
Scientia Iranica D (2015) 22(6), 2379{2388

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A hierarchical parallel strategy for aerodynamic shape
optimization with genetic algorithm

M. Ebrahimi and A. Jahangirian�

Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran.

Received 1 June 2014; received in revised form 6 September 2015; accepted 3 November 2015

KEYWORDS
Parallelization;
Aerodynamic shape
optimization;
Computational 
uid
dynamics;
Genetic algorithm.

Abstract. An e�cient parallel strategy is presented for optimization of the aerodynamic
shapes using Genetic Algorithm (GA). The method is a hybrid Parallel Genetic Algorithm
(PGA) that combines a multi-population PGA and master-slave PGA using Message
Passing Interface. GA parameters are �rstly tuned according to the fact that sub-
populations evolve independently. The e�ect of the number of sub-population on the
computational time is investigated. Finally, a new strategy is presented based on the load
balancing that aims to decrease the idle time of the processors. The algorithm is used for
optimization of a transonic airfoil. An unstructured grid �nite volume 
ow solver is utilized
for objective function evaluations. For the considered class of problems, the suggested
Hierarchical Parallel Genetic Algorithm (HPGA) results in more than 30% reduction in
optimization time in comparison to regular master-slave PGA. A semi-liner speed-up is
also obtained which indicates that the model is suited for modern cluster work stations.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Genetic Algorithms (GAs), as an evolutionary method,
have now introduced themselves as a powerful tool for
various design optimization problems. One of the key
features of GA is that it searches the design space in a
population of points, resulting in a greater likelihood of
�nding the global optimized point [1]. Additionally, it
only needs the objective function and does not require
its derivatives. Such features make GA attractive
for practical engineering applications like aerodynamic
shape optimization [2-4]. However, GA has the key
disadvantage of being computationally time-consuming
in aerodynamic optimization problems, where CFD
methods are used for objective function computation.
Therefore, reducing the computational time of CFD
simulations problems is a prominent area of research,

*. Corresponding author. Tel.: +98 21 64543223
E-mail addresses: Mebrahimi@aut.ac.ir (M. Ebrahimi);
Ajahan@aut.ac.ir (A. Jahangirian)

whereas high �delity of the analysis is retained [5,6].
Fortunately, another well-known merit of GAs is their
capability to partition the population of individuals
within multiple computing clusters and nodes. It is
widely accepted that optimization with GAs princi-
pally can take full bene�t of massively parallel com-
puter architectures [7,8]. This point is motivated by
the fact that the objective values, associated with each
member of the population among each generation of
the algorithm, can be evaluated in parallel. Thus, the
clock-time needed to reach an acceptable solution is
reduced [9]. In addition, to improve the convergence
rate of classical GAs migration operators as well as
�ne and coarse grain PGAs-based subpopulations were
introduced [10,11]. With the development of multi-
core computers and growth of the problem's scale,
PGA has been widely used in many �elds of research
and communication e�ciency and parallel computing
speed-up have been enhanced rapidly [12,13].

HPGAs are inspired by PGAs, which are, in turn,
based on several GAs being run in parallel [14,15].



2380 M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388

Each model in hierarchical algorithms could have an
algorithm with various control parameters, such as
probability of reproduction, crossover, mutation and
population size, etc. For an overview of HPGA
applications, one can see references [7,16].

Although numerous studies on CFD optimiza-
tions with parallel GAs have been reported, most of
them consider homogeneous and dedicated computing
resources, which are not easily extendable towards
harnessing computing nodes [17,18]. In addition,
optimizations with PGAs are mostly constrained by
the limited commercial licenses, especially due to the
high costs of commercial analysis packages. This is
one of the main reasons that the recent advent of
grid computing has gained widespread attention, as
it establishes the concept of generating a set of open
standards for distributed computational resources.

The present paper evaluates a hierarchical parallel
GA strategy for optimum shape design applications
that is well suited to the problems with high CPU costs
and large memory requirements. The algorithm is not
sensitive to the structure of computing resources and
is easily implemented in harnessing or homogeneous
computing resources. Furthermore, crucial GA param-
eters are tuned and e�ciency of the proposed method
under various numbers of sub-populations as well as
individuals is assessed. Finally, a new strategy based
on load balancing is presented, which can e�ectively
lead to computational time-saving.

2. Genetic algorithm

Genetic Algorithm is a search algorithm that is based
on the natural selection and genetics. It uses three
operators of crossover, reproduction, and mutation [1].
In the current study, a real coded GA is applied and
chromosomes, genes, and �tness are corresponding to
the design candidates, design variables, and objective
function, respectively [19]. According to the nature of
the problem and considering the state-of-art, an elitist
strategy for the tournament operator is applied, where
the two best chromosomes in each generation are trans-
ferred into the next generation without any change [20].
Selected airfoil shapes comprise the initial population
for comparison purposes. The objective function is
evaluated using the numerical solution of governing

ow equations. Then, the population is optimized
according to the objective function value (�tness)
through the GA. The crossover operator exchanges the
chromosomes of the selected parents, randomly. A
simple one-point crossover operator [20] is utilized in
this paper with 75% probability of combination, as the
use of smaller values was observed to deteriorate the
GA performance [19].

To provide a better diversity in the design space,
a uniform mutation rate of 7% with variable boundary

is applied to randomly select genes of each chro-
mosome. Unlike other well-known strategies, based
on the feedback obtained by monitoring �tness value
evaluations of individuals, the boundary is updated in
each generation. Mutation is applied to the parent
genes up to the cross-over point, where the genes of
the parent are exchanged to produce the o�spring.

3. CFD evaluation of �tness function

Since most of the computational time required for the
airfoil shape optimization process is consumed by CFD
solver, it must possess high e�ciency and convergence
rate. In this work, the turbulent 
ow equations
are solved using a �nite volume cell-centered implicit
scheme that follows the work of Jahangirian and Ha-
didoolabi on unstructured grids [21]. A two-equation
k � " turbulence model is implemented together with
the wall function near wall treatment for computation
of Reynolds Averaged Navier-Stokes (RANS) equa-
tions [22]. The generation of high-quality grids is
essential in this work, because the CFD solver performs
several hundreds of times in a single optimization cycle.
Therefore, the successive re�nement approach [23] is
used in the current research. The method is capable of
producing high-quality (regular) stretched cells inside
the boundary and shear layers as well as isotropic
cells outside these regions. During the optimization
process, the airfoil boundaries are changing; therefore,
the existing grid is modi�ed in an automatic manner
using tension-spring analogy in order to be adapted to
the changing domain [24].

4. Parallelization strategy

Several possible parallelization strategies can be taken
into account for the problems related to the time-
consuming CFD simulations [25,26]. It is only during
the recent years that e�orts have been made to propose
methodologies for designing PGAs in the �eld of the
aerodynamic shape optimization [16]. One of the well-
known strengths of PGAs is their capability to facilitate
speciation, a process by which various subpopulations
evolve simultaneously in diverse directions. Panmictic
GAs (a GA without any structure) can be parallelized
readily by using master/slave model, which works
well for a small number of individuals. However,
as the number of nodes increases, Panmictic GAs
becomes ine�cient by excessive communications [27].
In addition to the parallel panmictic GA, the island and
cellular GAs are two other popular parallel structured
GAs [11]. Figure 1 shows such basic models of PGA.

In master/slave PGAs, only a single panmictic
population, i.e. a Canonical GA (CGA), is assumed to
exist. However, on the contrary to CGS, individuals'
evaluations are distributed among the processing slave



M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388 2381

Figure 1. Di�erent basic PGAs: (a) Master/slave; (b)
cellular; and (c) distributed.

nodes by scheduling fractions of the population. This
model can be implemented easily and does not alter
the search behaviour of a CGA.

Cellular PGA consists of only a spatially struc-
tured single population, which is designed to run on a
closely linked massively parallel processing system. In
such an algorithm, selection and mating are limited to
small groups that overlap to permit some interactions
among all members. Hence, good solutions might be
disseminated across the entire populations. Sometimes,
the Cellular parallel GA is also termed as the Fine-
grained PGA.

A distributed PGA may sound more complicated,
as it consists of several subpopulations that exchange
members occasionally. This exchange of members is
called migration that is controlled by several parame-
ters. Distributed PGAs are also known as the multi-
deme or island model PGA.

Di�erent PGA models may be used together to
form other new Hierarchical PGA (HPGA) models. For

example, one may produce a hierarchical PGA that
combines a distributed PGA (at the upper level) and a
Cellular PGA or master-slave PGA, which we consider
in this paper, or even another level of island PGAs (at
lower levels). Basically, HPGA is any combination of
two or more of the three basic forms of PGA.

Despite the wide range of PGA applications in
di�erent �elds of optimization, many important pa-
rameters need to be tuned when it is applied in the
�eld of aerodynamic shape optimization. The aim
of the parallel strategy described so far is to reduce
the cost of objective function evaluations. While,
another level of parallelism, which is directly related to
the subpopulation evaluation, can be exploited at the
cluster level; this applies to the GA operators, airfoil
shape generation, and grid movement.

In the present work, a two-level HPGA, including
island model for the �rst level and master/slave for the
second one, is applied. Here, one of the main remarks is
that after each chromosome and subpopulation evalua-
tion, the information exchange shall occur. In addition,
to minimize the computational time, it is important to
send only the expensive part of the program to the
lower level of parallelization. In fact, by applying more
CPUs, the program should be able to compensate the
added time due to the communication of information
among computational nodes. The main steps of the
proposed HPGA for aerodynamic shape optimization
can be outlined as follow (Figure 2):

Figure 2. The 
owchart of the proposed HPGA for aerodynamic shape optimization.



2382 M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388

1. The HPGA subpopulations are transferred onto the
computing nodes, which after being contacted by
the main program o�ered, require subpopulation
and individual evaluation services.

2. Parallel subpopulations' evolutions then begin at
the selected computing clusters. Whenever they
receive a launch request of the subpopulation evolu-
tion service, job submission protocol is represented
at the master node of the respective clusters. The
main tasks include GA operations, airfoil shapes
generation, and grid movement.

3. Then, at each cluster, scheduling and resource dis-
covering are conducted to farm the �eld of available
processing nodes for chromosome evaluations.

4. Once all chromosomes of each subpopulation are
evaluated by CFD solver, the obtained objective
function is marshalled back to the master node to
undergo parallel algorithm.

5. Finally, the developed subpopulations are leaded
back to the HPGA master to proceed with the
migration operation. Such a process repeats until
the optimization criteria are met.

5. Results

This section is mainly devoted to a detailed evaluation
of the proposed strategy (HPGA) for aerodynamic
shape optimization. The proposed method is applied
to the problem of airfoil shape optimization. A typical
test case is chosen with extensive and reliable compu-
tational data available. The parallel computer system
at the Laboratory of High Performance Computing in
Amirkabir University of Technology (LHPC) is used
for parallel implementation with the con�guration as
summarized in Table 1.

5.1. Aerodynamic shape optimization
Although our main goal in this paper is to obtain an
e�cient parallelization strategy for aerodynamic shape

Table 1. Con�guration of the parallel computer of CALA.

Unit Con�guration

CPU AMD Opteron 2.54 GHz
Memory 200 Gbytes
Network Myrinet

Operating system Linux (64-bit version)

optimization, in this section, the e�ciency of the base
optimization process is demonstrated; in addition, a
comparison between the parallel and serial outcomes
are carried out. More details of the serial method
may be found in [27]. A transonic 
ow is considered
with the Mach number of 0.74, Reynolds number of
6.5 million, and incidence angle of 2.8 degrees. The
RAE-2822 airfoil is considered as the initial airfoil and
the objective function is the lift coe�cient (Cl) to the
drag coe�cient (Cd) which is computed by solving
the Reynolds-averaged Navier-Stokes equations. The
computational �eld is discretized using triangular un-
structured grids. The unstructured grid generated
around the initial airfoil containing 10,651 cells is
shown in Figure 3. Also, the modi�ed grid around
design airfoil using spring analogy is illustrated in this
�gure.

The distributions of surface pressure coe�cient
(Cp) and obtained airfoil shapes for parallel and serial
optimization algorithms (considering imposed physical
constrains) are plotted in Figure 4. According to this
�gure, there is a rather strong shock wave near the
middle part of the initial airfoil's upper surface that is
weakened in the optimum shape.

The values of lift and drag coe�cients and the
objective functions for the initial and optimum shapes
are also shown in Table 2. According to this table, as
well as Figure 4, no signi�cant divergence is observed
for the parallel and serial solutions. The limited
di�erences between serial and parallel results can be
assumed due to the random nature of GA. For instance,

Figure 3. Unstructured grids around (a) initial airfoil, and (b) optimum airfoil.



M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388 2383

Table 2. Lift and drag coe�cients for the applied optimization method.

Cl Cd Cl=Cd
Execution
time (hr)

Initial shape 0.81 0.0261 31.09 -
Optimized airfoil-serial solution 0.88 0.0150 58.66 502.3

Optimized airfoil-parallel solution 0.89 0.0149 59.73 16.9

Figure 4. The obtained airfoil shapes (a) and surface
pressure coe�cients (b) for parallel and serial optimization
algorithms.

the number of applied CPUs for this case is considered
to be 60.

5.2. Parallel performance study
In this section, the performance of the parallel strategy
is assessed. In particular, we are interested in how the
proposed method for aerodynamic shape optimization
performs under various numbers of individuals, sub-
populations, computing nodes, and the cluster size.
These objectives are studied in the following sub-
sections. It should be noted that for all cases, the
number of processors is considered the same as the
number of individuals.

Optimizing the population size. When using a
parallel processor for shape optimization with GA,
optimum selection of the population size is highly
demanded. In this section, the performance of a paral-
lel optimization algorithm under di�erent population
sizes is investigated. Thus, the evolutions of PGA
subpopulations are conducted only in a single level
of parallelism, i.e. only level 2 HPGA, presented in
Figure 2. Like the population size, which is equal to
the increases in the number of processors, the clock
time for evaluation of all individuals in each generation,
for most of the cases, will rise. That is due to the fact
that di�erent airfoil shapes require di�erent numbers of
CFD iterations for evaluation. Higher population size,
in turn, could lead to lower required numbers of genera-
tions in order to gain the same level of objective values.
Therefore, to minimize the clock time of optimization
process, a compromise between the population size
and the required numbers of generations should be

Figure 5. Convergence history of the maximum objective
values after 100 generations.

Figure 6. Convergence history of the maximum objective
values after the evaluation of 1700 individuals.

applied. The convergence history of the maximum
objective values for di�erent population sizes (equal
to the number of processors) after 100 generations
is presented in Figure 5. To compare the required
CFD evaluations, in Figure 6, the convergence history
of the maximum objective values against the CFD
evaluations is presented. Two distinctive outcomes can
be concluded from these �gures: (1) The optimum
number of populations for airfoil shape optimization
with a parallel GA is around 20; and (2) When using



2384 M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388

Figure 7. Total clock time for di�erent population sizes.

single processing machine, the optimum number of
individuals in this case is around 8 to 12.

Figure 7 shows the total clock time against the
population size when the parallel processor is used.
It should be noted that the calculated time, here, is
the period when the program starts up to the time it
reaches the objective value of 58.5. This �gure also
emphasizes the above conclusion that the optimum
number of members is 20 in this case.

Subpopulation strategy. In this section, the �rst
level of parallelization, shown in Figure 2, is studied,
i.e. n subpopulations of the HPGA evolving across
n number of parallel clusters are modelled. The
computational e�orts incurred by Single Cluster HPGA
and HPGA for optimizing the airfoil shape under two
cases, including n subpopulation in 1 cluster and n
subpopulation in n clusters, are reported in Figure 8.
It should be noted that the numerical results are

Figure 8. A comparison between optimization process
wall clock times for the present method (HPGA) and
single cluster HPGA.

reported for the averages of 5 independent runs for
the case mentioned in Section 5.1 with population size
of 20. Migration interval is considered MI = 4, since
bigger values increase the idle time of processors, while
the smaller ones in
uence the randomness of GA and
decrease the positive e�ect of applying subpopulations.

Termination of the program occurs when the level
of objective function reaches 58.5. This �gure indicates
that the HPGA is computationally more e�cient than
the Single Cluster HPGA. In addition, it shows that for
HPGA, an optimum number of subpopulation exists in
which by applying more subpopulations (here is equal
to the number of clusters which is 3), not only does the
computational cost increase, but also the clock time of
the optimization process is risen.

Load balancing. In the parallel processing of airfoil
shape optimization, many situations occur resulting
in computational load imbalance. This is mainly due
to the nonlinear behaviour of the CFD 
ow solution
for di�erent airfoil shapes of a generation. Figure 9
shows the evaluation time of 20 individuals from the
10th generation of an optimization problem with the

ow conditions described in Section 5.1. According to
this �gure, about 20% imbalance is observed from the
average evaluation time.

Our measurements showed that the aggregate
time spent in the 
ow solver represents about 90%
of the total elapsed time for a 20-population size
problem. Therefore, when subpopulations are iterating
along with each other, it is particularly important
that approximately the same time be spent for total
evaluation time of individuals (second level of paral-
lelization). This problem can also be observed when
using subpopulation strategy. The wall clock time of
each generation evaluation for the mentioned optimiza-
tion problem with three subpopulations is reported in

Figure 9. Computational time for evaluation of 20
individuals of the 10th generation.



M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388 2385

Figure 10. Wall clock time of each three
sub-populations' evaluation as well as the total time.

Figure 10. According to the fact that the individuals
are heterogeneous, the most time-consuming (solid
line in Figure 10) evaluation has been the bottleneck
of HPGA, since it waits for the completion of all
the chromosome calculations before the migration and
search operations may proceed.

To minimize the idling time of the processors, a
simple strategy has been applied in which from the
subpopulations with the highest time of evaluations
individuals with the highest evaluating time migrate
to subpopulations with lower times of evaluation.
Migration interval is considered as 4, and according
to the time of each generation evaluation, one or
two members plus the best member are exchanged.
Figure 11 compares the clock time of the previous
problem with the one in which the Balanced HPGA (B-
HPGA) is applied. In Figure 12, the e�ect of migration
interval on the total clock time of optimization process
is presented which indicates that the optimum value
for the problem described in Section 5.1 is 4.

According to this �gure, the Unbalancing Ratio

Figure 11. A comparison between the waiting times of
HPGA and B-HPGA.

Figure 12. E�ect of migration interval on the total clock
time of optimization process.

Table 3. UBRs and total clock times (Tct) of HPGA and
B-HPGA after 100 generations.

Population HPGA B-HPGA
size Tct (s) UBR Tct (s) UBR

12 70150 0.16 66593 0.14
20 53616 0.24 49186 0.17
32 68160 0.36 62212 0.28

(UBR), which is de�ned as follows, is decreased from
35% to 27%:

UBR =
PG
k=1

(T1k�T2k)
T2k

G
; (1)

where T1 and T2 are the longest and shortest times
of individual evaluations, respectively, and G is the
generation number. To evaluate e�ciency of the
balancing method, the average clock time and UBR
of the problems with population sizes of 12, 20, and
32 are compared with the normal HPGA in Table 3.
Termination of the program occurs when the objective
function reaches the level of 58.5. The results show
about 30% reduction in UBR and 9% reduction in total
clock time compared with the HPGA.

5.3. Scalability
Scalability is the ability of a parallel system to retain
the performance levels when additional processors are
utilized. In other words, it can refer to the capability
of a system to decrease the computational time of a
problem under an increased load when resources are
added. This parameter, as a property of systems, is
generally de�ned as:

Scalability =
Ts

Tp�N
; (2)

where Ts and Tp are the execution times of the se-
quential and parallel algorithms, respectively, and N is



2386 M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388

Table 4. The e�ect of the number of sub-populations on the scalability of the problem.

Sub-population No. of Execution time
Scalability

size CPU Parallel Serial
(Sec)�104 (Sec)�104

1 20 16.8 162.5 0.48
2 40 14.4 141.9 0.25
3 60 12.1 127.2 0.18
4 80 15.6 138.4 0.11

the number of processors. According to the mentioned
de�nition, the proposed algorithm is said to scale if
it is suitably e�cient when a large number of CPUs
are applied, e.g. a large number of subpopulations or a
large number of participating nodes are applied. In Ta-
ble 4, a sample problem with the conditions described
in Section 5.1 is solved and the e�ect of increasing
resources on the scalability and the execution time are
presented. According to this table, with applying more
CPUs, both the computational time and the scalability
are decreased.

5.4. Parallel speed-up
When running a parallel algorithm, one of the main
performance issues, in comparison to a sequential run
of the same algorithm, is how much speed-up it can
o�er. Such a speed-up is de�ned by:

Sp =
Ts
Tp
; (3)

where Ts and Tp are the same as those in Eq. (2).
To compare the e�ciency of the proposed method in
terms of the actual clock time of optimization process,
a parameter called Cost Function E�ciency (CFE)
is introduced using Amdahl's law [28]. Three sub-
populations and 20 members are considered here, since
they are proved to be the optimum values. The
performance of the proposed parallelization strategy
for the above airfoil design problem is assessed and
the results are presented in Table 5. Moreover, the
in
uence of the proposed load balancing (B-HPGA)
method is presented for the population sizes of 12,
20, and 32. For all cases, the calculation time de�nes

the period when the program starts up to the time it
reaches the objective value of 58.5.

Looking at Table 5, it is observed that by in-
creasing the population size for both HPGA and B-
HPGA, the speed-up is increased. This table also
indicates that the obtained speed-up and CFE for
the proposed B-HPGA are increased for all cases in
comparison to HPGA. More importantly, it shows that
how the use of a proper parallelization strategy could
lead to more CFE, which means that applying more
subpopulations as well as individuals does not always
result in more e�ciency. For instance, when the HPGA
is applied and the numbers of subpopulations and
population size are 32 and 4 respectively, the CFE
is about 31% less than when 20 individuals and 3
subpopulations are utilized. The main reason is that by
using more subpopulations, the idle time of processors
increases. However, no signi�cant di�erent is observed
in the number of generations in the optimization
process.

6. Conclusions

A two-level Parallel Genetic strategy, including a
master-slave PGA at the lower level and a distributed
PGA at the upper one, was proposed. It showed to
be very promising for aerodynamic shape optimization.
Some crucial parameters in both levels were optimized
and a new strategy for load balancing was proposed.
The e�ciency of the method was investigated through
airfoil shape optimization. It was found that by using
the proposed strategy for aerodynamic shape optimiza-
tion, signi�cant reduction in the computational time

Table 5. Speed-up and cost function e�ciency of HPGA and B-HPGA.

Population
size

One sub-population
(PGA)

Two
sub-population

Three
sub-population

Four
sub-population

12 20 32 12 20 32 12 20 32 12 20 32

Sp
B-HPGA - - - 22.3 37.0 58.8 32.8 55.3 87.4 43.2 72.6 113.3

HPGA 11.0 18.3 29.4 20.9 35.2 55.1 30.3 52.4 81.8 39.6 68.4 106.7

CFE
B-HPGA - - - 72.1 97.8 77.6 74.7 100 80.1 70.5 97.6 76.9

HPGA 64.3 88.4 67.7 68.4 91.1 71.9 69.8 92.3 72.7 65.3 89.2 69.2



M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388 2387

is obtained. The semi-liner speed-up also indicates
that the model is suited for modern cluster work
stations.

Nomenclature

Symbols

T1 The longest time of individual
evaluations

T2 The shortest time of individual
evaluations

G Generation number
Sp Speed-up
Ts The execution time of the sequential

algorithms
Tp The execution time of the parallel

algorithms

De�nitions, acronyms, and abbreviations

GAs Genetic Algorithms
PGA Parallel Genetic Algorithm
HPGA Hierarchical Parallel Genetic Algorithm
CFD Computational Fluid Dynamics
CGA Canonical GA
LHPC Laboratory of High Performance

Computing
Cp Pressure coe�cient
Cl Lift coe�cient
Cd Drag coe�cient
MI Migration Interval
UBR Unbalancing Ratio
Tct Total clock time
CFE Cost Function E�ciency

References

1. Goldberg, D.E., Genetic Algorithm in Search, Op-
timization and Machine Learning, Addison-Wesley,
Reading (1989).

2. Shahrokhi, A. and Jahangirian, A. \Surrogate assisted
evolutionary optimization method with application to
the transonic airfoil design", Eng Opt., 42(6) pp. 497-
515 (2010).

3. Pehlivanoglu, Y. and Yagiz, B. \Aerodynamic design
prediction using surrogate-based modeling in genetic
algorithm architecture", Aero. SCI Tech., 23(1), pp.
479-491 (2011).

4. Leifssona, L. and Kozielb, S. \Aerodynamic shape
optimization by variable-�delity computational 
uid
dynamics models: A review of recent progress", Jour-
nal of Computational Science, 10(1), pp. 45-54 (2015).

5. Ebrahimi, M. and Jahangirian, A. \New analytical

formulations for calculation of dispersion parameters
of Gaussian model using parallel CFD", Envi. Fluid
Mech., 13(2), pp. 125-144 (2013).

6. Tai, C.H., Liew, K.M. and Zhao, Y. \Numerical
simulation of 3D 
uid-structure interaction 
ow using
an immersed object method with overlapping grids",
Comp. Struct., 85(11), pp. 749-762 (2007).

7. Marco, N. and Lanteri, S. \A two-level parallelization
strategy for genetic algorithm applied to optimum
shape design", Parallel Comp., 26(4), pp. 377-397
(2000).

8. Oktay, E., Akay, H. and Merttopcuo�glu, O. \Par-
allelized structural topology optimization and CFD
coupling for design of aircraft wing structures", Comp.
Fluids, 49(1), pp. 141-145 (2011).

9. Daneshtalab, M., Ebrahimi, M., Xu, T.C., Liljeberg,
P. and Tenhunen, H. \A generic adaptive path-based
routing method for MPSoCs", J. Syst. Architect.,
57(1) pp. 109-120 (2011).

10. Cantu-Paz, E. \A summary of research on parallel
genetic algorithms", Technical Report 95007, IlliGAL
Report, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory (1995).

11. Nowostawski, M. and Poli, R. \Parallel genetic algo-
rithm taxonomy", In: Proceedings of the Third Inter-
national Conference on Knowledge-Based Intelligent
Information Engineering Systems, KES'99, pp. 88-92,
Adelaide (1999).

12. Daneshtalab, M., Palesi, M., Angiolini, J., Plosila, M.
and Ebrahimi M. \Proceedings of the 2nd international
workshop on many-core embedded systems (MES)",
Held in conjunction with the 41st Annual IEEE/ACM
International Symposium on Computer Architecture
(2014).

13. Rocha, I., Parente, E. and Melo, J. \A hybrid
shared/distributed memory parallel genetic algorithm
for optimization of laminate composites", Compos
Struct., 107, pp. 288-297 (2014).

14. Periaux, J., Mantel, B., Sefrioui, M., Stouuet, B.,
Desideri, J., Lanteri, S. and Marco, N. \Evolutionary
computational methods for complex design in aerody-
namics", In: 96th American Institute for Aeronautics
and Astronautics Conference, AIAA-98-0222, Reno
(1998).

15. Kim, J. and Zeigler, B.P. \A framework for mul-
tiresolution optimization in a parallel/distributed en-
vironment: Simulation of hierarchical gas", J. Parallel
Distr. Com., 32(1), pp. 90-102 (1996).

16. Lim, D., Ong, Y., Jin, Y., Sendho�, B. and Lee, B.
\E�cient hierarchical parallel genetic algorithms using
grid computing", Future Gener Comp SY., 23(4), pp.
658-670 (2007).

17. Menon, S., Mooney, K.G., Stapf, K.G. and Schmidt,
D.P. \Parallel adaptive simplical re-meshing for de-
forming domain CFD computations", J Comput Phys.,
298(1), pp. 62-78 (2015).



2388 M. Ebrahimi and A. Jahangirian/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2379{2388

18. Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Plosila,
J. and Tenhunen, H. \Cluster-based topologies for 3D
networks-on-chip using advanced inter-layer bus archi-
tecture", Elsevier Journal of Computer and System
Sciences, 79(4), pp. 475-491 (2013).

19. Tes, D. and Chan, Y.Y. \Multi-point design of airfoil
by genetic algorithm", In: 8th Annual Conference of
the CFD Society of Canada, Montreal (2000).

20. Deb, K., Multi-Objective Optimization Using Evolu-
tionary Algorithms, Academic Press, New York (2001).

21. Jahangirian, A. and Hadidoolabi, M. \Unstructured
moving grids for implicit calculation of unsteady com-
pressible viscous 
ows", Int. J. Numer. Meth. FL.,
47(10), pp. 1107-1113 (2005).

22. Launder, B.E. and Spalding, D.B. \The numerical
computation of turbulent 
ows", Comput. Method.
Appl. M., 3, pp. 269-289 (1974).

23. Jahangirian, A. and Johnston, L.J. \Automatic gener-
ation of adaptive unstructured grids for viscous 
ow
applications", In: 5th International Conference on
Numerical Grid Generation in CFD, Mississippi State
University (1996).

24. Shahrokhi, A., Jahangirian, A. and Fouladi, N.
\Navier-Stokes optimization using genetic algorithm
and a 
exible parametric airfoil method", In: ERCOF-
TAC Conference on Design Optimization: Methods
and Application, Spain, University of Las Palmas de
Gran Canaria (2006).

25. Tai, C.H., Zhao, Y. and Liew, K.M. \Parallel compu-
tation of unsteady incompressible viscous 
ows around
moving rigid bodies using an immersed object method
with overlapping grids", J. Comput. Phys., 207(1), pp.
151-172 (2005).

26. Xia, G.H., Zhao, Y. and Yeo, J.H. \Parallel unstruc-

tured multigrid simulation of 3D unsteady 
ows and

uid-structure interaction in mechanical heart valve
using immersed membrane method", Comput Fluids.,
38(1), pp. 71-79 (2009).

27. Ebrahimi, M. and Jahangirian, A. \Aerodynamic op-
timization of airfoils using adaptive parameterization
and genetic algorithm", J. Optimiz. Theory App.,
162(1), pp. 257-271 (2014).

28. Ahmdal, G. \Validity of the single processor ap-
proach to achieving large scale computing capabili-
ties", In: AFIPS Conference Proceedings, Thompson
Books, Washington DC. 30, pp. 483-485 (1967).

Biographies

Mehdi Ebrahimi was born in 1980. He received his
BSc in Mechanical engineering from Ferdwosi Univer-
sity of Mashhad and his MSc and PhD in Aerospace
Engineering from Amirkabir University of Technology.
His research interests are mainly in the areas of com-
putational 
uid dynamics, parallelization, evolution-
ary optimization, environmental 
ow calculations, and
neural networks.

Alireza Jahangirian was born in 1964. He is working
as Associate Professor at the Faculty of Aerospace
Engineering in Amirkabir University of Technology. He
received his BSc, MSc, and PhD degree in Mechanical
Engineering from Amirkabir University of Technology,
Sharif University of Technology, and University of
Manchester, respectively. His research interests are
mainly in the areas of computational 
uid dynamics,
numerical grid generation, aerodynamics optimization,
and turbulence modeling.




