
Scientia Iranica D (2015) 22(6), 2389{2400

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Detection of fast-ux botnets through DNS tra�c
analysis

E. Soltanaghaei and M. Kharrazi�

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Received 31 July 2014; received in revised form 2 February 2015; accepted 15 September 2015

KEYWORDS
Botnets;
Bot;
C&C channel;
Fast-ux;
IP-ux,
DNS server.

Abstract. Botnets are networks built up of a large number of bot computers, which
provide the attacker with massive resources, such as bandwidth, storage, and processing
power, in turn, allowing the attacker to launch massive attacks, such as Distributed Denial
of Service (DDoS) attacks, or undertake spamming or phishing campaigns. One of the main
approaches for botnet detection is based on monitoring and analyzing DNS query/responses
in the network, where botnets make their detection more di�cult by using techniques such
as fast-uxing. Moreover, the main challenge in detecting fast-ux botnets arises from their
similar behavior with that of legitimate networks, such as CDNs, which employ a round-
robin DNS technique. In this paper, we propose a new system to detect fast-ux botnets by
passive DNS monitoring. The proposed system �rst �lters out domains seen in historical
DNS traces assuming that they are benign. We believe this assumption to be valid as benign
domains usually have long lifetime as compared to botnet domains, which are usually short-
lived. Hence, CDN domains, which are the main cause of misclassi�cation when looking for
malicious fast-ux domains, are removed. Afterwards, a few simple features are calculated
to help in properly categorizing the domains in question as either benign or botnet related.
The proposed system is evaluated by employing DNS traces from our campus network and
encouraging evaluation results are obtained.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

One of the most important and prominent sources of
threats on the internet are botnets. These networks are
built up of a large number of bot computers which pro-
vide the attacker with massive resources such as band-
width, storage, and processing power. In turn, with
such resources, the attacker will have the capability
to launch massive attacks such as Distributed Denial
of Service (DDoS) attack, or undertake spamming or
phishing campaigns. The main characteristic which
distinguishes bots from regularly infected machines
is their ability to coordinate their action through

*. Corresponding author. Tel.: +98 21 66166627
E-mail addresses: soltanaghaei@ce.sharif.edu (E.
Soltanaghaei); kharrazi@sharif.edu (M. Kharrazi)

a Command and Control (C&C) channel under the
control of a bot master (i.e., the attacker).

There are two main approaches in detecting
botnets. One is based on monitoring and analyz-
ing network tra�c, looking for signs that indicate
a computer is connected to a C&C server or other
behavior indicative of the presence of a bot in the
network. The other approach proposed by researchers
is based on analyzing DNS query/responses in the
network. The importance of such an approach would
be better understood considering the fact that bots
need to locate the C&C server by resolving its domain.
Hence, by monitoring this channel, abnormal DNS
query patterns could be detected, potentially before
the bot communicates with the C&C server. Each
approach has its advantages and disadvantages. The
main advantage of network tra�c analysis is that it

2390 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

enables the detection of some types of botnets, such as
peer to peer botnets, which cannot be detected by DNS
tra�c analysis. Nevertheless, analyzing large volumes
of network tra�c has its own di�culties. Furthermore,
if bots are encrypting their communication to the C&C
server, then techniques based on analyzing the content
of packets sent over the network would not work. This
is while DNS tra�c cannot be encrypted. Hence, in
this work we concentrate on a detection scheme based
on monitoring DNS tra�c.

Moreover, attackers take di�erent defensive mea-
sures to make their botnets more resilient to detection
and, in turn, take-down by network providers. One
widely used approach is fast-uxing, in which the
domain name for the C&C server resolves multiple IP
addresses, leading to di�erent copies of the C&C server.
Hence, the tra�c of the botnets is distributed among
di�erent C&C servers, in turn, making their detection
more di�cult. The main challenge in detecting fast-
ux botnets is that their behavior is very much similar
to that of the legitimate networks using the Round-
Robin DNS technique (RRDNS) [1]. As shown in [2],
due to the importance of availability in internet ser-
vices, large websites use the RRDNS method to dis-
tribute the incoming tra�c between di�erent servers.
This method is also used in Content Distribution
Networks (CDNs) and makes their behavior similar
to that of the fast-ux botnets. Therefore, using the
RRDNS method by the large CDNs causes di�culty in
accurate detection of fast-ux botnets.

In this paper, we introduce a new system to
detect malicious fast-ux domains by passive DNS
monitoring. The proposed system has two main
modules for analyzing the behavior of fast-ux botnets.
First, it removes a high percentage of benign domains,
including those of the CDNs, with the aid of historical
tra�c. The main idea employed in this module is the
short lifespan of botnet domains, as noted in [3], in
comparison with the benign CDN domains. Thus, by
eliminating the domains present in historical tra�c, the
CDN domains will be removed (because of their long
lifespan) and malicious domains with short lifespans
will remain for further analyses. Furthermore, this
paper provides an e�cient implementation for the
usage of historical tra�c as white-list. The second
module uses two fundamental attributes of fast-ux
domains (high ux of resolved IPs and small TTL
values) in the form of probability functions to deter-
mine the ux rate for each domain. In summary, the
contributions/highlights of this work include:

� This paper presents a novel approach for detection
of malicious fast-ux domains. The proposed system
calculates the ux rates of a domain by determin-
ing the ux probability functions which are based
on fundamental characteristics of fast-ux domains

(i.e., high uxing of IPs). As this approach relies on
basic features, it can detect di�erent kinds of fast-
ux domains without relying on information from a
speci�c family of botnets.

� This paper employs historical tra�c as a white-
list. Using historical tra�c not only reduces the
size of tra�c being analyzed, but also eliminates
the CDN domains which are the main cause of mis-
classi�cation when looking for malicious fast-ux
domains. The Bloom �lter data structure is used to
store historical tra�c with minimal storage space.

� The proposed system adopts Sequential Probabil-
ity ratio Testing (SPRT) as a statistical method
to provide online detection. The SPRT method
aggregates the results of ux probability functions
of each domain in sequential time windows.

� The proposed system is evaluated by employing
DNS traces from our campus network. Furthermore,
it is shown that the proposed system can achieve a
94.44% detection rate and 0.001% false positive rate.

The remainder of this paper is organized as
follows, Section 2 reviews related works. In Section 3,
the proposed system is explained in detail. Section
4 evaluates the performance of the proposed system.
Also, it provides a short explanation about the speci-
�cities of the system implementation. Results are
discussed in Section 5, and the manuscript is concluded
in Section 6.

2. Related works

There has been much prior work in the �eld of botnet
detection. A number of approaches monitor and
analyze network tra�c [4-7], whereas techniques such
as those in [8-12] concentrate on DNS tra�c. In this
paper, we focus on DNS-based detection techniques,
which analyze fast-ux botnets, and consider proposals
on analyzing domain-uxing techniques as out of scope.

A group of studies has analyzed the behavior of
botnets and their characteristics. Konte et al. [13] show
that despite the similarity of the TTL values in fast-
ux networks and CDNs, the operations of the two
networks are di�erent. For instance, the IP distribution
of malicious fast-ux networks has a larger variance
than that of the content distribution networks. In 2009,
Caglayan et al. [3] observed that fast-ux domains
usually have a short lifespan of about 2 weeks to 2
months.

The �rst fast-ux detection system among active
approaches was proposed by Holz et al. [8]. This system
calculates a ux score for each domain based on the
number of distinct A records and the number of NS
records for a domain. One of the weaknesses of this
approach is that the features used cannot distinguish

E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400 2391

fast-ux domains from CDN domains properly, which
results in false positives. A number of approaches, such
as those in [14,15], have been built on the work of Holz
et al., wherein initially suspicious domain names are
gathered from spam emails and then those domains
are monitored by active probing. The main drawback
of such approaches is that they rely on active DNS
probing; furthermore, the domains they monitor are
limited to those observed in spam emails. Moreover,
active probing DNS-based techniques, such as those
noted above, create excessive network tra�c and may
be detected by an attacker.

Perdisci et al. [9] proposed a detection technique
based on passive monitoring of DNS tra�c without
limiting the detection technique to domain names
extracted from spam emails and black-lists. They
calculated the similarity between the resolved IP sets of
di�erent domains in order to cluster domains belonging
to the same service, and then, based on a set of active
and passive features, classi�ed the clusters as either
benign or malicious. Later, Perdisci et al. [10] proposed
FluxBuster, which was built on their earlier work, and,
in essence, removed the dependency on active features
and relied solely on passive features.

Antonakakis et al. [11] proposed Notos, with
which reputation scores are assigned dynamically to
domain names based on their level of malicious ac-
tivities. Notos uses the passive DNS analysis and
it assigns a low reputation score to the malicious
domains according to the network- and zone-based
features. The network-based features determine the
uxy behavior of each domain and zone-based features
distinguish benign CDN domains from malicious ones.
As a limitation, Notos is not able to assign a correct
reputation score to the domain names with very little
historical information and it requires a large passive
DNS collection. In [12], a system called Exposure
is introduced which employs a passive DNS analysis
technique to detect malicious domains. Exposure tries
to detect abrupt changes in the number of requests to
the domains which show abnormal behaviors.

Recently, Choi and Lee [16] have proposed a
mechanism called botGAD by monitoring malicious
group activities in the DNS tra�c. To �nd the group
activities, botGAD measures similarity of di�erent do-
mains by building a matrix based on features extracted
from DNS traces. However, as the analysis is performed
periodically and in independent time windows, botnets
can circumvent detection by delaying communication
and spreading their tra�c over multiple time windows.

Most of the previously proposed techniques could
be circumvented by some changes in the activities of
bots, like producing noisy tra�c (i.e. generating fake
DNS queries), sub-grouping members of a botnet, etc.
improving the methods of IP assignments. Given the
shortcomings present in previous approaches in fast-

ux botnet detection, we propose a new detection
mechanism based on the fundamental and inherent
characteristics of fast-ux botnets. We should note
that as the proposed approach analyzes domains seen
in requests, independently, it is not a�ected by the
behavior of hosts in the network or other domains
queried, as are some of the previously proposed tech-
niques.

3. System overview

One of the main challenges in detecting malicious fast-
ux domains is the similarity between such domains
and domains employed in CDNs. These legitimate net-
works distribute the tra�c loads of a website between
several servers by using the round-robin DNS tech-
nique, where a group of IPs are assigned to a domain
name and a permutation is returned in response to each
request. The used IP sets have small TTL values in
order to control the load on each server, while changing
their permutation in sequential requests. Similarly,
these two features (the large number of resolved IPs
and small TTL values) are used in malicious fast-ux
networks. Hence, distinguishing malicious domains
from benign domains becomes a challenge.

Nevertheless, with a closer examination in [8],
it is shown that IP allocation is done di�erently in
CDNs vs. fast-ux networks. In the CDNs, the list
of resolved IPs is generally �xed and their permutation
is changed as requests come in, while in the fast-ux
networks, the list of resolved IPs can be di�erent in
each response. The reason is that compromised servers
are used for hosting malicious domains and they could
get turned o� by their owners or cleaned up. Hence,
alternate compromised servers are used. In addition,
these compromised servers are distributed in di�erent
subnets. Therefore, there is no relationship between
IPs returned by the fast-ux networks.

In the rest of this section, the proposed system
is discussed in details. The main objective of the
proposed method is to detect fast-ux botnet domains.
Section 3.1 describes the overall architecture of the
proposed system. In Sections 3.2 and 3.3, two features
of the system are presented including Bloom �lter
application in history storage and de�ning probability
functions for showing malicious rate of a domain.
Then, Section 3.4 describes the application of SPRT
algorithm and how it is employed in the proposed
detection technique.

3.1. System architecture
The proposed system uses three basic attributes of
malicious fast-ux domains: (1) large number of re-
solved IPs, (2) small TTL values, and (3) di�erent
IP allocation methodology in malicious fast-ux and
CDN domains: di�erent IP sets in sequential responses

2392 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

vs. repeating IP sets. The �rst and third attributes
are used in de�ning ux probability functions and the
TTL value is checked as the last �lter in the detection
module.

More speci�cally, there are two main modules of
(1) storing history, and (2) online tra�c analysis with
the aim of botnet detection. The system architecture
is shown in Figure 1. Figure 1(a) includes two sub-
processes of \Tra�c Parser" and \History Saver". In
the \Tra�c Parser", the DNS history tra�c is collected
and the required information such as domain names are
extracted. Afterwards, the \History Saver" stores the
extracted domain names within the Bloom �lter data
structure. The utilization of this data structure will
reduce the volume of data stored as well as the search

time overhead. (Further details on Bloom �lters are
described in Section 3.2.)

Figure 1(b) illustrates the detection service com-
ponents. In this step, the collected DNS traces are
parsed and the required information is extracted, i.e.
\Tra�c Parser". Then the extracted domains are
compared with those stored in the Bloom �lter, i.e.
\Bloom Filter Checker". If a domain name exists in
the history, then it does not belong to a malicious
IP ux network and can be discarded. The domain
names, that do not exist in the Bloom �lter, are
inserted into the hash map data structure built on top
of the data structure proposed in [16]. As shown in
Figure 2, the hash map includes a domain map that
has a domain name as a key and a requesting IP map

Figure 1. The overall architecture of the proposed system

Figure 2. The hashmap data structure.

E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400 2393

as a value. Requesting IP maps have an IP address of
the requesting host as a key and a resolved IP map as
a value. This structure is repeated in the next map,
in which the key is the resolved IP address and the
information list consists of the TTL and time stamps
as values. So, each DNS query constitutes a branch of
this tree data structure. In the next step, the \Feature
Generator" block extracts the required features. The
probability functions measure the amount of resolved
IP growth for the domains which is in fact the value
of the ux rate. Then, the SPRT analyzer performs
a hypothesis test with the aim of online detection of
malicious domains. Detected domains are stored in the
database and suspicious domains and their value of IP
growth are stored in an alternate database to be used
in later analysis.

The owchart of the proposed system is shown in
Figure 3. In the �rst step, the history tra�c is stored in
the proper data structure. Then, the analyzed tra�c is
gathered in a preset time window and compared with
the white-list. In the next step, the remaining domains
are compared with the history. Hence, both domains
found in the white-list and history are removed. At
the end of a time window, the proper features are
extracted and two probabilistic functions are calculated
to determine ux rates of a domain name. In the
�nal step, a sequential probability testing is used for
making a decision about each domain according to the
value of probabilistic functions. This statistical method
can produce three di�erent outputs of \malicious",
\benign", and \Inadequacy of information" for every

Figure 3. The proposed system owchart.

analyzed domain. If the information is not su�cient,
the domain name will be stored for examination in the
next time window. Furthermore, if the output of the
sequential testing is malicious, the TTL condition will
be checked. Hence, a domain will be recognized as
malicious if it has three characteristics of a malicious
domain explained earlier in this section.

3.2. Historical data storage
The proposed system uses historical tra�c to remove
benign domain names, including CDNs. But, there
are two challenges in using historical tra�c for CDN
�ltering. First, the volume of historical tra�c would
be quite large and a proper storage methodology would
be required. Second, the comparison of current tra�c
with the large volume of history needs an optimized
search algorithm in order to check the existence of each
requested domain with minimal time overhead. To
solve these challenges, we employed the Bloom �lter
data structure [17], which is able to provide e�cient
storage and searching with an adjustable false positive
and a false negative error rate of zero.

The Bloom �lter data structure works by storing
each domain name into a number of bits in a bit array
initialized to all zeros. This is done by using one or
more hash functions to indicate the related indices
in the array which will be set to one. After storing
multiple domains, multiple locations in the bit array
would have a value of one. In the search phase, the
domain being searched is hashed and it is checked if all
the corresponding locations in the bit array are set to
one; if that is the case, then it can be concluded that
the domain in question has been previously stored in
the bloom �lter.

Furthermore, the Bloom �lter data structure
provides the ability to determine the size of storage
array according to the value of false positive error
rate. Where false positives may occur when a set
of indices corresponding to a domain are changed to
ones, when other domains cause the change at those
indices. Moreover, Bloom �lters do not have a false
negative error rate. In other words, if a domain name
is inserted into the storage array, the search results
for that domain name will always be positive. This
attribute is essential in the performance of the proposed
system, because it could guarantee that all the domains
present in the history �les, including CDNs, will be
�ltered accurately. This would reduce the overall false
positive error rate of the detection system.

3.3. Flux rate of a domain
As noted earlier, after comparison of the domain names
with history and storing the required information in the
hash map, the desired features are extracted in order to
calculate the ux rate of the domains. Generally, the
ux rate quanti�es the change/growth in the resolved

2394 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

Table 1. Features used.

Row Feature Description

1 #SReq Number of single-IP requests for a domain
2 #MReq Number of multiple-IP requests for a domain
3 #SResIP Number of distinct resolved IPs in single-IP type for a domain
4 #MResIP Number of distinct resolved IPs in multiple-IP type for a domain
5 MReqSize The average number of resolved-IP in multiple-IP requests of a domain
6 #FirstMResIP The number of resolved IPs in the �rst packet of a domain name in a time window
7 TTL value The average value of time to live of a resolved IP for a domain

Table 2. Examples of DNS single and multiple response.

1 Single domain www.hamunshop.ir 76.164.198.3

2 Multiple domain

forthworth.biz 216.239.34.21

forthworth.biz 216.239.36.21

forthworth.biz 216.239.38.21

forthworth.biz 216.239.32.21

IPs for each domain. The list of the required features
are shown in Table 1. The two main features are the
number of requests and the number of distinct resolved
IPs for a domain.

The de�nition of the IP growth of a domain di�ers
based on the number of resolved IPs in each DNS
response. As shown in Table 2, DNS response packets
can include one or more resolved IPs. If the packet
consists of one resolved IP, IP growth can be calculated
by the division of the number of distinct resolved IPs to
the number of requests. But if the packet includes more
than one resolved IP, this de�nition does not correctly
calculate the IP growth rate, because the multitude of
IPs in one packet implies false growth. For example, if
each DNS response related to a domain contains four
di�erent IPs and the same IPs are replied in response to
the next DNS request, this domain does not have any
IP growth; while based on the previous de�nition, the
IP growth equals to 4 resolved IPs divided by 2 queries
or, in other words, 200%, which is not correct. To solve
this confusion and as shown in Table 1, we de�ne two
IP growth functions for the two groups of Single-IP
DNS responses and Multiple-IP DNS responses.

The ux rate of single-IP (noted as \single")
responses is de�ned using Eq. (1). The �rst factor
calculates IP growth based on the number of distinct
resolved IPs among all responses and it implicitly shows
the ux rate of single responses in a time window.
The second factor, as introduced in [9], is a sigmoidal
weight that measures the con�dence of the IP growth
value. Because, while the values of \SResIP" and
\SReq" might be small, the IP growth value may still
be high. Therefore, this factor reduces the con�dence of
the IP growth when the resolved IP sets or request sets
are small. For example, if #SResIP=3 and #SReq=5

or #SResIP=30 and #SReq=50, the SIP value is 0.6 in
both cases, but the con�dence in the ux rate value in
the second case is higher. The value of is considered
to be 3 by using the same logic proposed in [9].

SIP =
#SResIP

#SReq
� 1

1 + e(�min(#SResIP;#SReq)) :
(1)

Similarly, the IP growth rate of multiple-IP (noted as
\multiple") responses of a domain is calculated using
Eq. (2). The main purpose of this equation is to
calculate the average number of new IPs of a domain
resolved by each DNS response. To achieve this aim,
the resolved IPs of the �rst DNS response for a domain
is stored in a time window and by comparison with
next IPs, the number of new IPs in the next responses
are measured. This value constructs the numerator of
IP growth function. Then, by dividing this value to the
number of DNS responses during the time window, the
average number of new IPs in each DNS response will
be calculated. Therefore, Eq. (3) de�nes the multiple
ux rate of a domain. The �rst factor calculates the
ux rate by dividing the IP growth value to the average
size of multiple DNS responses and the second factor
is the con�dence weight. The best value for is
considered to be 2 based on the same logic proposed
in [9].

IP Growth =
#MResIP �#FirstMResIP

#MReq � 1
; (2)

MIP =
IP Growth
MReqSize

�
1

1 + e(�min(MReqSize;#MReq)) : (3)

3.4. Online detection by sequential testing
Most of the previous detection techniques noted earlier
would require long intervals of observed tra�c in order
to detect a botnet in the network. Our goal in the
proposed technique was to limit this time delay, and,
when possible, report the existence of a bot in the
network. As such, the tra�c is analyzed in short
time windows and the IP growth is calculated for

E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400 2395

the requested domains independent from other time
windows. Then, the calculated values are combined
with those of the previous time windows for each
domain in order to improve the con�dence of the
system output. To that aim, the Sequential Probability
Ration Testing (SPRT) is used as a statistical method,
with which the current IP growth value of a domain is
added to those observed in previous time windows.

The de�nition of this statistical method, based
on the International encyclopedia of statistical sci-
ence [18], is as follows. There are two hypotheses,
denoted as H0 and H1, which we consider for each
domain under consideration, where they correspond to
benign and malicious domains, respectively. For each
hypothesis, a Probability Density Function (PDF) is
de�ned like Eq. (4) in which S1 is a random variable in
state 1.

f1(S1) = K1; f0(S1) = K0; (4)

K0 and K1 denote the probability of a domain being
benign or malicious, respectively. In the proposed
system, the PDFs of f0 and f1 are considered as follows:

f0(Si) = 1� SIP (or MIP);

f1(Si) = SIP (or MIP): (5)

By considering S1; S2; :::; Sn as the samples of di�erent
time windows, in which the SIP and MIP are calcu-
lated, the likelihood ratio will be de�ned as:

�n =
f1(S1; S2; :::; Sn)
f0(S1; S2; :::; Sn)

= �n
i=1

�
f1(Si)
f0(Si)

�
: (6)

The equation can be converted to an accumulated form
of likelihood ratio for independent analysis of each time
window. Then, given two thresholds of T0 and T1 where
T0 < T1, at each time window, the likelihood ratio is
calculated and it is compared with these thresholds.
Therefore:

� If �n � T0, then H0 is accepted;
� If �n � T1, then H1 is accepted;
� If T0 � �n � T1, then the current information is not

enough to make a decision and the analyses should
be continued.

We should note that the above noted thresholds,
T0 and T1, can be calculated based on:

T0 =
�

1� �; T1 =
1� �
�

; (7)

where, � and � are the desired false positive and false
negative rates, respectively.

Based on the SPRT function, MIP and SIP values
are calculated at the end of each time window for each

domain. Then, the likelihood ratios are calculated.
If the ratio exceeds one of the thresholds, it means
that enough information is provided to decide on a
domain and it is assumed as a malicious or benign
domain. Domains with likelihood ratios between the
two thresholds are saved to be examined in later time
windows.

4. Implementation and evaluation

The proposed system was implemented by integrating
a set of modules implemented in C, Java, and Shell
scripts on a Linux operating system. Additionally, a
set of open source tools, such as Rapidminer [19] and
Tshark [20], were employed. Furthermore, the system
was deployed at the Sharif University of Technology
campus, gathering tra�c from the primary DNS servers
of the campus. In what follows, we will �rst introduce
the dataset used and the evaluation methodology em-
ployed in Section 4.1 and then evaluate e�ectiveness of
the bloom �lters in Section 4.2. Detection accuracy of
the proposed system is studied in Section 4.3.

4.1. Datasets and evaluation methodology
We have used two sets of traces in order to evaluate the
proposed botnet detection technique. These traces are:

� Trace #1: Multiple DNS traces obtained from the
Sharif University of Technology primary DNS server
(i) from March 1st through 30th, 2012 and (ii) from
January 1st through 31st, 2013.

� Trace #2: DNS traces were collected while execut-
ing three botnet samples on a VM for 3 days within a
controlled environment; at the same time, a number
of benign applications were also executed on the
same VM. Afterwards, the collected DNS tra�c was
merged with the DNS traces collected at the campus
level between January 1st through 31st, 2013.

For our historical dataset, we employed DNS
traces collected from January 1st through December
31st, 2011. Furthermore, we used a white-list to remove
well known domains (i.e. google, yahoo, etc.) from
the dataset. The white-list was created based on
the Alexa's ranking [21] and by selecting the top 100
popular domains visited by clients. Furthermore, some
of domains, we thought could be potentially employed
by a botnet (e.g. domains, related to weblog services),
were removed from the white-list.

To evaluate accuracy of the proposed technique,
we needed to label the domains found in the DNS traces
as either benign or malicious. To that end, a black-list
was created from several sources, which includes the
MalwareDomainList [22], DNS Blackhole [23], and At-
las [24]. Furthermore, domains generated by botnets,
such as Zeus, Spyey, and Palevo [25], where included
in the black-list.

2396 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

Given the above noted datasets, the proposed bot-
net detection system was evaluated based on the false
positive and false negative rates obtained. However, in
issues such as botnet detection, there is not balance
between the sizes of two classes of data (malicious
and benign domains). Moreover, correct detection of
the malicious group is more important than that of
the benign domains. Hence, additionally, the F-score
criterion is also considered. This criterion is suitable
for the cases in which the two groups of data are not
balanced [26]. F-score is obtained from the de�nitions
of Precision and Recall according to Eqs. (8)-(10).
TP, FP, and FN are true positive, false positive, and
false negative values, respectively.

Precision =
TP

TP + FP
; (8)

Recall =
TP

TP + FN
; (9)

F = 2� Precision�Recall
Precision+Recall

: (10)

4.2. Bloom �lter performance
As noted earlier, the proposed system stores a year
of historical DNS tra�c into the Bloom �lter in order
to �lter long-lived domains, which are benign with
high probability, as argued before. Therefore, we �rst
eliminate popular and well-known benign domains with
the help of the white-list noted earlier. After this initial
�ltering, about 12,800,018 domains remain which are
then inserted into the bloom �lter data structure. The
proper size of the storage array for the Bloom �lter
can be calculated considering the number if inserted
domains and the maximum value of 0.001% for the false
positive error rate, based on Eq. (11) [17]:

m = � n ln p
(ln 2)2 ; (11)

where p is the given false positive probability, n is the
number of elements being inserted, and m is the length
of the Bloom �lter.

As shown in Table 3, and given the number
of inserted domains, a Bloom �lter with the size of

Table 3. Statistical attributes of the Bloom �lter.

Number of inserted records 12,900,018
Bloom �lter array size 382602725 bit = 45MB
False positive error rate 7.5135E-7

45 MB is required and the practical false positive
rate equals 7:5 � 10�7%. Therefore, by using the
Bloom �lter data structure, we require a relatively
small memory footprint to store the large number of
historical domains.

In the second module of the proposed system,
DNS domains observed would be checked as to whether
they are inserted into the Bloom �lter previously (i.e.,
were seen in historical traces), and domains not found
in the historical tra�c will be passed to the detection
process. To calculate the performance of the Bloom
�lter in reducing the analyzed data, the number of
requested domains is measured during the analyzed
month and compared with the number of remaining
domains after Bloom �lter checking. The number of
domains before �ltering is 4,262,872 and the remaining
distinct domains after comparison with Bloom �lter are
just 773,244 domains. Consequently, history checking
reduces the test tra�c by 82% (see Table 4).

4.3. Detection performance
The proposed system analyzes the DNS tra�c in
a short time window and aggregates the results in
consecutive windows to decide about the status of each
domain. In the implemented prototype, the size of
time window is considered as a day and the status of
each domain is determined by moving the time window
and aggregating the values of the likelihood ratios in
sequential windows.

The proposed mechanism needs some input pa-
rameters. First, we should select a threshold for the
maximum TTL value of fast-ux domains. According
to the characteristics of the current fast-ux botnets,
this parameter is considered 3600 seconds [3]. Secondly,
we used the traces from March 1st through 30th, 2012
(i.e., from Trace #1), as the training dataset with
which the required thresholds in the SPRT algorithm
were con�gured to provide a FP = 0:15% and FN =
0:2%.

Afterwards, we examine the system performance
by using Trace #1 from January 1st through 31th,
2013. Although the real tra�c does not include enough
fast-ux domains, the proposed mechanism detects
7 malicious domains from the available 8 domains
correctly, as shown in Table 5. Hence, we obtain a
detection rate of 87.5%. Furthermore, three domains
are false positives of the system and the others are
detected correctly.

Examples of detected domains, false positives,
and false negatives are shown in Table 6. The false

Table 4. The performance of Bloom �lter on one-month tra�c.

Number of distinct domains before comparison with Bloom �lter 4,262,872

Number of distinct remaining domains after comparison with Bloom �lter 773,244

Reduction percent 82%

E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400 2397

Table 5. Result summary of two traces.

Result summary Trace #1 Trace #2
Number of distinct domains 180141 180159
Number of benign domains 180130 180138
Detected domains 7 17
False positive 3 3
False negatives 1 1
Detection rate (recall) 87.5% 94.44%
False positive rate 0.002% 0.001%
False negative rate 12.5% 5.55%
Precision 70% 85%
F-score 77.78% 89.47%

Table 6. Detected malicious domains, false positives, and
false negatives in Trace #1.

Type Domain name SIP/MIP

Malicious domains

gasosvaz.ru. 0.99
fetolbus.ru. 0.94
fawsilom.ru. 0.91
ecrihgep.ru. 0.73
ikbyznod.ru. 0.72
fyzsicat.ru. 0.71

False positives
cm.adgrx.com 0.87
oparle.com 0.73
api.crtinv.com 0.72

False negative gehxehib.ru. 0.34

Inadequate info epejanhi.ru. 0.52

positives are related to the benign domains with large
pools of resolved IPs. Therefore, the proposed system
mis-classi�es them. On the other hand, among the
existing malicious domains in the test tra�c, one
domain is not detected (a false negative). This domain
is \gehxehib.ru." which had few requests during the
analyzed month and its ux behavior was not repre-
sented during that period. In addition, the requests
to this domain were distributed over several days and
just one or two requests existed in each day. Hence, the
proposed system was unable to detect this domain. The
other malicious domain named "epejanhi.ru." receives
an "inadequate information" label as the output of the
system, which indicates that the SPRT method was
not able to determine the state of this domain given
insu�cient activity in the observed period.

Afterwards, we repeated the experiment using
Trace #2, while using the same SPRT threshold values
as that in the previous experiment. Such an approach
was essential, as there were few malicious domains in
Trace #1 dataset and the evaluation metrics employed

Table 7. The detected malicious domains, false positives,
and false negatives in Trace #2.

Type Domain name SIP/MIP

Malicious domains

brylanehome.com 0.99

ikbyznod.ru 0.94

carsales.com.au 0.88

stjohnhos.co.uk 0.8

newirtingdates.info 0.78

False positives
cm.adgrx.com 0.87

oparle.com 0.73

api.crtinv.com 0.72

False negative gehxehib.ru. 0.34

Inadequate info epejanhi.ru. 0.52

did not properly indicate the accuracy of the system.
Overall, we observed 180159 distinct domains in Trace
#2. The accuracy and detection rates of the proposed
system are shown in Table 5. The detection rate
equals 94.4% and the false positive rate equals 0.001%.
Examples of malicious domains detected and false
positives are listed in Table 7. The domains which
resulted in false positives and false negatives are the
same as in those of Trace #1.

5. Discussions and future works

In the previous section, we evaluated the accuracy
of the proposed detection scheme. One important
question which one could raise is that how dependent
is the proposed detection scheme on the botnet's level
of activity. In order to analyze this issue, we spread
DNS query/responses collected over a period of three
days from the three botnet samples, over a longer
period of 5 days and re-executed the experiment.
Figure 4 illustrates the number of days needed to detect
malicious domains before and after the time spread.
Importantly, the same malicious domains are detected
in both cases and the only di�erence is the detection
time. Hence, one could conclude that when botnets
reduce their activity, by generating fewer requests per
day, the detection system would require more time to
detect the malicious domain. This is mainly due to the
fact that the proposed detection system aggregates the
tra�c information over sequential time windows.

Table 8 compares the proposed system with
two other existing botnet detection approaches, Bot-
GAD [16] and Fluxbuster [10]. BotGAD analyzes time
windows, separately, and it calculates the similarity of
host activities in independent time windows. Hence,
if the activity of the botnet is spread over time,
then as each time window is analyzed independently,

2398 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

Table 8. Comparison between fast-ux botnet detection approaches.

Approach FluxBuster [10] BotGAD [16] Proposed technique

Robustness against minimized activity Low Medium High

History usage Yes No Yes

Capability of data reduction Low N/A High

Calculation overhead High Medium Low

Figure 4. Comparison between the numbers of days
required to detect the botnet domains, when using
collected traces in 3 days, and when spreading the DNS
queries over a period of 5 days.

the botnet will not be detected. Whereas in the
proposed technique, information from previous time
windows is also used in order to obtain more accurate
results. On the other hand, Fluxbuster [10] requires
a minimal number of resolved IPs for each domain
in order to create a domain cluster and perform the
required classi�cation procedures. Hence, a botnet
could circumvent this mechanism by sub-grouping the
bots into distinct groups and avoiding the threshold
required by Fluxbuster.

The other parameter of the comparison is the
amount of data reduction, which in our case equals
82%. We are able to reduce the amount of analyzed
DNS tra�c by considering domains visited in a his-
torical period, and still being visited today as non-
malicious. This is because usually malicious domains
have a short lifetime. In contrast, it seems that
BotGAD performs no pre-�ltering, and Fluxbuster has
simple �ltering rules with low e�ect. Finally, the
proposed system has a much lower computational cost
than that of the other two approaches. The proposed
system only requires calculating two probability scores
for each domain, while FluxBuster and BotGAD are
based on machine learning and similarity-temporal cor-
relation, respectively, which require more complicated

processing. It must be noted that we were unable
to compare detection accuracy results as they were
dependent on the tra�c used for evaluation to which
we were unable to obtain access.

Nevertheless, the proposed system has its own
limitations. For example, as the probabilistic functions
are calculated independently in di�erent time windows
for each domain, an attacker can avoid detection
by reducing the activities of the bots during each
time window to a very small number of DNS queries
(e.g., 3 queries, dependent on the parameters set in
Section 3.3). Nevertheless, by doing so, the bots do
limit their own availability. Perhaps such shortcoming
could be alleviated by considering the historical states
of each domain.

6. Conclusion and future works

In this paper, we propose a new system to detect
fast-ux botnet domains by passive DNS monitoring.
The proposed system �rst �lters out domains seen in
historical DNS traces, assuming that they are benign.
We believe this assumption to be valid as legitimate
domains usually have a longer lifetime, where on
the other hand, botnet domains are usually short-
lived. Hence, CDN domains, which are the main
cause of mis-classi�cation when looking for malicious
fast-ux domains, are removed. Afterwards, a few
features are calculated to help in properly categorizing
the domain in question as either benign or botnet
related. Our mechanism needs a small amount of
data and it analyzes DNS tra�c in a short and
sequential time windows and calculates the �nal re-
sult by aggregating the output of independent time
windows. The proposed system can detect malicious
domains with the minimal amount of tra�c by us-
ing SPRT and it provides over 94% detection rate
while generating 0.001% false positive rates based
on experiments using DNS traces from our campus
network.

As part of the future works, we are currently
considering how the proposed system could be deployed
in a larger-scale network, so that it would be able
to observe and detect further malicious activities.
Furthermore, and in order to expand our work, we are
investigating if grouping domains, resolving to the same
set of IP addresses, could help in detecting domain

E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400 2399

uxing in addition to the proposed fast-ux detection
technique.

References

1. Brisco, T., DNS Support for Load Balancing, RFC
1794 (April 1995).

2. Cardellini, V., Colajanni, M. and Philip, S.Y. \Dy-
namic load balancing on web-server systems", IEEE
Internet Computing, 3, pp. 28-39 (1999).

3. Caglayan, A., Toothaker, M., Drapaeau, D., Burke, D.
and Eaton, G. \Behavioral analysis of fast ux service
networks", in Proceedings of the 5th Annual Work-
shop on Cyber Security and Information Intelligence
Research, p. 48, ACM (2009).

4. Gu, G., Perdisci, R., Zhang, J. and Lee, W. \BotMiner:
Clustering analysis of network tra�c for protocol-
and structure-independent botnet detection", in Pro-
ceedings of the 17th USENIX Security Symposium
(Security'08) (2008).

5. Gu, G., Porras, P., Yegneswaran, V., Fong, M. and
Lee, W. \BotHunter: Detecting malware infection
through ids-driven dialog correlation", in Proceedings
of the 16th USENIX Security Symposium (Security'07)
(August 2007).

6. Gu, G., Zhang, J. and Lee, W. \BotSni�er: Detecting
botnet command and control channels in network
tra�c", in Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS'08)
(February 2008).

7. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel,
C. and Kirda, E. \Automatically generating models for
botnet detection", in Proceedings of the 14th European
Conference on Research in Computer Security (ES-
ORICS'09), Berlin, Heidelberg, pp. 232-249, Springer-
Verlag (2009).

8. Holz, T., Gorecki, C., Rieck, K. and Freiling, F.
\Measuring and detecting fast-ux service networks",
in Proceedings of Annual Network and Distributed
System Security Symposium (NDSS'08) (2008).

9. Perdisci, R., Corona, I., Dagon, D. and Lee, W. \De-
tecting malicious ux service networks through passive
analysis of recursive DNS traces", in Annual Computer
Security Applications Conference (ACSAC'09), pp.
311-320 IEEE (2009).

10. Perdisci, R., Corona, I. and Giacinto, G. \Early
detection of malicious ux networks via large-scale
passive DNS tra�c analysis", IEEE Transactions on
Dependable and Secure Computing, 9(5), pp. 714-726
(2012).

11. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W. and
Feamster, N. \Building a dynamic reputation system
for dns", in Proceedings of the 19th Usenix Security
Symposium (2010).

12. Bilge, L., Kirda, E., Kruegel, C. and Balduzzi, M.
\Exposure: Finding malicious domains using passive

DNS analysis", in Proceedings of Annual Network and
Distributed System Security Symposium (NDSS'11)
(2011).

13. Konte, M., Feamster, N. and Jung, J. \Dynamics
of online scam hosting infrastructure", Passive and
Active Network Measurement, pp. 219-228 (2009).

14. Passerini, E., Paleari, R., Martignoni, L. and Bruschi,
D. \Fluxor: Detecting and monitoring fast-ux service
networks", Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 186-206 (2008).

15. Nazario, J. and Holz, T. \As the net churns: Fast-
ux botnet observations", in 3rd International Con-
ference on Malicious and Unwanted Software (MAL-
WARE'08), pp. 24-31, IEEE (2008).

16. Choi, H. and Lee, H. \Identifying botnets by capturing
group activities in DNS tra�c", Computer Networks,
56(1), pp. 20-33 (2012).

17. Bloom, B.H. \Space/time trade-o�s in hash coding
with allowable errors", Communications of the ACM,
13(7), pp. 422-426 (1970).

18. Lovric, M., International Encyclopedia of Statistical
Science, Springer London (2011).

19. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M.
and Euler, T. \Yale: Rapid prototyping for complex
data mining tasks", in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 935-940, ACM, (2006).

20. Tan P.N., Steinbach M. and Kumar V., Introduction to
Data Mining, (First Edition). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2005).

21. \Alexa top sites" (2014).
http://www.alexa.com/topsites.

22. \Malware domain list" (2014).
http://www.malwaredomainlist.com/.

23. \Dns-bh - malware domain blocklist" (2014).
http://www.malwaredomains.com/.

24. \Atlas" (2014).
http://atlas.arbor.net/summary/fastux/.

25. \The Swiss security blog" (2014).
https://abuse.ch.

26. Pang-Ning, T., Steinbach, M., Kumar, V. et al.,
Introduction to Data Mining, in Library of Congress,
p. 74 (2006).

Biographies

Elahe Soltanaghaei received her BS degree in Com-
puter Engineering, with honors, from Amirkabir Uni-
versity of Technology, Tehran, Iran in 2011 and her MS
degree in Computer Engineering from Sharif University
of Technology, Tehran, Iran, in 2013. She is cur-
rently a researcher with the Compuco International Co.
(International Banking, Finance, and IT Consulting-

2400 E. Soltanaghaei and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2389{2400

Iran/Switzerland). Her main research interests are
computer networks, network security, and information
security.

Mehdi Kharrazi received his BE degree in Electrical
Engineering from the City College of New York and
his MS and PhD degrees in Electrical Engineering

from the Department of Electrical and Computer Engi-
neering, Polytechnic University, Brooklyn, New York,
in 2002 and 2006, respectively. He is currently an
Assistant Professor with the Department of Computer
Engineering, Sharif University of Technology, Iran.
His current research interests include network and
multimedia security.

