:

Y (t) =Y0 +
Z t

0
f(t; s; Y (s))ds

+
Z t

0
g(t; s; Y (s))dW (s); 0 � t � T:

Such equations arise in many applications such as
mathematical �nance, engineering, biology, medical,
and social sciences [1,3-5]. Because most SVIEs cannot
be solved explicitly or do not have analytic solutions,
it is important to provide numerical schemes [6-8].
Also, many functions or polynomials, such as modi�ed
block pulse functions [9], triangular functions [10],
generalized hat basis functions [11], Taylor series [12],
delta functions [13], Chebyshev wavelets [14], and
Bernstein polynomials [15], were used to derive so-
lutions of SVIEs. However, there are still very few
papers discussing the numerical solutions for stochastic
Volterra integral equations.

In this paper, a stochastic operational matrix for
Fibonacci polynomials is derived. Then application of
this stochastic operational matrix in solving stochastic
Itô-Volterra integral equation is investigated. During
the last decade, operational matrices have received
considerable attention for making an ideal base in
the procedure of approximation [16-20]. The main
characteristic behind this approach is that it reduces
such problems to those of solving a system of algebraic
equations which greatly simplifying the problem. Fur-
thermore, operational matrix can be computed at once
for large values of N , and stored for use in various
problems.

Let W (t) be a standard Brownian motion de�ned
on the probability space. The aim of this paper is
introducing a numerical scheme to solve Itô type of
stochastic Volterra integral equation of the form:

Y (t) =Y0 + �1

Z t

0
a (s; Y (s)) ds

+ �2

Z t

0
b (s; Y (s)) dW (s); 0 � t � T; (1)

where, Y0 is a random variable independent of W (t),

�1 and �2 are parameters and Y (t); a(t; Y (t)) and
b(t; Y (t)) for t 2 [0; T ] are stochastic processes de�ned
on the some probability space (
;F ; P ). Also Y (t) is
unknown function.

The paper is divided into 8 sections. Next
Section has an introductory character and provides
deterministic and stochastic tools that are needed later.
In Section 3, we describe the basic properties of the
Fibonacci functions and functions approximation by
these functions and an integration operational matrix.
In Section 4, we solve nonlinear stochastic Itô-Volterra
integral equations by using the stochastic integra-
tion operational matrix. Existence of the solution
is discussed in Section 5. Convergence analysis of
the presented method is discussed in Section 6. In
Section 7, some examples illustrate the accuracy of the
presented results. Finally, Section 8 gives some brief
conclusions.

2. Stochastic calculus

We start by recalling the de�nition of Brownian mo-
tion, which is a fundamental example of a stochastic
process. The underlying probability space (
;F ; P )
of Brownian motion can be constructed on the space

 = C0(R+) of continuous real-valued functions on R+
started at 0.

De�nition 1. A scalar standard Brownian motion,
or standard Wiener process, over [0; T ] is a random
variable W (t) that depends continuously on t 2 [0; T ]
and satis�es the following three conditions:

(i) W (0) = 0 (with probability 1);
(ii) For 0 � s < t � T , the random variable

given by the increment W (t)�W (s) is normally
distributed with mean zero and variance t � s,
equivalently, W (t) � W (s) � p

t� s N(0; 1),
where N(0; 1) denotes a normally distributed
random variable with zero mean and unit vari-
ance;

(iii) For 0 � s < t < u < v � T , the increments
W (t) � W (s) and W (v) � W (u) are indepen-
dent.

Suppose that p � 2. Consider random variable Y with
distribution fY , so:

E[Y p] =
Z 1
�1

Y pfY dY <1:
Let Lp(
;H) be the collection of all strongly measur-
able, p-th integrable and H-valued random variables.
It is routine to check that Lp(
;H) is a Banach space
with:

kV kLp(
;H) = [EkV kp] 1
p :
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De�nition 2 [21]. The sequence Yn converge to Y in
L2 if for each n;E(jYnj2) <1 and E(kYn � Y k)2 ! 0
as n!1.

Suppose 0 � S � T , let v = v(S; T ) be the class
of functions f(t; w) : [0; 1]� 
! Rn, that satisfy:

(i) The function (t; w)! f(t; w) is ��F measurable,
where � is the Borel algebra;

(ii) f is adapted to Ft;
(iii) E

hR T
S f2(t; w) dt

i
<1.

De�nition 3 [22]. Let f 2 v(S; T ), then the Itô
integral of f is de�ned by:Z T

S
f(t; w)dW (t)(w) = lim

n!1

Z T

S
'n(t; w)dW (t)(w);

where 'n is the sequence of elementary functions such
that:

E

"Z T

S
(f � 'n)2dt

#
! 0; n!1:

Theorem 1 [22]. Let f 2 v(S; T ), then:

E

24 Z T

S
f(t; w)dW (t)(w)

!2
35=E

"Z T

S
f2(t; w)dt

#
:

3. Fibonacci polynomials and their properties

3.1. The Fibonacci polynomials
The Fibonacci polynomials fFn(x)g are de�ned by the
recursion Fn+2(x) = x Fn+1(x) + Fn(x); n � 1 with
initial values F1(x) = 1 and F2(x) = x. They are given
by the explicit formula:

Fn+1(x) =
bn2 cX
i=0

�
n� i
i

�
xn�2i; n � 0;

where bn2 c denotes the greatest integer in n
2 . Also for

x = k 2 N , we obtain the elements of the k-Fibonacci
sequences [23,24]. Suppose that:

F (x) = [F1(x); F2(x); F3(x); : : : ; FN+1(x)]T : (2)

This equation can be written in the matrix form as
follows:

F (x) = BX(x); (3)

where X(x) = [1; x; x2; x3; : : : ; xN ]T , and B is the
lower triangular matrix which its entrances are the
coe�cients appearing in the expansion of the Fibonacci
polynomials in increasing powers of x. Note that

matrix B is invertible, so xn may be written as a linear
combination of Fibonacci polynomials [23,24].

Suppose that a function f(x) can be expressed
in terms of the Fibonacci polynomials. In particular,
only the �rst-(N + 1)-term of Fibonacci polynomials is
considered. Hence, the function f(x) can be written in
the matrix form:

f(x) ' AF (x); (4)

where A = [a1; a2; : : : ; aN+1].
The integration of F (x) is approximated as:Z t

0
F (s)ds =

Z t

0
BX(s)ds ' BPXX(t);

where:

PX =

0BBBBB@
0 1 0 � � � 0
0 0 1

2 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
N

0 0 0 � � � 0

1CCCCCA ;

is operational matrix of integration of Taylor polyno-
mials. Therefore:Z t

0
F (s)ds ' PF (t); (5)

where P = BPXB�1 is an (N+1)�(N+1) operational
matrix; B was introduced in Eq. (3).

3.2. Stochastic operational matrix based on
Fibonacci polynomials

Let F (x) be the vector de�ned in Eq. (2). The Itô
integral of F (x) can be computed as follows:Z t

0
F (s)dW (s) =

Z t

0
BX(s)dW (s)

=B
�Z t

0
dW (s);

Z t

0
sdW (s); : : : ;

Z t

0
sNdW (s)

�T
:

(6)

We can write:0BBBBBB@
R t

0 dW (s)R t
0 sdW (s)

...R t
0 s

NdW (s)

1CCCCCCA = W (t)X(t)

�

0BBBBB@
0R t

0 W (s)ds
...

N
R t

0 s
N�1W (s)ds

1CCCCCA = �(t) = (�i)i=0;1;:::;N ;



F. Mirzaee and S.F. Hoseini/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2472{2481 2475

where:

�i = tiW (t)� i
Z t

0
si�1W (s)ds;

i = 0; 1; : : : ; N:

Using composite trapezium rule, we obtain:

�i = tiW (t)� it
4

�
2(
t
2

)i�1W (
t
2

) + ti�1W (t)
�

=
�
(1� i

4
)W (t)� i

2i
W (

t
2

)
�
ti;

i = 0; 1; : : : ; N:

After approximating W (t) and W ( t2 ), for 0 � t �
1, by W (0:5) and W (0:25) and substituting these
approximations in Eq. (6), we obtain the equations
shown in Box I. Therefore:

B�(t) = B�sX(t) = B�sB�1F (t) = PsF (t);

where Ps = B�sB�1 is (N + 1) � (N + 1) stochastic
operational matrix. So, we have:Z t

0
F (s)dW (s) ' PsF (t): (7)

4. Method of solution

Consider the nonlinear stochastic Itô integral Eq. (1)
and let:

	1(t) = a (t; Y (t)) ; 	2(t) = b (t; Y (t)) : (8)

We approximate 	1(t) and 	2(t) by Fibonacci polyno-
mials as follows:

	1(t) ' A1F (t); 	2(t) ' A2F (t); (9)

such that (N + 1)-vectors A1 and A2 are Fibonacci
coe�cients of 	1(t) and 	2(t), respectively. By using
Eqs. (5), (7), and (9) we have:Z t

0
	1(s)ds ' A1

Z t

0
F (s)ds = A1 P F (t); (10)

and:Z t

0
	2(s)dW (s) ' A2

Z t

0
F (s)dW (s) = A2 Ps F (t):

(11)

On the other hand, from Eqs. (1) and (8) we get:8>>>>>><>>>>>>:
	1(t) = a(t; Y0 + �1

R t
0 	1(s)ds

+�2
R t

0 	2(s)dW (s));

	2(t) = b(t; Y0 + �1
R t

0 	1(s)ds
+�2

R t
0 	2(s)dW (s)):

(12)

After substituting the approximate Eqs. (9), (10), and
(11) in Eq. (12), we get:8>>>>>><>>>>>>:

A1 F (t) = a(t; Y0 + �1 A1 P F (t)
+�2 A2 Ps F (t));

A2 F (t) = b(t; Y0 + �1 A1 P F (t)
+�2 A2 Ps F (t)):

(13)

Now, we collocate Eq. (13) in N + 1 Newton-cotes
nodes, ti = 2i�1

2(N+1) ; i = 1; 2; : : : ; N + 1, as:8>>>>>><>>>>>>:
A1 F (ti) = a(ti; Y0 + �1 A1 P F (ti)

+�2 A2 Ps F (ti));

A2 F (ti) = b(ti; Y0 + �1 A1 P F (ti)
+�2 A2 Ps F (ti)):

(14)

B�(t) = B

0BBB@
W (0:5) 0 � � � 0

0 3
4W (0:5)� 1

2W (0:25) � � � 0
...

...
. . .

...
0 0 � � � (1� N

4 )W (0:5)� N
2NW (0:25)

1CCCA
0BBB@

1
t
...
tN

1CCCA :

Let:

�s =

0BBB@
W (0:5) 0 � � � 0

0 3
4W (0:5)� 1

2W (0:25) � � � 0
...

...
. . .

...
0 0 � � � (1� N

4 )W (0:5)� N
2NW (0:25)

1CCCA :

Box I
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Finally, by solving this nonlinear system with Newton's
method and determining A1 and A2, we obtain the
approximate solution of the problem as follows:

YN (t) = Y0 + �1 A1 P F (t) + �2 A2 Ps F (t):

5. Existence of the solution

Picard's iteration has been used to prove the existence
and uniqueness of the solution of stochastic integral
equations. In [25], the authors used Schauder's �xed
point theorem to give a new existence theorem about
the solution of a stochastic integral equation. The the-
orem can weaken some conditions gotten by applying
Banach's �xed point theorem.

Theorem 2. Let Q = f(t; Y (t)) 2 R2; t 2 [0; T ];
and jY (t)j � r for �xed r > 0g. Assume the following
conditions:

(i) a(t; Y (t)); b(t; Y (t)) : Q! R are continuous and
measurable on [0; T ]� 
;

(ii) We de�ne:

d = sup
(t;Y (t))2Q

fjja(t; Y (t))jj; jjb(t; Y (t))jjg;

and let the real number T; d, and random variable
h be given that:

3E[h2] + 3T (1 + T )d2 � r2:

(iii) We set M = fY (t) 2 X ; kY (t)k � rg in which
X denotes the space of all stochastic processes
f(t; w); 0 � t � T that are adapted to �ltrate Ft
and

R T
0 E(jY (t)j2)dt < +1.

Then the stochastic integral Eq. (1) has at least one
solution Y (t) 2M .

Proof [25].

Theorem 3. Assume the following conditions:

(i) a(t; Y (t)) and b(t; Y (t)) are measurable on [0; T ]�

;

(ii) ja(t; Y (t))� a(t;X(t))j � k1jY (t)�X(t)j, jb(t; Y
(t))� b(t;X(t))j � k2jY (t)�X(t)j;

(iii) Let the real number T; c = maxfk1; k2g be given
such that:

0 � 2Tc2(1 + T ) < 1:

Then the stochastic integral Eq. (1) has a unique
solution Y (t) 2M .

Proof [25].

6. Convergence analysis

The Fibonacci polynomials can be expressed in terms
of some orthogonal polynomials, such as Chebychev
polynomial of the second kind un(t) [26]. It can be
shown that:

FN+1(t) = iNuN
�
t
2i

�
:

that i2 = �1; N � 0.
As we know, the expansion of f(t) in the approx-

imated form of Fibonacci polynomials can be written
as:

f(t) ' pn(t) =
N+1X
i=1

aiFi(t):

On the other hand, it can eventually be expressed as:

pn(t) =
NX
j=0

cjuj(t);

where cj ; j = 0; 1; : : : ; N , can be expressed in terms
of ai; i = 1; 2; : : : ; N + 1. If uj(t) =

q
( 2
� ) uj(t), then

uj(t); j = 0; 1; : : : ; N , form an orthonormal polynomial
basis in [�1; 1] with respect to weight function !(t) =
(1 � t2) 1

2 , that can be mapped into [0; 1]. Therefore,
this procedure yields:

pn(t) =
NX
j=0

r
(

2
�

) cjuj(t):

Golberg and Chen [27] proved that when we are
approximating a continuously di�erentiable function
(g 2 Cr; r > 0) by Chebychev polynomials, then:

kg � pnk! < �N�r;

where � is some constant. So, above statements prove
the following theorem.

Theorem 4. Suppose that Fn(g(t)) is expansion of
g(t) in Fibonacci basis. For all function g in C[0; 1],
the sequence fFn(g); n = 1; 2; : : :g converges uniformly
to g.

Proof. Considering the above descriptions, proof is
clear.

This theorem shows that for any g 2 C[0; 1] and
for any ", there exists n such that:

kFn(g)� gk < ":

We suppose k � k be the L2 norm on [0; 1]. We de�ne
the error function as:

eN (t) = Y (t)� YN (t);
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in which Y (t) and YN (t) are the exact and approximate
solution of Eq. (1), respectively. So, we have:

Y (t)� YN (t) = �1

Z t

0
(	1(s)� 	̂1(s)) ds

+ �2

Z t

0
(	2(s)� 	̂2(s)) dW (s);

where 	i(s); i = 1; 2, is de�ned in Eq. (8). Also
	̂i(s); i = 1; 2, is approximated form of 	i(s); i = 1; 2,
by Fibonacci approximation.

Theorem 5. Let Y (t) be exact solution and YN (t)
be the Fibonacci approximate solution of Eq. (1). Also
assume that:

(i) For every T and K, there is a constant D
depending only on T and K such that for all
jZj; jY j � K and all 0 � t � T ,

ja(t; Z)�a(t; Y )j+jb(t; Z)�b(t; Y )j�DjZ�Y j:
(ii) Coe�cients satisfy the linear growth condition:

ja(t; Z)j+ jb(t; Z)j � D(1 + jZj):
(iii) E(jZj2) <1:

Then YN (t) converges to Y (t) in L2.

Proof.

eN (t) =�1

Z t

0
(	1(s)� 	̂1(s))ds

+ �2

Z t

0
(	2(s)� 	̂2(s))dW (s)

EkeN (t)k2 � 2
�
j�1j2Ek

Z t

0
(	1(s)� 	̂1(s))dsk2

+j�2j2Ek
Z t

0
(	2(s)�	̂2(s))dB(s)k2

�
:

From Theorem 1, we have:

EkeN (t)k2 � 2
�
j�1j2

Z t

0
Ek	1(s)� 	̂1(s)k2ds

+j�2j2
Z t

0
Ek	2(s)� 	̂2(s)k2ds

�
� 8
�
j�1j2

Z t

0
Ek	1(s)�	N

1 (s)k2ds

+j�1j2
Z t

0
Ek	N

1 (s)� 	̂1(s)k2ds:

+j�2j2
Z t

0
Ek	2(s)�	N

2 (s)k2ds

+j�2j2
Z t

0
Ek	N

2 (s)� 	̂2(s)k2ds
�
;

where 	N
1 (s) = a(s; YN (s)) and 	N

2 (s) = b(s; YN (s)).
By Theorem 4, there exists N > 0 such that for any ":

Ek	N
j (s)� 	̂j(s)k2 � " =

"1

16j�j j2 ; j = 1; 2:

So:

EkeN (t)k2 � "1 + 8
�
j�1j2

Z t

0
Ek	1(s)�	N

1 (s)k2ds

+j�2j2
Z t

0
Ek	2(s)�	N

2 (s)k2ds
�
:

Using Lipschitz condition:

EkeN (t)k2 � "1+8
�j�1j2+j�2j2�D2

Z t

0
EkeN (s)k2ds:

(15)

Hence from Eq. (15) and Gronwall inequality we have:

EkeN (t)k2 ! 0:

Therefore, YN (t)! Y (t) in L2.

7. Illustrative examples

To illustrate the e�ectiveness of the proposed method,
three examples are carried out in this section. In this
regard, we have presented Tables 1 to 6. All results
are computed by using a program written in Matlab.
Using this method, all nonlinear examples reduce to
nonlinear systems of equations that we solve them by
Newton's method with zero vector as the initial guess.

Let Y (t) be the exact solution and YN (t) be the
Fibonacci approximate solution of Eq. (1), then we
de�ne the error in the interval [0; 1] as:

kEk1 = max jeN (ti)j; 0 � ti � 1;

where eN (ti) = Y (ti)� YN (ti).

Example 1 [8]. Consider the following nonlinear
stochastic Itô-Voletrra integral equation:

Y (t) = 0:5 +
Z t

0
Y (s)(1� Y (s))ds

+0:25
Z t

0
Y (s)dW (s); 0 � t � 1; (16)

with the exact solution:

Y (t) =
0:5exp(0:96875t+ 0:25W (t))

1 + 0:5
R t

0 exp(0:96875t+ 0:25W (t))ds
: (17)

This integral equation is a simple model for the size
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Table 1. Mean, standard deviation, and con�dence interval for error mean of Example (1) with N = 8 and k = 100.

0.95 Con�dence interval
ti �YE SE Lower bound Upper bound
0.0 0.066787678803251 0.050070727528147 0.056973816207734 0.076601541398768
0.1 0.068740589266325 0.051647935696043 0.058617593869901 0.078863584662750
0.2 0.070747616059190 0.053254210986865 0.060309790705764 0.081185441412616
0.3 0.072801356941015 0.054938682939085 0.062033375084954 0.083569338797075
0.4 0.074900637058035 0.056754992712421 0.063776658486400 0.086024615629669
0.5 0.077121623459108 0.058668422068519 0.065622612733678 0.088620634184538
0.6 0.079469608333069 0.060755397319355 0.067561550458475 0.091377666207662
0.7 0.081954627875088 0.063102268436932 0.069586583261449 0.094322672488726
0.8 0.084584835331435 0.065812268823923 0.071685630641946 0.097484040020924
0.9 0.087465163472625 0.068874591335778 0.073965743570812 0.100964583374437

Table 2. Approximate in�nity-norm of absolute error and
CPU time(s) for Example (1).

Methods Maximum
error

CPU time
(s)

�YE SE
Present method 0.0806 0.0508 3350.4
Method of [15] 0.0842 0.0764 3477.6

Y of a population at time t that is the model of
exponential growth:

dY (t) = cY (t)dt; (18)

where c is the growth coe�cient. An appropriate
modi�cation of Eq. (18) is given as a linear quadratic
Verhulst equation:

dY (t) = Y (t)( � Y (t))dt; (19)

where the population growth c is replaced by �Y (t).
By randomizing the parameter  in Eq. (19) to  +
��(t), where �(t) = dW (t)

dt is a white noise of zero

Table 4. Approximate in�nity-norm of absolute error and
CPU time(s) for Example (2).

Methods Maximum
error

CPU time
(s)

�YE SE
Present method 0.1363 0.0748 899.4
Method of [15] 0.1366 0.1113 1492.4

mean, we have the usual stochastic Verhulst equation
describing more precisely the population dynamics:

dY (t) = Y (t)( � Y (t))dt+ �Y (t)dW (t); (20)

in which  and � are positive constants [28-30]. Eq.
(20) can be shown as an Iô-Voletrra integral equation:

Y (t)=Y0 +
Z t

0
Y (s)(�Y (s))ds+

Z t

0
�Y (s)dW (s);

(21)

with the exact solution:

Y (t) =
Y0e(� 1

2�
2)t+�W (t)

1 + Y0
R t

0 e
(� 1

2�2)s+�W (s)ds
: (22)

Table 3. Mean, standard deviation, and con�dence interval for error mean of Example (2) with N = 8 and k = 100.

0.95 Con�dence interval
ti �YE SE Lower bound Upper bound
0.0 0.135475215100671 0.099949025190492 0.115885206163334 0.155065224038007
0.1 0.094577113462763 0.067936547239583 0.081261550203805 0.107892676721722
0.2 0.065641356637775 0.046213924490262 0.056583427437683 0.074699285837866
0.3 0.046288849652677 0.032467521662404 0.039925215406846 0.052652483898509
0.4 0.036989038086022 0.025052683527720 0.032078712114589 0.041899364057455
0.5 0.040498134169732 0.019387041723278 0.036698273991969 0.044297994347494
0.6 0.051630444905859 0.015320410634470 0.048627644421502 0.054633245390215
0.7 0.066272860190579 0.010784705923229 0.064159057829626 0.068386662551532
0.8 0.082371739311274 0.007702512651059 0.080862046831666 0.083881431790881
0.9 0.100421704127271 0.006322909537695 0.099182413857882 0.101660994396659
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Table 5. Mean, standard deviation, and con�dence interval for error mean of Example (3) with N = 8 and k = 100.

0.95 Con�dence interval
ti �YE SE Lower bound Upper bound

0.0 0.009355665647819 0.006755459612363 0.008031595563796 0.010679735731842
0.1 0.031217002113644 0.024322569914853 0.026449778410333 0.035984225816955
0.2 0.040897395484443 0.027392057364539 0.035528552240994 0.046266238727893
0.3 0.048795606340377 0.038178679020026 0.041312585252452 0.056278627428302
0.4 0.055188393237043 0.041477690239870 0.047058765950029 0.063318020524058
0.5 0.061091301361998 0.045404732373637 0.052191973816765 0.069990628907231
0.6 0.066550166176714 0.055272371925028 0.055716781279409 0.077383551074020
0.7 0.074798297097570 0.057252918866680 0.063576724999701 0.086019869195439
0.8 0.084017239030808 0.069273995253571 0.070439535961108 0.097594942100508
0.9 0.097281470236254 0.074331818594678 0.082712433791697 0.111850506680811

Table 6. Approximate in�nity-norm of absolute error and
CPU time(s) for Example (3).

Methods Maximum
error

CPU time
(s)

�YE SE
Present method 0.0085 0.0791 3761.1
Method of [15] 0.1002 0.0791 6509.9

By considering Y0 = 0:5;  = 1; and � = 0:25
in Eq. (21), we get Eq. (16) that can be solved by
the proposed method. The numerical results for this
example are shown in Tables 1 and 2. In these
tables, �YE is the error mean and SE is the standard
deviation of errors in k iteration. In Table 2, we
compare the maximum absolute error and measured
CPU time(s) for the present method and Bernstein
functions method [15] with N = 8 and k = 20.

Example 2 [8]. Consider the following nonlinear
stochastic Itô-Voletrra integral equation:

Y (t) = 1 +
Z t

0
Y (s)(

1
32
� Y 2(s))ds

+0:25
Z t

0
Y (s)dW (s); 0 � t � 1; (23)

with the exact solution:

Y (t) =
exp(0:25W (t))q

1 + 2
R t

0 exp(0:5W (s))ds
: (24)

The numerical results for this example are shown in
Tables 3 and 4. In these tables, �YE is the error
mean and SE is the standard deviation of errors in
k iteration. In Table 4, we compare the maximum
absolute error and measured CPU time(s) for the
present method and Bernstein functions method [15]
with N = 8 and k = 20.

Example 3 [8]. Consider the following nonlinear
stochastic Itô-Voletrra integral equation:

Y (t) =
1
8
� 0:015625

Z t

0
Y (s)(1� Y 2(s))ds

+0:125
Z t

0
(1� Y 2(s))dW (s); 0 � t � 1;

(25)

with the exact solution:

Y (t) =
9
8e

0:25W (t) � 7
8

9
8e0:125W (t) + 7

8
: (26)

The numerical results for this example are shown in
Tables 5 and 6. In these tables, �YE is the error
mean and SE is the standard deviation of errors in
k iteration. In Table 6, we compare the maximum
absolute error and measured CPU time(s) for the
present method and Bernstein functions method [15],
with N = 8 and k = 20.

8. Conclusion

Because it is almost impossible to �nd the exact
solution of Eq. (1), it would be convenient to determine
its numerical solution based on stochastic numerical
analysis. This paper suggested a numerical method
to solve the nonlinear stochastic Itô-Volterra integral
equations by using Fibonacci polynomials and their
operational matrices. Moreover, the stochastic opera-
tional matrix of Itô-integration for Fibonacci functions
was derived and the convergence and error analyses of
the proposed method were established. E�ciency of
this method and a good reasonable degree of accuracy
is con�rmed by three numerical examples. Further-
more, the results of the present method have been
compared with analytical solution and the solution of
Bernstein method [15].
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