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Abstract. This paper investigates the problem of stability analysis for linear systems
with time-varying delay. To reduce the conservativeness of su�cient stability conditions, a
novel augmented Lyapunov-Krasovskii Functional (LKF) which includes quadratic terms
of double-integral phrases is introduced; as well, the technique of free-weighting matrices
with new slack variables is employed; moreover, a tighter integral inequality is derived for
bounding the cross-product terms in the derivative of chosen LKF. Numerical examples
are presented to illustrate the superiority of the proposed method compared to some of the
previously developed approaches.
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1. Introduction

Variable time-delays are encountered in many practical
systems, especially in the processes that involve trans-
portation or propagation of material and data such as
chemical reactors, combustion engines, and networked
control systems. The presence of time-delay in the
dynamic equations of the system brings important
challenges in its stability analysis and stabilization.
Therefore, recently, considerable attention has been
attracted to the analysis and control of time-delay
systems [1-8].

Most of the time-domain stability criteria for
systems with time-varying delay are based primarily
on the Lyapunov-Krasovskii Theorem, combined with
the model transformation schemes and bounding tech-
niques for the cross-terms in the derivative of the
Lyapunov-Krasovskii Functional (LKF) [1]. In order
to obtain less conservative delay-dependent conditions,

*. Corresponding author. Tel.: +98 41 33459356;
Fax: +98 41 33444322
E-mail address: mahboobi@sut.ac.ir (R. Mahboobi
Esfanjani)

more e�cient augmented LKFs were constructed; be-
sides more accurate bounding methods were developed
for the cross-terms in the derivative of the energy
functional [9,10]. In [11], delay-dependent stability
criteria were derived for linear systems with a constant
discrete delay, wherein a new simple LKF was intro-
duced by uniformly dividing the delay interval into mul-
tiple segments and choosing di�erent weight matrices
corresponding to each segment. The idea of [11] was
generalized in [12] to obtain less conservative stability
conditions for linear systems with time-varying delay in
which the delay interval is decomposed into equidistant
subintervals; then, choosing di�erent matrix pairs for
each subinterval, a new LKF was constructed. In [13],
Wirtinger inequality was used for the �rst time to
reduce the conservatism in computing the derivative of
LKFs. This more accurate integral inequality depends
not only on the state, but also on the integral of the
state over the delay interval.

The method of free-weighting matrices that in-
jects additional variables to add extra-degree of free-
dom in the su�cient stability condition made an im-
portant progress in delay-dependent stability criteria of
systems with time-varying delay [14,15]. The stability



2416 A. Farnam et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2415{2423

measures were further improved by involving novel
slack matrices in the derivative of energy functionals.
On the other hand, the technique of free-weighting ma-
trices was combined with the conventional ideas, such
as descriptor transformation approach and augmented
vectors method, to further reduce the conservativeness
of stability conditions [16,17]. But, in some cases, using
functional parameters and/or free-weighting matrices
leads to complex stability criteria. Therefore, in order
to reduce computational burden, a simpli�ed criterion
was obtained in [18].

Most of the mentioned methods, such as [19]
utilize LKFs, include double-integral terms. For the
�rst time, triple-integral terms were added to the LKF
in [20] to enhance stability criterion for the constant
delay system. This type of augmented LKF was used
to develop the stability measure for the linear systems
with time varying-delay in [21]. It is worth noting that
some types of LKFs yield in�nite dimensional LMIs.
That is why many authors have considered the simple
form of LKFs and thus derived simpler, but more
conservative, conditions [22].

In [23], delay-range-dependent stability criterion
for linear systems with time-varying delay was derived,
where a new estimation method, along with the convex
combination and delay partitioning was employed to
obtain a less conservative stability condition. More
recently, the stability of a linear system with interval
time-varying delay was investigated in [24], where
a new LKF was presented and some novel integral
inequalities were established for bounding the cross
terms appearing in the derivative of the chosen LKF.
Moreover, the matrix-based quadratic convex approach
was used to ensure both the positive de�niteness of
LKF and negative de�niteness of its derivative.

This paper presents an improved stability condi-
tion for systems with time-varying delay compared to
some of the currently available conditions in literature.
To develop this novel condition, a new type of LKF
containing quadratic phrases of double-integral terms is
introduced and the method of free-weighting matrices
with novel slack variables is utilized. Moreover, a
tighter integral inequality is derived to bound cross-
terms in the derivative of LKF. E�ciency of the
suggested approach is demonstrated by two illustrative
examples. Note that since less conservativeness of
the proposed stability condition is the consequence of
increasing the number of matrix parameters in the
derived LMIs, more computation time is needed in the
testing procedure.

This paper is organized as follows: The problem
is described in Section 2. Section 3 introduces the
su�cient condition for stability analysis of the linear
system with time-varying delay. In Section 4, two
numerical examples are presented to demonstrate the
advantages of the proposed method compared to some

of the existing approaches. Section 5 concludes the
paper.

Notations: In this paper, R denotes real numbers
set. The symbol * stands for symmetric block in
the symmetric matrices. I is identity matrix with
appropriate dimensions. The notation P > 0 (P � 0)
means that P is real symmetric and positive de�nite
(positive semide�nite). The superscript T stands for
matrix transposition. colfg shows column vector of the
elements in the bracket.

2. System description and preliminaries

The linear system with time-varying delay is described
as follows:

_x(t) = Ax(t) +A1x(t� �(t)); t � 0;

x(t) = '(t); t 2 [��2; 0); (1)

where x(t) 2 Rn is the state vector; A and A1 are
system matrices with appropriate dimensions; and �(t)
denotes time-varying delay and satis�es:

0 � �1 � �(t) � �2; (2)

where, �1 < �2 are the constant upper and lower
bounds of time-varying delay.

The problem is to �nd a new delay-dependent
condition in terms of linear matrix inequalities to
investigate the asymptotic stability of the system
(Eqs. (1)) with the delay satisfying Relation (2). Before
proceeding further, inspired by Jensen's inequality
in [23], the following lemma is extracted.

Lemma 1. Suppose 0 � �1 � �2 and !(t) 2 Rn; for
any positive de�nite matrix Z 2 Rn�n, the following
inequality holds:

(�2
2 � �2

1)
��1Z
��2

tZ
t+�

!T (�)Z!(�)d�d�

� 2

0B@ ��1Z
��2

tZ
t+�

!(�)d�d�

1CAT

Z

0B@ ��1Z
��2

tZ
t+�

!(�)d�d�

1CA :

Proof: Regarding the Schur complement, the follow-
ing holds:�

!T (�)Z!(�) !T (�)
!(�) Z�1

�
� 0;
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double integrating both sides of the above relation
yield:26664

��1R
��2

tR
t+�

!T (�)Z!(�)d�d�
��1R
��2

tR
t+�

!T (�)d�d�

��1R
��2

tR
t+�

!(�)d�d� (�2
2��2

1)
2 Z�1

37775�0:

Applying the Schur complement completes the proof.
�

3. Main results

In this section, a new delay-dependent stability condi-
tion is derived to check the asymptotic stability of the
linear system (Eqs. (1)) using appropriate LKF and
Lemma 1.

Theorem 1. Given 0 < �1 < �2, A and A1, linear
system in Eqs. (1) with time-varying delay satisfying
Relation (2) is asymptotically stable if there are matri-
ces Y0, Y1, Y2, M , X0, X1, X2, and symmetric matrices:

P = [Pij ]7�7 > 0 (for i; j = 1; 2; � � � ; 7);

Q1 = [Q1ij ]2�2 > 0; Q2 = [Q2ij ]2�2 > 0;

T1 = [T1ij ]2�2 > 0; T2 = [T2ij ]2�2 > 0;

Z1 = [Z1ij ]2�2 > 0; Z2 = [Z2ij ]2�2 > 0;

(for i; j = 1; 2);

with appropriate dimensions satisfying the following
inequality:26666664

� �1 �Y0 �21 �Y1

� ��1

�
T111 T112 +X0� T122

�
0

� � ��21

�
T211 T212 +X1� T222

�
� � �

�21 �Y2
0
0

��21

�
T211 T212 +X2� T222

�
377775 < 0;

(3)

where:
�21 = �2 � �1;

and:
�Y T0 =

� ~Y T0 0 0 0 0
�
;

�Y T1 =
� ~Y T1 0 0 0 0

�
;

�Y T2 =
� ~Y T2 0 0 0 0

�
;

with:

~Y0 =
�
0 Y0

�
; ~Y1 =

�
0 Y1

�
; ~Y2 =

�
0 Y2

�
;

also:X
=
X̂

+ 
 + 
T ;

with:


T =
��MA 0 0 M 0 0

�MA1 0 0 0 0
�
;

and:

�̂ =

2666666666666666664

�̂11 �̂12 �̂13 �̂14 P12 P13

� �̂22 �̂23 �̂24 �̂25 P23

� � �̂33 �̂34 PT23 �̂36� � � �̂44 0 0
� � � � �̂55 0
� � � � � �Q222� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

0 �̂18 �̂19 �̂110 �̂111

0 �̂28 �̂29 �̂210 �̂211

0 �̂38 �̂39 �P56 �P57

0 �̂48 �̂49 �̂410 �̂411

0 P24 P25 P26 P27
0 P34 P35 P36 P37

�̂77 0 0 0 0
� �̂88 �̂89 �̂810 �P67

� � �̂99 �PT67 �̂911� � � �Z111 0
� � � � �Z211

3777777777777777775
;

in which:

�̂11 =PT14 + P14 +Q111 + �1T111 + �21T211

+
�4

1
4
Z111 +

(�2
2 � �2

1)2

4
Z211 � �2

1Z122

� �2
21Z222 +X0;

�̂14 =P11 + �1P16 + �21P17 +Q112 + �1T112

+ �21T212 +
�4

1
4
Z112 +

(�2
2 � �2

1)2

4
Z212 ;

�̂22 =� PT24 + PT25 � P24 + P25 �Q111 +Q211

�X0 +X1;
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�̂44 =Q122 + �1T122 + �21T212 +
�4

1
4
Z122

+
�
�2

2 � �2
1
�2

4
Z222 ;

�̂12 = PT24 � P14 + P15;

�̂13 = PT34 � P15;

�̂18 = P44 � P16 + �1Z122 ;

�̂19 = P45 � P17 + �21Z222 ;

�̂110 = P46 � �1ZT112
;

�̂111 = P47 � �21ZT212
;

�̂23 = �PT34 + PT35 � P25;

�̂24 = �PT12 + �1P26 + �21P27;

�̂25 = �Q112 +Q212 ;

�̂28 = �P44 + PT45 � P26;

�̂29 = �P25 + P55 � P27;

�̂210 = �P46 + P56;

�̂211 = �P47 + P57;

�̂33 = �PT35 � P35 �Q211 �X2;

�̂34 = PT13 + �1P36 + �21P37;

�̂36 = P33 �Q212 ;

�̂38 = �PT45 � P36;

�̂39 = �P55 � P37;

�̂48 = P14 + �1PT46 + �21PT47;

�̂49 = P15 + �1PT56 + �21PT57;

�̂410 = P16 + �1P66 + �21PT67;

�̂411 = P17 + �1P67 + �21P77;

�̂55 = �Q122 +Q222 ;

�̂77 = �X1 +X2;

�̂88 = �PT46 � P46 � Z122 ;

�̂89 = �PT56 � P47;

�̂810 = �P66 + ZT112
;

�̂99 = �PT57 � P57 � Z222 ;

�̂911 = �P77 + ZT212
;

Proof: The LKF candidate is constructed as follows:

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt); (4)

V1(xt) = �T (t)P�(t); (5)

V2(xt) =
tZ

t��1

�T (�)Q1�(�)d�

+
t��1Z
t��2

�T (�)Q2�(�)d�; (6)

V3(xt) =
0Z

��1

tZ
t+�

�T (�)T1�(�)d�d�

+
��1Z
��2

tZ
t+�

�T (�)T2�(�)d�d�; (7)

V4(xt) =
�2

1
2

0Z
��1

0Z
�

tZ
t+�

�T (�)Z1�(�)d�d�d�

+
(�2

2 � �2
1)

2

��1Z
��2

0Z
�

tZ
t+�

�T (�)Z2�(�)d�d�d�;
(8)

wherein, augmented vectors �(�) and �(t) are de�ned
as:

�(�) = colfx(�); _x(�)g;
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and:

�(t) = col

(
x(t); x(t� �1); x(t� �2);

tZ
t��1

x(�)d�;
t��1Z
t��2

x(�)d�;

0Z
��1

tZ
t+�

x(�)d�d�;

��1Z
��2

tZ
t+�

x(�)d�d�

)
:

First, time derivative of V (xt) is computed along the
trajectories of Eqs. (1) as the following:

_V (xt) =2�T (t)P (t)� + �T (t)Q1�(t)

� �T (t� �1)Q1�(t� �1)

+ �T (t� �1)Q2�(t� �1)

� �T (t� �2)Q2�(t� �2)

+ �T (t)(�1T1 + �21T2)�(t)

�
tZ

t��1

�T (�)T1�(�)d�

�
t��1Z

t��(t)

�T (�)T2�(�)d�

�
t��(t)Z
t��2

�T (�)T2�(�)d�

+ �T (t)
�
�4

1
4
Z1 +

(�2
2 � �2

1)2

4
Z2

�
�(t)

� �2
1
2

0Z
��1

tZ
t+�

�T (�)Z1�(�)d�d�

� (�2
2 � �2

1)
2

��1Z
��2

tZ
t+�

�T (t)Z2�(t)d�d�:

Note that for any of the matrices Y0, Y1, Y2, M , X0,
X1, and X2 with appropriate dimensions, the following

equalities hold:

"1(t) =2�T (t)Y0

 
x(t)� x(t� �1)

�
tZ

t��1

_x(�)d�

!
= 0; (9)

"2(t) =2�T (t)Y1

 
x(t� �1)� x(t� �(t))

�
t��1Z

t��(t)

_x(�)d�

!
= 0; (10)

"3(t) =2�T (t)Y2

 
x(t� �(t))� x(t� �2)

�
t��(t)Z
t��2

_x(�)d�

!
= 0; (11)

"4(t)=2�T (t)M ( _x(t)�Ax(t)�A1x(t��(t)))=0;
(12)

"5(t) =xT (t)X0x(t)� xT (t� �1)X0x(t� �1)

� 2
tZ

t��1

_xT (�)X0x(�)d� = 0; (13)

"6(t) =xT (t� �1)X1x(t� �1)

� xT (t� �(t))X1x(t� �(t))

� 2
t��1Z

t��(t)

_xT (�)X1x(�)d� = 0; (14)

"7(t) =xT (t� �(t))X2x(t� �(t))

� xT (t� �2)X2x(t� �2)

� 2

t��(t)Z
t��2

_xT (�)X2x(�)d� = 0; (15)

in which:

�(t) =colfx(t); x(t� �1); x(t� �2); _x(t);

_x(t� �1); _x(t� �2); x(t� �(t)g:
Regarding Eqs. (9)-(15) and utilizing Lemma 1, the
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upper bound of _V (xt) is written as follows:

_V (xt) �2�T (t)P�(t) + �T (t)Q1�(t)

� �T (t� �1)Q1�(t� �1)

+ �T (t� �1)Q2�(t� �1)

� �T (t� �2)Q2�(t� �2)

+ �T (t)(�1T1 + (�2 � �1)T2)�(t)

�
tZ

t��1

�T (�)T1�(�)d�

�
t��1Z

t��(t)

�T (�)T2�(�)d�

�
t��(t)Z
t��2

�T (�)T2�(�)d�

+ �T (t)
�
�4

1
4
Z1 +

(�2
2 � �2

1)2

4
Z2

�
�(t)

�

26664
0R
��1

tR
t+�

x(�)d�d�

�1x(t)� tR
t��1

x(�)d�

37775
T

:
�
Z111 Z112� Z122

�

:

26664
0R
��1

tR
t+�

x(�)d�d�

�1x(t)� tR
t��1

x(�)d�

37775

�

26664
��1R
��2

tR
t+�

x(�)d�d�

(�2 � �1)x(t)� t��1R
t��2

x(�)d�

37775
T

:
�
Z211 Z212� Z222

�

:

26664
��1R
��2

tR
t+�

x(�)d�d�

(�2 � �1)x(t)� t��1R
t��2

x(�)d�

37775+
i=7X
i=1

"i(t):
(16)

On the other hand, the following inequalities are true:

�2�T (t) ~Y0

tZ
t��1

�(�)d�

� �1�T (t) ~Y0

�
T111 T112 +X0� T122

��1
~Y T0 �(t)

+
tZ

t��1

�T (�)
�
T111 T112 +X0� T122

�
�(�)d�;

~Y0 =
�
0 Y0

�
; (17)

�2�T (t) ~Y1

t��1Z
t��(t)

�(�)d�

� �21�T (t) ~Y1

�
T211 T212 +X1� T222

��1
~Y T1 �(t)

+
t��1Z

t��(t)

�T (�)
�
T211 T212 +X1� T222

�
�(�)d�;

~Y1 =
�
0 Y1

�
; (18)

�2�T (t) ~Y2

t��(t)Z
t��2

�(�)d�

� �21�T (t) ~Y2

�
T211 T212 +X2� T222

��1
~Y T2 �(t)

+

t��(t)Z
t��2

�T (�)
�
T211 T212 +X2� T222

�
�(�)d�;

~Y2 =
�
0 Y2

�
: (19)

Now, the upper bound of _V (xt) is restated as follows
by substituting Relations (17)-(19) in Relation (16):

_V (xt) � #T (t)

(
� + �1 �Y0

�
T111 T112 +X0� T122

��1
�Y T0

+ �21 �Y1

�
T211 T212 +X1� T222

��1
�Y T1

+ �21 �Y2

�
T211 T212 +X2� T222

��1
�Y T2

)
#(t); (20)

where, �Y0, �Y1, and �Y2 were de�ned previously in
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Relation (3) and:

#(t) = col

(
x(t); x(t� �1); x(t� �2); _x(t);

_x(t� �1); _x(t� �2); x(t� �(t);

tZ
t��1

x(�)d�
t��1Z
t��2

x(�)d�;

0Z
��1

tZ
t+�

x(�)d�d�;

��1Z
��2

tZ
t+�

x(�)d�d�

)
:

Regarding Relation (20), the Lyapunov-Krasovskii
Theorem [1] guarantees the asymptotic stability of the
system in Eqs. (1), provided that:

� + �1 �Y0

�
T111 T112 +X0� T122

��1
�Y T0

+ �21 �Y1

�
T211 T212 +X1� T222

��1
�Y T1

+ �21 �Y2

�
T211 T212 +X2� T222

��1
�Y T2 < 0;

which can be transformed easily to Relation (3) by the
Schur Complement.�

Remark. The novelty in the derivation of stability
criterion in Relation (3) is threefold. First, new LKF
was constructed by including the double-integral terms

0R
��1

tR
t+�

x(�)d�d� and
��1R
��2

tR
t+�

x(�)d�d� in the aug-

mented vectors �(t) which di�erently from [21], create
innovative quadratic terms in the energy functional.
Second, novel inequality was introduced in Lemma 1
to bound the cross terms appearing in the derivative
of V due to the existence of newly appended terms.
Finally, inventive relations were presented in Eqs. (13)-
(15) to inject new free weights in the derivative of the
chosen LKF in order to create more degree of freedom
in the resulting su�cient condition. Combination of
the mentioned tricks decreases the conservativeness of
the stability condition.

Corollary: For �1 = 0, the stability condition of
Theorem 1 is rewritten as follows where all the no-

tations were de�ned previously.26666664
� �2 �Y1

� ��2

�
T211 T212 +X1� T222

�
� �

�2 �Y2

0

��2

24T211 T212 +X2

� T222

35

3777777775 < 0: (21)

Proof. The upper bound of _V in Relation (20) is
rewritten as follows for �1 = 0 which is a result of
omitting some terms in the chosen LKF in Eq. (4):

_V � #T (t)

"
� + �2 �Y1

�
T211 T212 +X1� T222

��1
�Y T1

+ �2 �Y2

�
T211 T212 +X2� T222

��1
�Y T2

#
#(t):

So, regarding the Schur complement, it can be easily
veri�ed that if Relation (21) holds, then _V < 0.�

4. Illustrative examples

Two numerical examples are presented to compare
the proposed method with some existing ones. The
LMI Toolbox of Matlab is utilized to solve the LMI
feasibility problems [25]. The maximum value of
delay that retains the stability of system is called as
Maximum Allowable Delay Bound (MADB). MADB,
which is the common performance index to evaluate
the conservativeness of stability tests in the literature,
is computed for the proposed and rival stability crite-
ria.

Example 1. Consider the following system from [21]:

_x(t) =
�
0 1
0 �0:1

�
x(t) +

�
0

0:1

�
u(t); (22)

which is controlled through a communication network
with:

u(t) =
��3:75 �11:5

�
x(t� �(t));

wherein �(t) denotes the time-varying transmission
delay in the communication link. So, the closed-loop



2422 A. Farnam et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2415{2423

Table 1. MADBs computed by di�erent methods for Example 1 (with �1 = 0).

Method
[27] [7] [16] [28] [26] [21] Proposed method

MADB 0.9412 1.0081 1.0081 1.0081 1.0432 1.0629 1.0762

Table 2. Admissible upper bound �2 for di�erent values of �1.

Method

[31] [30] [29]
N = 2

[29]
N = 4

[23]
N = 2

[23]
N = 4

Proposed
method

�1 = 1 1.9008 1.8737 2.004 2.0273 2.0089 2.0448 2.0852
�1 = 2 2.5663 2.5048 2.5650 2.5915 2.5829 2.6051 2.6767
�1 = 3 3.3408 3.2591 3.2866 3.3010 3.2983 3.3098 3.3778
�1 = 4 4.169 4.0744 4.0818 4.0855 4.0848 4.0877 4.123

system can be described by the following time-delay
system as in [21]:

_x(t)=
�
0 1
0 �0:1

�
x(t)+

�
0 0

�0:375 �1:15

�
x(t��(t)):

(23)

In Table 1, the maximum allowable value of �2 obtained
from the proposed method along with the results from
rival methods is listed for comparison. Table 1 clearly
shows that the proposed approach outperforms the
methods presented in [7,16,21,26-28].

Example 2. Considering the system in Eqs. (1) with
the following matrices [23]:

A =
��2 0

0 �0:9

�
; A1 =

��1 0
�1 �1

�
:

Table 2 shows the maximum allowable delay upper
bound for di�erent values of delay lower bound �1,
obtained from the proposed approach and methods
of [23,29-31]. As seen, the maximum bound of delay
obtained by the proposed method is larger than the
existing ones which veri�es the superiority of the
suggested delay-dependent condition.

Results of several recent papers are reported in
Tables 1 and 2 to reveal that the improvement of
stability conditions with regard to the nearby rival
methods is gradual.

5. Conclusion

In this paper, a new approach has been proposed to
analyze the asymptotic stability of the linear time
invariant systems with time-varying delay. By con-
structing new augmented Lyapunov-Krasovskii func-
tional and using free-weighting matrices, a novel delay-
dependent stability condition has been derived in terms
of LMIs. Numerical examples have been given to
demonstrate that the proposed criterion is less conser-
vative compared to some of the existing approaches in
the literature.
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