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Abstract. The aim of this paper is optimal operation of a Divided-Wall Column (DWC)
based on Self-Optimizing Control (SOC). By now, the proposed SOC methods have been
based on linearization of the process. The novelty of this paper is to overcome this
shortcoming of the local optimality of SOC. Theoretically, changes in optimal sensitivity
matrix from nominal design, due to changes in the operating condition, make SOC deviate
from steady state optimality. These deviations from optimal operation, in already available
SOC structures, have to be counteracted by the optimization layer in the control structure
hierarchy which involves solving a large nonlinear optimization problem online. The
proposed method in this paper solves this problem by modeling the optimal sensitivity
matrix with Takagi-Sugeno fuzzy inference. This fuzzy inference system is tuned o�ine.
The proposed method is dynamically validated and compared with conventional SOC. The
results showed that the conventional SOC had a high value of loss and deviated from
the optimal operation. However, in the same operating condition, the proposed method
with the aid of Takagi-Sugeno fuzzy inference system, which involves online calculation
of the weighted average of some linear functions, imposed a small loss, made DWC track
an optimal trajectory, and removed the need for solving the large nonlinear optimization
problem online.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Optimal operation of the plants has a growing demand
nowadays. The price of energy, environmental regula-
tions and competitions make the process plants operate
as close as possible to the optimal operation. Generally,
steady state operation takes the largest amount of
operating cost. So, noticeable economic bene�ts can
be achieved by optimal steady state operation [1]. A
control structure that yields nice transient responses
and tight control by keeping the selected controlled
variables at their speci�ed setpoints may be useless if
it provides a non-economical steady state performance.
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Moreover, operation at a pre-designed nominally op-
timal point may not necessarily be actually optimal,
due to real-time disturbances, measurement errors, and
uncertainties.

On the other hand, process intensi�cation makes
new processes with more complex multivariable sys-
tems which require a suitable control structure for
the expected operating condition. The Divided-Wall
Column (DWC) is an important example of process
intensi�cation [2]. It is an implementation of the
topology of fully thermally coupled Petlyuk column [3],
as shown in Figure 1. DWC can reduce up to
30% in the capital invested and up to 40% in the
energy costs [4]. Reduced mixing loss via reduction in
remixing e�ect, which happens usually in conventional
distillation trains, can make considerable savings [5, 6].
The value of saving is dependent on feed composition,
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Figure 1. Separation of ternary mixture with (a) Petlyuk
con�guration, and (b) divided-wall column.

relative volatility, and product purity speci�cation and
can be higher in the case of separation of mixtures with
more components [7]. In this way, DWC overcomes the
usual problem of trade-o� between the operation cost
and the investment costs when reducing operating cost
at the expense of higher investment costs [8]. Also,
DWC reduces space requirements by 40% compared to
the conventional distillation columns [9].

However, in spite of all these clear advantages,
the practical use of DWC at industrial scale is still
limited to only a few companies [10], because DWCs
have the coupling e�ect of various phenomena such
as mass and energy 
ows of vapor and liquid which
meet above and below the wall and transfer heat across
the dividing wall [11]. It makes DWC a comparatively
complex multivariable system [12], and understanding
its operability and controllability is still a growing
matter [4]. Moreover, real-time disturbances in a
DWC with �xed vapor and liquid split fraction may
move the system to a region where the solution to the
optimization problem (optimum operation) is located
on a sharp peak (sharp optimum) and the system may
be unstable or at least unable to obtain reasonable
energy saving [13]. Thus, it seems di�cult to achieve
the potential energy savings in a DWC without a good
control strategy compared to conventional approaches.
Control structure design generally classi�es problems
into two classes. In the �rst class, all the optimization
degrees of freedom are used to satisfy active constraints
for all expected disturbances at the optimal solution,
while in the second class, which is the focus of this
work, one or more optimization degrees of freedom are
unconstrained. In the second type of problem, choosing
the Controlled Variable (CV) is a very important step
in the control structure design in order to obtain
optimal operation in practice. Traditionally, controlled
variables have been selected based on intuition and
process knowledge. Skogestad [14] presented a method
for selecting Self-Optimizing Controlled (SOC) variable
in the form of some function of the measured variables

in such a way that keeps this controlled variable
constant, or slowly varying, making the process operate
close to economically optimal steady state operation
in the presence of disturbances and implementation
errors.

In other words, SOC structure design aims to
remove or at least decrease the need for solving a
nonlinear optimization problem online by converting
the optimization problem into a feedback problem.
By now, SOC design has been based on linearization
of the process model around the nominal operating
point. The �rst approach for SOC design was the
maximum gain rule [15] with local consideration of
process model. Halvorsen et al. [16] presented the
exact local method with the worst-case loss based
on the linear model around the nominal operating
point and quadratic expansion of the objective function
which leads to nonlinear optimization problem. This
work was reformulated as a quadratic optimization
problem with linear constraints by Alstad et al. [17]
which is easier to solve numerically; also, Yelchuru
and Skogestad [18] proposed a simpler and more
practical calculation. For local linear combination of
measurements, Kariwala et al. [19] proposed another
method and minimized average loss for local SOC.
Alstad and Skogestad [20] devised null space method
wherein combination matrix was located in the left null
space of local optimal sensitivity matrix. However, null
space method holds its optimality for small deviations
from the nominal optimum (small magnitude of the
disturbance) and is globally optimum in cases wherein
the optimal sensitivity matrix, F, is not dependent on
the operating point (disturbances) or, in other words,
for a system with a quadratic cost objective function
and linear model equations [20].

So, in a complex multivariable process with
varying operating conditions, the local consideration
of process makes SOC design deviate from nominal
optimal steady-state operation. This could be coun-
teracted with solving a nonlinear optimization online
in optimization layer which is located above the SOC
in control structure hierarchy. But, this causes the
main role of SOC in removing or decreasing the need
for solving large nonlinear optimization problem online
become violated. Moreover, this deviation from local
optimal design becomes more severe in a more complex
multivariable system such as DWC.

With the local consideration of DWC, Arjomand
and Fanaei [21] designed a SOC structure with the
maximum gain rule [15] which was based on the con-
ventional individual measurement. In the other work,
Arjomand and Fanaei [1] developed a SOC structure
with the exact local method [16] and it was shown
that it was possible to have better self-optimizing
properties by controlling linear combinations of mea-
surements than by controlling conventional individual
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measurements in control structure of a DWC. However,
the proposed SOC structure of Arjomand and Fanaei
[1] for DWC has the weakness of local optimality
problem. The current work presents a novel method
for solving the shortcoming of local optimality of SOC
through modelling F with Takagi-Sugeno (T-S) fuzzy
inference system in the null space method [20]. In other
words, our main concern in this paper is to extend
the self-optimizing property of the control structure
for a DWC to large variation in operating condition
where optimal sensitivity matrix changes from nominal
design.

The T-S fuzzy model can represent nonlinear
system by decomposing the whole input space into
several fuzzy sets and representing each output space
with a linear equation. Such a model is capable of ap-
proximating a wide class of nonlinear systems. For the
reason that it employs linear model in the consequent
part, conventional linear system theory can be applied
for system analysis and synthesis accordingly. And
hence, the T-S fuzzy models are becoming powerful
engineering tools for modelling and control of complex
systems.

This paper is organized as follows. The next
section describes mathematical formulation of null
space method and the basics of T-S fuzzy inference
system. Section 3 will review the general structure
of a plantwide multilayer control structure and will
present the proposed multilayer control structure with
fuzzy system. Section 4 will design control structure
for the studied DWC which is followed by results and
discussions in Section 5 and, �nally, conclusion in
Section 6.

2. Preliminaries

2.1. Mathematical formulation
To quantify \acceptable operation" or close to optimal
steady state operation, a scalar cost function J is
considered which should be minimized for optimal
operation. The (economic) cost mainly depends on the
steady-state behavior, which is a good assumption for
most continuous plants in the process industry.

Generally, the original independent variable u0
is divided into the constrained variable u0 which is
used to satisfy active constraints f 0(x;u;d) = 0 and
the remaining unconstrained variable u(u0 = fu0;ug).
It is assumed that any optimally \active constraint"
has been implemented so that u0 includes only the re-
maining unconstrained steady-state degrees of freedom.
Finally, the objective is to achieve optimal steady-state
operation, where the degrees of freedom u are selected
such that the scalar cost function J(u;d) is minimized
in the \reduced space" optimization problem with
respect to the unconstraint degrees of freedom for
any expected disturbance d by solving the following

problem.

min
x;u

J(x;u;d);

Subject to:

f(x;u;d) = 0;

g(x;u;d) � 0;

x 2 Rnx ; u 2 Rnu ;d 2 Rnd ; (1)

where x, u, and d are the states, inputs, and distur-
bances, respectively; f is the set of equality constraints
corresponding to the model equation; g is the set of
inequality constraints that limits the operation. The
objective of SOC is to �nd an optimal measurement
combination:

c = Hy; (2)

such that a constant setpoint, cs, policy, in which u is
adjusted to keep c constant on cs, yields near optimal
operation in accordance with Eq. (1) where:

cs = Hyopt: (3)

To quantify the di�erence between alternative choices
of c, the loss is de�ned as the di�erence between the
actual cost and the optimal cost:

L = J(u;d)� J(uopt;d); (4)

where for a given d, solving Eq. (1) gives uopt(d). In
the reduced space after implementing active constraints
and elimination of the states using model equation:

y = fy(u;d); (5)

and in a local linearized model around nominal oper-
ating point (*), the measured variables are:

y = Gyu�Gy
dd; (6)

where Gy =
�
@fy
@u

��T
and Gy

d =
�
@fy
@d

��T
. The

controlled variable c is the selected function of y:

c = h(y); (7)

where the function h is free to choose. By substituting
Eq. (5) into Eq. (7) the following equation is obtained:

c = h [fy(u;d)] = fc(u;d): (8)

And the linearized model in the reduced space is
expressed as follows:

c = Gu�Gdd; (9)

where G =
�
@fc
@u

��T
and Gd =

�
@fc
@d

��T
.
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2.2. Null space
The null space method [20] deals with the optimal
selection of linear measurement combinations as the
controlled variables, c = Hy, for quadratic approxima-
tion of Eq. (1) with the second-order Taylor expansion
of the cost function J(u;d):

min
�
u
d

�T �Juu Jud
Jdu Jdd

� �
u
D

�
; (10)

where Juu = @2J
@u2 , Jud = JT

du = @2J
@u@d , and Jdd = @2J

@d2 .
Considering that nu is the number of independent

unconstrained free variable u, nd is the number of
independent disturbance d, and ny is the number of
measurement y. If ny � nu+nd, it is possible with the
null space method [20] to select combination matrix H
in the left null space of F, or:

H = null(FT ); (11)

such that its optimal value is independent of d where
F is optimal sensitivity matrix evaluated with the
following de�nition:

F =
@yopt

@dT
: (12)

Also F could be calculated from linearized local
model [17]:

F = � �GyJ�1
uuJud �Gy

d
�
: (13)

With this choice for H, �xing c (at its nominal optimal
value) will lead to zero loss as long as F does not
change [20].

The optimal sensitivity matrix, F, may be com-
puted from Eq. (13). However, in practice, it is
usually easier to obtain F, numerically. In other
words, for practical use, it is more reliable to obtain
F, numerically, from its de�nition in Eq. (12), instead
of deriving an analytical expression from Eq. (13) [18].
Moreover, providing analytical expression of F for
the entire operation space in a complex of nonlinear
chemical plants from explicit representation of the
model equations is even a more di�cult problem to be
solved, but is readily to be solved numerically through
fuzzy modelling.

2.3. Takagi-Sugeno fuzzy inference system
Fuzzy sets are characterized by membership functions
or degree of truth of v in A that map R to the
membership space:

A = f(v; �(v)) jv 2 Rg : (14)

The membership function is described by an arbitrary
curve suitable from the point of view of simplicity, con-
venience, speed, and e�ciency. When the membership

space contains only 0 and 1, A is nonfuzzy and � is a
characteristic function of non-fuzzy set. The range of
the membership functions is a subset of the nonnegative
real numbers. In this paper, Gaussian membership
functions is regarded as follows:

�(v) = exp
�
�1

2

�
v � �
�

��
; (15)

where � is the center of the membership function and
� is a constant related to the spread of membership
function.

Structure of a Takagi-Sugeno fuzzy inference sys-
tem is shown in Figure 2. It is a model that maps
characteristics of input data to input membership
functions, input membership functions to rules, rules
to output crisp functions, and output crisp functions
to a single-valued output [22]. Generally, the process
of formulating the mapping from a given input to an
output using fuzzy logic is called the fuzzy inference.

In T-S fuzzy systems, the relationships between
variables are represented by the means of fuzzy if-then
rules as follows:

Rulei : If v1 is A1
i and v2 is A2

i ::: vn is An
i

Then zi = �i(v1; v2; :::; vn); (16)

where v = [v1; v2; :::; vn]T is the vector of input

Figure 2. Structure of T-S fuzzy model.
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variables, Aj
i (1 � j � n) represents fuzzy set, zi is

the output of rule i, and �i is a crisp function of rule i.
In the �rst-order sugeno model, a linear combination
of input variables is considered as the consequent crisp
function as follows:

�i (v1; v2; :::; vn)=b0i + b1i v1 + b2i v2 + :::+ bni vn: (17)

As such, each rule can be considered as a local linear
model that will fuse with others to produce an overall
nonlinear output z. Given the input vector v =
[v1; v2; :::; vn]T, the model output z is the weighted
average of the individual rule outputs zi(1 � i � Nr)
according to the following formula:

z =
PNr
i=1 wiziPNr
i=1 wi

; (18)

where Nr is the number of rules, and wi is the �ring
strength of rule i calculated as follows:

wi = �n
j=1�

j
i (vj); (19)

where � denotes the fuzzy MIN operator and �ji is the
membership function corresponding to fuzzy set Aj

i .

2.3.1. Parameter tuning
One of the most successful fuzzy system identi�cation
methodologies within the realm of soft computing is
genetic fuzzy system where Genetic Algorithm (GA)
is considered to learn the components of a fuzzy rule-
based system [23]. A genetic fuzzy system is basically a
fuzzy system augmented by a learning process based on
a GA and has been coined by a hybridization between
GA and fuzzy rule-based system [24]. Genetic learn-
ing processes can cover di�erent levels of complexity
according to the structural changes produced by the
algorithm, from parameter optimization to the highest
level of complexity of learning the rule set of a rule-
based system [25]. Owing to the fact that T-S type
fuzzy system has a linear consequent part, using the
least square with GA has also combined the advantages
of both algorithms to enhance its search capability;
also, the optima can be located more quickly [26].

The T-S fuzzy system parameters are automati-
cally tuned from numerical information (input-output
data sets from nonlinear model). An input variable is
changed instantly and, at the same time, the behavior
of the output variables is collected. Then, the same
procedure is performed for the other input variables
and �nally a data set for identi�cation of the fuzzy
models is obtained by o�ine calculation in nonlinear
model. Subsequently, the identi�cation data set is
divided into training data set and test data set with
random method [22]. The training data set is used for
tuning model parameters and these models are then
validated through the test data.

In brief, the GA starts with a community of chro-
mosomes known as the initial population. In contrast
with classical algorithm which generates a single point
at each iteration, GA generates a population of points
at each iteration. Then, the chromosomes are passed to
the objective function. As the aim is to minimize the
error between the output of fuzzy model and output
data, the Mean of Squared Error (MSE) is used as
evaluation function.

Among the chromosomes in the population, some
of them will be arbitrarily selected. This selection
component in the GA guides the algorithm to the
solution. One approach used in this work, to guide
the selection procedure, is stochastic uniform selection
function. This reproduction population will then be
mated through crossover component. Crossover is
the process of creating one or more o�springs from
the current population. In this work, arithmetic
crossover is used. The last component of GA is
mutation. Mutation rules apply random changes to
individual to form the next generation. This process
is performed to prevent the algorithm from sticking
at local minimum by introducing traits not existing in
the original population. Gaussian mutation is applied
in this work. The so called selection, crossover, and
mutation are the three main types of rules at each step
to create the next generation from current population.
In this work, we use MATLAB software to implement
genetic algorithm. For more information about genetic
algorithm one can refer to MATLAB software user's
guide.

Also, the coe�cients of the crisp linear functions
are constructed with least square estimation method
and are dependent on the values of the membership
functions in the antecedent part. So, this is quite
di�erent from linear model identi�cation wherein the
coe�cients of the model can be directly calculated from
the input variable values. Therefore, in using the least
square method, at �rst, the equations of the output are
rearranged to comply with the least square equation
as in Appendix A, and the coe�cients of the linear
equations of fuzzy model can be identi�ed indirectly
from the values of input variables and the membership
for each rule. The parameter tuning algorithm can be
summarized as follows:

1. Generate random initial population;
2. Evaluate objective function for every chromosome.

(2-i) Use least square method to de�ne the pa-
rameter of linear equations by the desired
membership functions parameters;

(2-ii) Calculate MSE for every chromosome.
3. Perform selection, crossover, and mutation opera-

tion to produce new population;
4. Repeat steps 2 and 3 for a certain number of
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Figure 3. General multilayer control structure [27].

generations to get the best individual which will
represent the best fuzzy model.

3. Multilayer control structure

In a complex real chemical plant, a straightforward
task of designing and implementing a single centralized
control unit is too di�cult and, in many cases of
complex multivariable processes, is just impossible.
Hierarchical multilayer control structure is a solution
in such complex situations [27]. The main idea is to
decompose the original control task into a sequence
of simpler and hierarchically structured subtasks that
are handled by dedicated control layers, as shown in
Figure 3.

The direct control layer is responsible for safety
of dynamic processes in the plant. The main feature
of all direct (basic) controllers is direct access to
the controlled process (process manipulated variables
are outputs of the direct controllers). Algorithms of
direct control should be robust and relatively easy,
in structure and design method, that is why classic
Proportional-Integral-Derivative (PID) algorithms are
still dominant. However, rapid development of com-
puter technology made it now possible to apply Model
Predictive Control (MPC) also for direct control, when
improved control performance is required and cannot
be achieved with PIDs [28].

The setpoint control layer keeps high quality of
operation. This layer usually does not fully separate
the direct control layer from the optimization layer,
and some of the setpoints for basic controllers can be
assigned and directly transmitted from the optimiza-
tion layer, as can be seen in Figure 3.

The real process operation is always under uncer-
tainty. A process plant is not isolated from its envi-
ronment and it undergoes controlled and uncontrolled

external in
uences. One source of the uncertainty is the
behavior of disturbances (uncontrolled process inputs).
Usually, some parts of these variables are measured or
estimated and some others are not. Optimal values
of the setpoints are dependent on these disturbance
values and vary when their values vary. The optimal
operating point is calculated for current values of
disturbances, and recalculated after signi�cant changes
in these values [27].

Uncertainty makes a single optimization layer
usually lead to solutions being only suboptimal set-
points for the real process, with the degree of subop-
timality dependent on the level of uncertainty. There-
fore, a setpoint optimization at the optimization layer
is de�ned to obtain optimal setpoints of feedback
controllers, for current measurements or estimates of
the disturbances taken into account in the model
which are additionally marked with dashed lines in
Figure 3. It performs economic optimization related
to the controlled process, which is usually a part of
a larger complex plant. The goal is to calculate the
process optimal operating point or optimal operating
trajectory, i.e. optimal steady-state values of setpoints
for current values of disturbance measurements or
estimates to be applied for feedback controllers of
directly subordinate layers (regulatory layer). So, with
decomposing the original centralized control task into
a sequence of simpler and hierarchically structured
subtasks and assigning a speci�c task to each layer,
which includes feedback information, it copes with the
various uncertainties.

3.1. Fuzzy system in multilayer control
structure

If a disturbance moves the process far from the nom-
inal point, the local model approximation used for
the calculation of self-optimizing CVs by linearization
of the nominal operating point and assumption of
the quadratic cost function (or approximation of the
objective function by the second order Taylor series)
may be poor. Therefore, the self-optimizing control
task in providing near optimal operation in the case
of disturbances which move the process away from the
nominal operating point becomes poor. This is usually
counteracted by reoptimization of the process with an
optimization layer which involves solving a nonlinear
optimization online.

Using fuzzy model makes control structure meet
changes in operating condition. Figure 4 shows the
proposed control structure with fuzzy inference system.
In the proposed algorithm, optimal sensitivity matrix
is calculated through the T-S fuzzy inference system.
The null space receives optimal sensitivity matrix from
T-S fuzzy model as well as the selected measurement
from plant. The self-optimizing controlled variable is
controlled through a controller, which is generally a
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Figure 4. Multilayer control structure with T-S fuzzy
inference system.

proportional-integral controller. The setpoint for this
controller is calculated with Eq. (3) where yopt is, in
accordance with the de�ning Eq. (12), as follows:

yopt =
Z

Fdd: (20)

4. Design of control structure

Here, a systematic procedure for control structure
design for complete process plants (plantwide control)
by Skogestad [29] is followed.

4.1. Process details
In this paper, separation of 1 kmol/s mixture of
benzene/toluene/o-xylene with the relative volatility of
7.1/2.2/1 is studied. The design of DWC in this paper
is based on the results of optimal steady-state design
of Ling and Luyben [30]. Feed enters the DWC at
the temperature of 358K and with the concentration
of 30/30/40 mol% B/T/X. Physical property package
used for this simulation is Chao-Seader in the Aspen
simulator. DWC is simulated using two absorbers,
single stripper, and a recti�er column as [30,31]. There
are 24 stages in prefractionation and also in sidestream
section, 9 stages in recti�er section, and 13 stages in
stripper section. Feed enters at stage 12 and sidestream
withdraws at stage 44. Product purities are 99 mol%,
condenser pressure is 0.37 atm, tray pressure drop is
0.0068 atm, and the re
ux ratio is 2.85.

4.2. De�nition of objective function, degrees
of freedom, and optimization

The objective is to minimize reboiler energy consump-
tion. With the constant feed 
ow rate and pressure,
there are 7 dynamic degrees of freedom [32]. However
there are two liquid level inventories that need to be
controlled and since these levels have no steady-state
e�ect, the number of degrees of freedom for steady-
state optimization is 5 [33]. Three product purities are

Figure 5. Surface plot for reboiler heat duty as a
function of liquid and vapor split fraction.

three active constraints maintained by three freedom
degrees. So, two unconstrained degrees of freedom,
namely vapor and liquid split fraction, are left to
minimize energy. The surface plot in Figure 5 shows
that how reboiler heat duty changes with these two
unconstrained degrees of freedom. At optimum, vapor
and liquid split fraction at the bottom and top of
the wall is 0.625 and 0.353, and reboiler heat duty is
35.6 MW.

From practical point of view, it is a more re-
alistic case where the vapor split is not a degree of
freedom [34] and it does not change later on during
the operation [10]. In this paper, we also consider that
the vapor split is not a degree of freedom. Therefore,
there is one remaining unconstrained degree of freedom.
In addition, active constraints (product composition)
and also feed composition are considered as important
disturbances.

4.3. Identi�cation of measurements and
selection of CVs

It is common in distillation column control to use
temperature as measurement. In this work, all of
the DWC stage temperatures are selected as candidate
measurements. So, it has 70 individual candidate
measurements (stages 1 to 24 in prefractionator, 25 to
33 in recti�er, 34 to 57 in sidestream, and 58 to 70 in
stripper section).

There are 4 disturbances (nd = 4) and one
unconstrained degree of freedom (nu = 1). Based on
the null space method in Section 2.2, the minimum
number of measurement is ny = 5 (ny � nu + nd). So,
5 stage temperature measurements must be selected
among all 70 individual candidate measurements. To
select these 5 stage temperatures among all 70 can-
didate stage temperatures, the maximum gain rule is
used [15]. The maximum gain rule method selects
variables with maximum gain of the appropriately
scaled steady-state gain matrix Gscl from inputs (u)
to the selected controlled variables (c). It identi�es
candidate controlled variables that satisfy all of the
following requirements [14]:

1. Optimum insensitivity to disturbances;
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2. Easy to measure and control so that the implemen-
tation error is small;

3. Sensitive to changes in the manipulated variables;
4. Independent selected controlled variables (for cases

with two or more controlled variables).

The key part of this procedure is scaling of each
q-th input and p-th controlled variable. Each q-th
candidate input is scaled with Eq. (21). By this scaling,
a unit deviation in each input from its optimal value
produce the same e�ect on the cost function [16].

uscl;q =
1q

[Juu]qq
: (21)

The Hessian matrix is calculated with �nite di�erence
and is Juu = 8327. The maximum optimal variation
due to variation in disturbance "p is [16]:

"p =
�
GJ�1

uuJud �Gd
�

(dmax � d�); (22)

where the Hessian matrix is Jud = [�995 766 �
17922 341] and the maximum expected magnitude of
disturbance is 10% of nominal value. The scaling
factor in Eq. (23) is de�ned to scale controlled variable
such that for each p-th controlled variable, the sum of
the magnitude of "p and the implementation error np
become similar [16]:

cscl;p = j"pj+ jnpj : (23)

The implementation or measurement errors are taken
to be 0.3 degree Celsius. And �nally the scaled gain
matrix is:

Gscl = D�1
c GDu; (24)

where Dc = diagfcscl;pg and Du = diagfuscl;qg are the
diagonal scaling matrices. The �rst 5 measurements
among all 70 candidate measurements with the largest
scaled gain with corresponding scaled gains are shown
in Table 1. Therefore, the measurement vector is y =
[T1 T14 T15 T55 T56]T .

4.4. Design of CV
The sensitivity matrix F is obtained numerically from
nonlinear model by perturbing each of the four distur-

Table 1. The �rst �ve individual measurements with the
largest scaled gain.

Rank CV Scaled gain
1 Temperature on tray no. 56 0.979
2 Temperature on tray no. 14 0.915
3 Temperature on tray no. 15 0.783
4 Temperature on tray no. 1 0.762
5 Temperature on tray no. 55 0.575

bances around nominal operating point directly from
the de�ning Eq. (12). The null space method gives
the combination matrix H with Eq. (11) and the
corresponding CV with Eq. (2) as follows:

c= �454T56 �900T14+ 1180T15 +T1+ 309T55: (25)

4.5. T-S fuzzy modelling
Optimal sensitivity matrix is modeled through the T-
S fuzzy inference system. The fuzzy if-then rules
represent the relationships between variables as follows:

Rulei : If d1 is A1
i and d2 is A2

i and d3 is A3
i

and d4 is A4
i Then :

�i(k; j) = b0i (k; j) + b1i (k; j)d1 + b2i (k; j)d2

+b3i (k; j)d3 + b4i (k; j)d4: (26)

The fuzzy domain of input space is equally partitioned
with three fuzzy sets to avoid redundant information in
the form of similarity between fuzzy sets [35]. Recently,
attention has been increasingly paid to improve the
transparency and interpretability of fuzzy systems.
The transparency and compactness of the fuzzy rule
base can even be further improved by methods like rule
reduction or rule-base simpli�cation [36]. As there are
four disturbances (d1; d2; d3; d4), the inference system
consists of 81 rules (1 � i � 81) for elements of optimal
sensitivity matrix. Optimal sensitivity matrix F has
�ve rows (1 � k � 5) for each measurement and four
columns (1 � j � 4) for each disturbance, and �i(k; j)
is the local linear representation of the corresponding
element, F(k; j), with rule i. The identi�cation data
set with 100 elements is divided into training and test
data set with 80 and 20 elements, respectively, with
random method [22]. The parameters are tuned by
tuning algorithm procedure described in Section 2.3.1.
The fuzzy models are then validated through the test
data and Table 2 demonstrates the validation results
of the fuzzy models for the test data set. Small errors
in Table 2 show that T-S fuzzy models are close to
nonlinear model. Moreover, the performance of the

Table 2. Error quanti�cation for output variables.

MSE for output variables

j
k 1 2 3 4

1 2:63� 10�4 1:70� 10�3 8:290� 10�5 7:20� 10�4

2 4:13� 10�4 2:62� 10�4 1:31� 10�4 2:62� 10�5

3 7:32� 10�4 2:12� 10�3 7:45� 10�5 1:65� 10�4

4 9:56� 10�4 7:68� 10�4 1:47� 10�4 9:25� 10�5

5 1:30� 10�4 8:21� 10�4 8:05� 10�4 1:09� 10�4
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Figure 6. The fuzzy domain partitions of the input space.

tuned T-S fuzzy model will be dynamically evaluated
in the control structure of DWC. The fuzzy domain of
the input space is as shown in Figure 6.

4.6. Dynamic validation
Proportional-Integral (PI) controller is used in the
control structure. Pairing of manipulated variables and
controlled variables forms a simple multiloop decentral-
ized structure (DB/LRSQR) which is used frequently in
the direct control layer of DWC in literatures such as
Kiss and Rewagada [4] and Vandiggelen et al. [37]. In
this structure, the concentration of benzene in distillate
product, the concentration of toluene in side product,
and the concentration of xylene in bottom product
are controlled with re
ux 
ow, side stream 
ow, and
reboiler heat duty, respectively. This control structure
is shown in Figure 7. The 5 points on column trays
in Figure 7 show the locations of the selected tray
temperature measurements which are selected with
the maximum gain rule in Section 4.3. A 5-minute
dead time is added in all composition loops, and level
controllers are proportional only with the gain value of
2. PI controllers are tuned with SIMC method [38] and
the controller parameters are shown in Table 3.

5. Results and discussions

DWC has a complex multivariable system. Figure 8
shows the e�ect of changes in liquid split fraction over
the wall on reboiler heat duty in di�erent values of
feed toluene concentration. It also shows that how
the minimum value of reboiler heat duty changes with
di�erent values of toluene concentration in the feed

Figure 7. Control structure con�guration for divided-wall
column.

(disturbance). A negative 20% change means the
toluene is changed from 30 mol% to 24 mol% while
the other two feed compositions are changed and kept
in the same ratio of 30/40, as base case, to make
total add of 100 mol%. Therefore, a simple open loop
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Table 3. Controller tuning parameter.

Controller
Controlled Manipulated Closed loop kc �I
variables variable time constant, (%/%) (min)

�c (min)
CC1 xD LR 275 1.7 150
CC2 xS S 130 1.5 100
CC3 xB QR 124 2.4 120

SOC controller Self-optimize control Liquid split fraction 412 1.9 100

Figure 8. E�ect of changes in liquid split fraction over
the wall on reboiler heat duty in di�erent feed toluene
concentration.

feedforward control will lead to suboptimal solution,
if it does not lead to an infeasible operation. Since
controlling reboiler heat duty in a feedforward fashion
on its optima may impose infeasible operation, the
reboiler heat duty implemented by control structure
goes lower than real optimum reboiler heat duty. So, a
more advanced control structure is necessary to provide
a stable as well as optimal operation.

To compare the proposed method in this paper
with the conventional null space method, two methods
are studied in rejecting the same disturbance trajectory
entered into the plant, according to Figure 9.

Figure 10 compares dynamic responses of the
fuzzy based method, which is proposed in this paper,

Figure 9. Disturbance trajectory.

and conventional null space method. It shows that
both methods with the help of low-complexity simple
PI controller stabilize the plant, reject the e�ect of
disturbances, and make DWC to produce the prod-
uct with desired speci�cations. Here \stabilization"
means that the process does not drift too far away
from the designed operational point when there are
disturbances [29]. Bold 
ashes in Figure 10 (in
CC3 controller output graph) show that the proposed
control structure with fuzzy inference system has a
lower steady-state reboiler heat duty than that of the
conventional control structure. So, it results that the
conventional control structure, which is based on local
approximation of the nominal operating point, deviates
from near optimal operating condition, in comparison
with the proposed method based on fuzzy model, and
it needs optimization online.

Table 4 shows the loss from the nonlinear model,
with Eq. (4), for the conventional null space method.
By comparing the values of Table 4 with those of
Table 5, it is clear that the proposed method with

Table 4. Nonlinear loss imposed by the conventional null space.

Disturbance Loss (KW) Loss (percent of
nominal value)

d1 : decreased toluene mole fraction in S to 0.9 457.6 1.2
d2 : decreased xylene mole fraction in B to 0.95 1052.7 2.9
d3 : decreased benzene mole fraction in D to 0.9 1112.8 3.1
d4 : increased toluene mole fraction in F to 0.33 1279.9 3.5
d5 : increased toluene mole fraction in F to 0.36 1943.9 5.4
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Figure 10. Dynamic responses of the proposed multilayer control structure with fuzzy inference system in comparison
with the conventional control structure.

Table 5. Nonlinear loss imposed by the proposed control structure with fuzzy model.

Disturbance Loss (KW) Loss (percent of
nominal value)

d1 : decreased toluene mole fraction in S to 0.9 8.2 0.023

d2 : decreased xylene mole fraction in B to 0.95 1.8 0.005

d3 : decreased benzene mole fraction in D to 0.9 4.7 0.013

d4 : increased toluene mole fraction in F to 0.33 4.2 0.012

d5 : increased toluene mole fraction in F to 0.36 7.4 0.020

fuzzy model has reduced the loss to approximately zero,
from the practical point of view. This means that fuzzy
modelling of optimal sensitivity matrix makes control
structure meet changes in operating condition imposed
by successive disturbances entered into the plant. To be
more precise, the proposed method of self-optimizing
control structure with fuzzy inference system works
well even for successive and large disturbances where
optimal sensitivity matrix changes. Therefore, it
results to fewer need to complex and intensive online
optimization [29]. The value of loss in Table 5 shows
slight variation in loss near zero for the proposed

integrated method. This is because of the modelling
error of fuzzy inference engine. Increasing the number
of input partitions, rules, and number of selected
measurements will make less variation, if it is necessary.

The assumption of ignoring the implementation
error in the null space method is limiting and may
provide a suboptimal solution. In this paper, in
selection of measurement with the aid of maximum gain
rule, the implementation error has been considered.
In future, one can use exact local method [16] which
handles implementation error explicitly by the method
developed in this paper.
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6. Conclusion

This paper proposed a method to solve the problem
of local shortcoming of available SOC structure for
DWC by modeling optimal sensitivity matrix with
Takagi-Sugeno fuzzy inference. This fuzzy inference
system was tuned o�ine by the input-output data
from the nonlinear model. Results of the proposed
method in this paper were compared with those of the
conventional null space method. The results showed
that conventional SOC had high value of loss and
deviated from optimal operation in case of successive
disturbances entered into the plant. So, it required
solving a nonlinear optimization problem online for
re-optimizing the plant operation. However, in the
same operating condition, the proposed method in this
paper with the aid of Takagi-Sugeno fuzzy inference
system, which involves online calculation of weighted
average of some linear function, imposed small loss,
made DWC track optimal trajectory, and removed
the need for complex and intensive online solving of
the large nonlinear optimization problem. In addition
to optimal steady-state operation, dynamic simulation
showed that the proposed control structure rejected the
e�ect of disturbances and stabilized the plant.
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Nomenclature

Aj
i Fuzzy set that is characterized by the

membership function �ji corresponding
to input j of rule i

b0i ; b
1
i ; :::; b

n
i Coe�cients of linear crisp consequent

function corresponding to n input
variables of rule i

c = h(y) = Controlled variable (function h free to
fc(u;d) select)

cs Setpoint
Dc;Du : Scaling matrices
d Disturbances vector with the dimension

nd
dmax Maximum expected magnitude of

disturbance
F Optimal sensitivity matrix
f Set of equality constraints

corresponding to the model equation

f 0 Active constraints (equality
constraints) which are satis�ed
with u0

G;Gd;
Gy;Gy

d
Steady-state gain matrices;

Gscl Scaled steady-state gain matrix
g Set of inequality constraints
H Combination matrix
Juu;Jud;
Jdu;Jdd

Hessian matrix

J Scalar cost function
kc Proportional gain of PI controller
L Loss
LR Re
ux 
ow (kg/hr)
M Number of identi�cation data pairs
Nr Number of the rules
np Implementation error
QR Reboiler heat duty (kW)
R The set of real numbers
S Side stream 
ow (kg/hr)
T Temperature measurements;
u0 = fu0;ug Independent inputs

vector
u0 Constrained independent inputs

vector to satisfy f 0
u Unconstrained independent inputs

vector with the dimension nu
wi Firing strength of rule i
x States vector with the dimension nx
xD Benzene mole fraction in distillate

product
xS Toluene mole fraction in side product
xB Xylene mole fraction in bottom

product
y = fy(u;d) Measurements vector with the

dimension ny
z Fuzzy model output

Greek letters

� Center of the Gaussian membership
function

"p Maximum optimal variation due to
variation in disturbance

� Membership function
v = [v1; v2;

:::; vn]T Vector of fuzzy model inputs

�i Crisp consequent linear function of
rule i
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� Spread of the Gaussian membership
function

�c Closed loop time constant
�I Integral time constant of PI controller

Superscripts

opt Optimum
� Nominal value
T Transpose of a matrix
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Appendix A

Developing the least square to estimate the
coe�cients of linear function in the T-S fuzzy
inference engine

It can be de�ned that:

�i = wi=
NrX
i=1

wi: (A.1)

Then, from Eq. (18), the output is:

z =
NrX
i=1

�izi: (A.2)

According to Eq. (17), a linear combination of input
variables is considered as consequent crisp function, so:

z =
NrX
i=1

�
b0i + b1i v1 + :::+ bni vn

�
�i: (A.3)

Let:

�=
�
b01; b

1
1; :::; b

n
1 ; b

0
2; b

1
2; :::; b

n
2 ; :::; b

0
Nr ; b

1
Nr ;

:::; bnNr

�T
; (A.4)

and:

' =
�
�1; v1�1; :::; vn�1; �2; v1�2; :::; vn�2; :::; �Nr ;

v1�Nr ; :::; vn�Nr

�T
: (A.5)

For Mdata points:

� =

2664 '
T (v1)

...
'T (vM )

3775 : (A.6)

Then, the output of fuzzy model can be rearranged as
follows:

z = ��: (A.7)

The input data are mapped into � using inference
mechanism and the least square algorithm produces an
estimate of the best coe�cients, �.

� = (�T�)�1�T z: (A.8)

So the coe�cients of the linear equations of fuzzy model
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can be identi�ed indirectly from the values of input
variables and the membership for each rule.
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