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Abstract. Integrating the rate form equations governing the behavior of material is
an important step in solving every plasticity problem. Providing a compromise between
accuracy and computational e�ort demands the combination of low order elements with
e�cient integration algorithms. First and second order accurate integration algorithms
are well established in the realm of in�nitesimal theory. However for large deformation
plasticity models, second order integration algorithms are not given much attention in the
literature. Inspired by midpoint rule algorithms conventionally used in small deformations,
a new integration algorithm is proposed for �nite strain J2 plasticity that outperforms
the classical backward Euler method. Algorithmic setup as well as the derivation of
tangent operator which is crucial for quadratic rate of convergence of the Newton-Raphson
algorithm is discussed in detail. Employing four node quadrilateral elements in solving
benchmark examples it is shown that the proposed algorithm is very stable from numerical
standpoint and has outstanding convergence properties.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

It seems that the roots of integration algorithms for
small deformation plasticity can be found in the work
of Wilkins [1]. The algorithm that he developed
was actually a backward Euler type of algorithm.
Midpoint rule algorithms were introduced by Ortiz and
Popov [2]. Ortiz and Simo also presented a method
for analyzing the stability of integration algorithms [3].
The double step algorithms with consistency condition
being enforced twice per time step were introduced by
Simo [4] but were not elaborated until recently. Artioli
et al. provided a detailed development and numerical
results for di�erent types of second order integration
algorithms with general isotropic and linear kinematic
hardening [5]. Jahanshahi presented comparisons and
discussions on relative e�ciency of these types of algo-
rithms [6]. He also extended a variant of double step
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integration algorithm for nonlinear kinematic harden-
ing [7]. In addition to previous integration techniques,
Runge Kutta methods with step size control have
been used e�ciently by Hartmann et al. to deal with
governing rate form equations as di�erential-algebraic
equations [8-10].

In �nite strain regime, the algorithms that are
used to deal with plasticity problems are roughly
divided into hypoelastic and hyperelastic based algo-
rithms [11,12]. In the �rst group, the governing equa-
tions are expressed with respect to a rotation neutral
con�guration and the tangent operator is assumed to
be constant. Despite the shortcomings of hypoelastic-
ity, it is widely used in large scale computations [13-19].
On the other hand, the algorithms in the second group
are formulated with respect to an intermediate con�gu-
ration relative to which the elastic behavior of material
can be characterized [20,11]. The assumption of inter-
mediate con�guration �rst introduced by Lee [21] is
motivated by the micromechanical behavior of a single
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crystal in metal plasticity and leads to a multiplica-
tive decomposition of the deformation gradient into
elastic and plastic parts [11,12]. Unlike hypoelasticity,
hyperelastic algorithms can be linearized and tangent
operators consistent with algorithmic setup can be
computed in closed form. The stress-strain relationship
derives from a potential and decouples into volumetric
and deviatoric parts [20,11]. Although the proposition
of local intermediate con�guration free from elastic
deformations at a given point of the body is physically
questionable but the hyperelastic formulation seems to
be based on more logical assumptions compared with
hypoelastic formulation.

The concept of intermediate con�guration has
been used by many authors among which Nemat-
Nasser [22], Lee and Liu [23], and Simo [20,24] are
noteworthy. Simo discussed the importance of inter-
mediate con�guration in large deformation elastoplas-
ticity [24]. Based on maximum plastic dissipation and
multiplicative decomposition of deformation gradient
he provided a formulation for hyperelastic based �nite
strain plasticity [20,25]. He also presented algorithms
that preserve the form of integration scheme in small
deformation theory [26]. Peri�c and de Souza Neto
developed a computational model for Tresca plasticity
with an optimal parametrization in the space of prin-
cipal stresses [27]. Eterovic and Bathe formulated a
hyperelastic based algorithm using logarithmic stress
and strain measures [28]. A review of these and many
other works reveals that logarithmic strain measures
are favorable due to the simplicity that is induced by
the coaxiality of stress and strain.

The development in this work is majorly based on
the work of Simo [20,25]. A midpoint rule is applied
to the rate form equations governing the evolution of
plastic variables and a novel time discrete equation is
derived in terms of the variables at midpoint con�gu-
ration. This approach is in contrast to the usual one in
which the backward Euler method is used to connect
the variables at �nal con�guration to the ones at the
end of previous time step. The consistency condition is
enforced at midpoint con�guration and then the vari-
ables are pushed forward to �nal con�guration. Having
calculated the plastic variables, all other variables can
be computed by mere function evaluation. Based on
the methodology just described, a return mapping
algorithm is proposed in which trial variables are
obtained by pushing forward the variables at the end of
previous time step to midpoint con�guration. If they
satisfy the consistency condition, they are assumed
to be the correct ones otherwise a plastic correction
should be applied. The algorithmic setup as well as
the detailed derivation of tangent operator consistent
with integration scheme is discussed in detail. From
the developments, it will be evident that the number
of oating point operations required to accomplish a

typical time step is high but the capability of using
large time steps without deteriorating the numerical
stability leads to a lower computation time. Using
benchmark examples, it is shown that the performance
of algorithm is remarkable and it has outstanding
convergence properties compared with the classical
backward Euler method.

The paper is organised as follows. In Section 2,
we present the time continuous model based on which
the development of algorithm proceeds. In Section 3,
the algorithmic setup including the trial and plastic
correction steps is described in detail. The linearization
of integration algorithm and the derivation of tangent
operator is discussed in Section 4. The weak form of the
three-�eld Hu-Washizu functional leading to geometric
and material sti�ness matrices is presented in Section 5.
Benchmark examples are used in Section 6 to investi-
gate the performance and convergence properties of the
proposed algorithm. Finally, a few concluding remarks
are provided in Section 6.

2. Time continuous model

The time continuous model that is used here is based
on the work of Simo. In this section, we only present
a brief review of ideas and equations relevant to our
work. A detailed discussion of the model and corre-
sponding derivations can be found in [20]. The stress
in this model derives form a potential in which the
deviatoric and volumetric parts are decoupled. Among
all admissible stress states, the one that maximizes
the plastic dissipation is the correct stress state. The
relative stress should satisfy the yield condition. The
ow rule and hardening law govern the evolution of
plastic variables and back stress.

In large deformation plasticity, it is usually as-
sumed that at every point of a deformed body there
exists an intermediate con�guration which is free from
elastic deformations. This con�guration can be reached
from reference con�guration using the plastic part, Fp,
of the deformation gradient, F. The spatial con�gu-
ration is then obtained from the intermediate stress
free con�guration by applying the elastic part, Fe.
Based on this assumption, the deformation gradient
is expressible as the multiplicative decomposition, F =
FeFp. With the help of this decomposition, the hyper
elasticity law for the model can be de�ned as:

W = U(J) +
1
2
�
�
J� 2

3 be : g � 3
�
; (1)

� = 2
@W
@g

= Jpgg + �J� 2
3 dev.(be); (2)

� = dev.(� )� J� 2
3 dev.(q); (3)

where W is the free energy, U(J) and the second
term in Eq. (1) are, respectively, the volumetric and
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deviatoric parts of the free energy, be = FeFeT , g and
� are the elastic left Cauchy-Green tensor, the metric
tensor and the Kirchho� stress tensor, p = U 0(J) is
the pressure, and q and � are the back stress and the
relative stress tensors. It should, however, be noted
that if an orthogonal coordinate system with unit base
vectors is adopted, the metric tensor g reduces to the
identity tensor 1. Finally � and J are the rigidity
modulus and the determinant of deformation gradient.
The yield condition in terms of relative stress has the
form:

� = jj�jj �
r

2
3
K(�ep) � 0; (4)

where the function K 0(�ep) is called the isotropic hard-
ening modulus.

The hypothesis of maximum plastic dissipation
leads to the following ow rule governing the evolution
of be:

�J� 2
3 dev.(Lvbe) = �2��� _n: (5)

In this equation, _ � 0 is called the plastic consistency
parameter or the plastic multiplier, and the parameter
��� is de�ned as:

��� = ��� 1
3
J� 2

3 tr(q); (6)

where:

�� =
1
3
�J� 2

3 tr(be): (7)

The tensor n is the normal to the yield surface and is
obtained from:

n =
�
jj�jj : (8)

In metal plasticity, it is assumed that plastic deforma-
tions are isochoric. Therefore, it is required to impose
the condition that Lvbe be traceless, i.e.:

tr(Lvbe) = 0: (9)

A generalization of the approach that is employed
in small deformation theory leads to the following
kinematic hardening law:

J� 2
3 dev.(Lvq) =

2
3

���
�

_H 0(�ep)n: (10)

The term H 0 appearing in this equation is called the
kinematic hardening modulus. Similar to Lvbe, the
traceless condition should be imposed on Lvq leading
to:

tr(Lvq) = 0: (11)

The evolution of equivalent plastic strain, �ep, obeys the

simple equation:

_�ep =
r

2
3

_; (12)

which is consistent with the usual de�nition of plastic
strain in small deformation theory.

As a �nal note on previous equations, it is recalled
that Lvt is the Lie derivative of spatial tensor t and is
de�ned as:

Lvt = ��
@
@t
��t; (13)

where �� and �� are respectively the push forward
and pull back operators. Eqs. (1)-(12) collectively
comprise the time continuous model based on which
the developments in subsequent sections proceed.

3. Algorithmic setup

In this section, the algorithmic setup is discussed in
detail. At �rst, time discrete equations governing
the evolution of be and q are derived and then the
integration scheme comprising of trial, correction and
stress updating steps is presented.

3.1. Time discrete model
Starting from Eq. (5) and noting the de�nition of Lie
derivative in Eq. (13) we can write:

�J� 2
3 dev

�
F
@
@t

CP�1FT
�

= �J� 2
3 FDEV

�
@
@t

CP�1
�

FT = �2��� _n;
(14)

where CP = FPTFP is the plastic right Cauchy-Green
tensor and the deviator of a given tensor T in reference
con�guration is computed from the following equation:

DEV(T) = T� 1
3

(T : C)C�1: (15)

Pre- and post-multiplication of Eq. (14), respectively
by F�1 and F�T , leads to:

�J� 2
3 DEV

�
@
@t

CP�1
�

=�2��� _F�1nF�T =�2��� _N;
(16)

where N = ��(n) is the normal to yield surface in
reference con�guration.

If we consider a midpoint con�guration that can
be reached by adding the displacement un+� to the
body in reference con�guration with un+� de�ned as:

un+� = (1� �)un + �un+1; � 2 [0:5; 1] ; (17)
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then the deformation gradient from reference con�gu-
ration to midpoint con�guration can be calculated as
follows:

Fn+� = (1� �)Fn + �Fn+1: (18)

Since the consistency condition is enforced at midpoint
con�guration, in subsequent developments frequent
reference is made to this con�guration.

The application of midpoint rule to Eq. (16)
results in the following time discrete equation for the
evolution of CP�1:

�J�
2
3

n+�DEVn+�

 
CP�1
n+1 �CP�1

n

�tn+1

!
= �2���n+�

�n+1

�tn+1
Nn+�; (19)

or more conveniently:

�J�
2
3

n+�DEVn+�
�
CP�1
n+1

�
= �J�

2
3

n+�DEVn+�
�
CP�1
n

�
� 2���n+��n+1Nn+�: (20)

This equation is the point of departure of our work
and the work of Simo [20] in which the backward Euler
method is used instead of midpoint rule.

Pushing forward Eq. (20) to midpoint con�gura-
tion using Fn+� leads to:

�J�
2
3

n+�dev
�
Fn+�CP�1

n+1 FTn+�
�

= �J�
2
3

n+�dev
�
Fn+�CP�1

n FTn+�
�

� 2���n+��n+1nn+�: (21)

We use the convention in [11] for the de�nition of rela-
tive deformation gradients (see Figure 1). According to
this convention, fn+� = Fn+�F�1

n , ~fn+� = Fn+1F�1
n+�

and fn+1 = Fn+1F�1
n are, respectively, the relative

deformation gradients from con�gurations xn to xn+�,
xn+� to xn+1 and xn to xn+1. Observing that:

J�
2
3

n+�
�
Fn+�CP�1

n+1 FTn+�
�

=J�
2
3

n+�
�
Fn+�F�1

n+1Fn+1CP�1
n+1 FTn+1F

�T
n+1F

T
n+�

�
=

"�
Jn+�

Jn+1

�� 1
3

Fn+�F�1
n+1

#�
J�

2
3

n+1Fn+1CP�1
n+1 FTn+1

�
�
"�

Jn+�

Jn+1

�� 1
3

F�Tn+1F
T
n+�

#
=�~f
�1
n+�

�ben+1
�~f
�T
n+�; (22)

and:

Figure 1. Deformation gradients mapping reference and
spatial con�gurations.

J�
2
3

n+�
�
Fn+�CP�1

n FTn+�
�

= J�
2
3

n+�
�
Fn+�F�1

n FnCP�1
n FTnF�Tn FTn+�

�
=

"�
Jn+�

Jn

�� 1
3

Fn+�F�1
n

#�
J�

2
3

n FnCP�1
n FTn

�
�
"�

Jn+�

Jn

�� 1
3

F�Tn FTn+�

#
= �fn+��ben�f

T
n+�: (23)

Eq. (21) can be written in the form:

�dev
�
�~f
�1
n+�

�ben+1
�~f
�T
n+�

�
=�dev

��fn+��ben�f
T
n+�

�
� 2���n+��n+1nn+�: (24)

The tensors appearing in Eqs. (22)-(24) with bars over
them are volume preserving tensors. In other words, it
is easy to verify that det(�t) = 1 for a given tensor �t.

In the derivation that follows, it is shown that
Eq. (24) can be cast into a simpler form. Utilizing
Eq. (9) in previous section, we can write:

tr
�

F
@
@t

CP�1FT
�

= 0: (25)

Applying midpoint rule, we have:

tr

 
Fn+�

CP�1
n+1 �CP�1

n

�tn+1
FTn+�

!
=

1
�tn+1

�
tr
�
Fn+�CP�1

n+1 FTn+��Fn+�CP�1
n FTn+�

��
=

1
�tn+1

�
tr
�
f�1
n+�ben+1f

�T
n+�

�� tr
�
fn+�benfTn+�

��
= 0: (26)
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Implying that:

tr
�
f�1
n+�ben+1f

�T
n+�

�
= tr

�
fn+�benfTn+�

�
: (27)

Therefore, Eq. (24) transforms to:

�~f
�1
n+�

�ben+1
�~f
�T
n+� = �fn+��ben�f

T
n+� � 2

���n+�

�
�n+1nn+�:

(28)

Eq. (28) has an interesting geometrical interpreta-
tion. According to this equation, the tensor be at
�nal con�guration (time instant tn+1) pulled back to
midpoint con�guration is equal to push forward to
midpoint con�guration of be at the end of previous
time step (time instant tn) minus the plastic correction
at midpoint con�guration (second term on the right
hand side). Another useful equation that is needed in
our subsequent developments is obtained by pushing
forward Eq. (28) to �nal con�guration using�~fn+�. This
leads to:

�ben+1 = �fn+1�ben�f
T
n+1 � 2

���n+�

�
�n+1

�~fn+�nn+�
�~f
T
n+�:
(29)

Thus, at the end of each time step, the tensor be,
instead of its deviator, can be saved directly.

It is easy to show that similar computations using
Eqs. (10) and (11), as starting point, result in the
following set of equations governing the evolution of
q:

dev
�
�~f
�1
n+��qn+1

�~f
�T
n+�

�
= dev

��fn+��qn�fTn+�
�

+
r

2
3

���n+�

�
�Hn+1nn+�; (30)

�~f
�1
n+��qn+1

�~f
�T
n+� = �fn+��qn�fTn+�

+
r

2
3

���n+�

�
�Hn+1nn+�; (31)

�qn+1 = �fn+1�qn�fTn+1

+
r

2
3

���n+�

�
�Hn+1

�~fn+�nn+�
�~f
T
n+�; (32)

where:

�Hn+1 = H
�
�epn+1

��H (�epn) : (33)

The evolution of internal variable, �ep, follows from the
application of midpoint rule to Eq. (12) leading to:

�epn+1 = �epn +
r

2
3

�n+1: (34)

3.2. Trial step
The evolution of be and q in trial step is assumed to be
elastic. Based on this assumption, the equations that
identify the trial step at midpoint con�guration can be
obtained by setting the incremental plastic multiplier
�n+1 to zero in Eqs. (28), (31) and (34). Therefore,
we have:

�be;trial
n+� = �fn+��ben�f

T
n+�; (35)

� trial
n+� = Jn+�pn+�g + �dev(�be;trial

n+� ); (36)

�qtrial
n+� = �fn+��qn�fTn+�; (37)

�trial
n+� = dev(� trial

n+�)� dev(�qtrial
n+�)

= dev(��be;trial
n+� � �qtrial

n+�); (38)

�ep;trial
n+1 = �epn: (39)

If the trial relative stress satis�es the yield condition,
i.e. if:

k�trial
n+�k �

r
2
3
K(�ep;trial

n+� ) � 0; (40)

the elastic assumption is correct and the �nal stress
state can be computed by pushing forward �be;trial

n+� and
�qtrial
n+� to �nal con�guration (see Section 3.4).

3.3. Correction step
If the condition in Eq. (40) is not satis�ed, a plastic cor-
rection should be applied. In this case, the incremental
plastic multiplier �n+1 is not zero and speculation of
Eqs. (28), (31) and (34) with regard to Eqs. (35)-(39)
results in the following set of equations:

�ben+� = �be;trial
n+� � 2

���n+�

�
�n+1nn+�; (41)

�n+� = Jn+�pn+�g + �dev(�ben+�); (42)

�qn+� = �qtrial
n+� +

r
2
3

���n+�

�
�Hn+1nn+�; (43)

�n+� = dev(�n+�)� dev(�qn+�)

= �trial
n+� � 2���n+�

�
1 +

H 0n+�

3�

�
�n+1nn+�;

(44)

�epn+� = �ep;trial
n+� + �

r
2
3

�n+1: (45)

Eq. (44) together with Eq. (8) in Section 2 implies that
�n+� and �trial

n+� are coaxial and we have the following
relations:

nn+� =
�n+�

k�n+�k =
�trial
n+�

k�trial
n+�k ; (46)
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k�n+�k = k�trial
n+�k � 2���n+�

�
1 +

H 0n+�

3�

�
�n+1:

(47)

The term �n+1 appearing in previous equations can
be computed by enforcing the consistency condition at
midpoint con�guration. In other words, the following
condition should be satis�ed:

�(�epn+�) = k�n+�k �
r

2
3
K(�epn+�)

= k�trial
n+�k � 2���n+�

�
1 +

H 0n+�

3�

�
�n+1

�
r

2
3
K(�epn+�) = 0: (48)

This equation can be nonlinear depending on the
choice of K(�ep) and H(�ep), and thus should be solved
iteratively for �n+1. Substituting the result into
Eqs. (41)-(45) completely de�nes the stress state at
midpoint con�guration.

3.4. Stress updating step
Although the consistency condition is enforced at
midpoint con�guration, it is however desired to have
the stress state in �nal con�guration. For this purpose,
�ben+� and �qn+� from Section 3.2 or 3.3, whichever
applicable, are pushed forward to �nal con�guration
using �~fn+�. The Kirchho� stress tensor can then be
computed by direct function evaluation. The following
equations summarize the procedure needed to update
the stress state in �nal con�guration:

�ben+1 =�~fn+��ben+�
�~f
T
n+�; (49)

�n+1 = Jn+1pn+1g + �dev(�ben+1); (50)

�qn+1 =�~fn+��qn+�
�~f
T
n+�; (51)

�n+1 = dev(�n+1)� dev(�qn+1): (52)

Moreover, computing the internal variable, �epn+1, with
the help of Eq. (34) completes the updating procedure.

It is important to emphasize that be and q
are the driving parameters of the algorithm proposed
above and the hyperelastic nature of this algorithm is
preserved at all con�gurations. In other words, having
calculated be at a given con�guration, the Kirchho�
stress tensor can be computed from the associated
potential W at that con�guration (see Eqs. (1) and
(2)).

4. Consistent tangent operator

The tangent operator consistent with the algorithm
described in preceding sections is developed in this

section. The linearization of algorithm is discussed in
detail and some issues concerning the derivative of right
Cauchy-Green tensor is presented next.

4.1. Linearization
Eq. (50) combined with Eq. (29) can be written in the
following form:

�n+1 = � vol
n+1 + � dev,tr

n+1 � � dev,cr
n+1 ; (53)

where � vol
n+1 is the volumetric part of the stress and

� dev,tr
n+1 and � dev,cr

n+1 are, respectively, the trial and
corrected parts of the deviatoric stress. The de�nition
of individual terms is presented below:

� vol
n+1 = Jn+1pn+1g; (54)

� dev,tr
n+1 = �dev

��fn+1�ben�f
T
n+1
�
; (55)

� dev,cr
n+1 = 2���n+��n+1dev

�
�~fn+�nn+�

�~f
T
n+�

�
: (56)

The tangent operator at time instant, tn+1, is de�ned
as:

an+1 = 2
@�n+1

@g
= avol

n+1 + adev,tr
n+1 � adev,cr

n+1 : (57)

It is easy to show that [20,25]:

avol
n+1 =2

@� vol
n+1

@g
= J2

n+1U
00(Jn+1)g 
 g

+ Jn+1pn+1(g 
 g � 2I); (58)

and:

adev,tr
n+1 =2

@� dev, tr
n+1

@g
= 2��

�
I� 1

3
g 
 g

�
� 2

3

�
� dev,tr
n+1 
 g + g 
 � dev,tr

n+1

�
; (59)

where I is the fourth order identity tensor.
In order to facilitate the derivation of adev,cr

n+1 , we
de�ne the following auxiliary term:

n�n+1 = dev
�
�~fn+�nn+�

�~f
T
n+�

�
: (60)

Additionally we de�ne:

�n = ��(qn); (61)

En = �CP�1
n � �n; (62)

Tn+� = DEVn+�(En); (63)

�n+1 = J�
2
3

n+1DEVn+1(Tn+�): (64)
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With the help of the aforementioned terms, Eq. (56),
pulled back to reference con�guration, is expressed as:

Sdev,cr
n+1 = 2���n+��n+1N�n+1; (65)

where:

N�n+1 = ��(n�n+1) =
1

k�trial
n+�k�n+1: (66)

For the tangent operator in reference con�guration we
can write:

Cdev,cr
n+1 =2

@Sdev,cr
n+1

@Cn+1
= 4�n+1N�n+1 
 @���n+�

@Cn+1

+ 4���n+�N�n+1 
 @�n+1

@Cn+1

+ 4���n+��n+1
@N�n+1

@Cn+1
: (67)

The derivative of ���n+� with respect to Cn+1 is calcu-
lated using its de�nition in Eq. (6). The result of this
calculation can be cast into the following form:

@���n+�

@Cn+1
=

1
3
k�trial
n+�kNn+� : An+1; (68)

where:

Nn+� = ��(nn+�) =
J�

2
3

n+�

k�trial
n+�kTn+�; (69)

and:

An+1 =
@Cn+�

@Cn+1
; (70)

is the change in Cn+� relative to Cn+1 (see Section
4.2). The derivative of �n+1 with respect to Cn+1 is
computed using Eq. (48). We have:

@�n+1

@Cn+1
=

1
�0"

@k�trial
n+�k

@Cn+�
� 2�n+1

�
1 +

H 0n+�

3�

�
@���n+�

@Cn+�

#
: An+1; (71)

where:

�0 = 2���n+�

�
1 +

H 0n+�

3�
+ �

K 0n+�

3���n+�

�
: (72)

With the help of Eq. (38):

@k�trial
n+�k

@Cn+1
=
�

���n+�Nn+� + k�trial
n+�kDEVn+�

�
Nn+�Cn+�NT

n+�
��

: An+1: (73)

Eq. (66) can be used to compute the derivative of N�n+1
with respect to Cn+1. This computation leads to:

@N�n+1

@Cn+1
=

1
k�trial
n+�k

 
@�n+1

@Cn+1
�N�n+1
 @k�

trial
n+�k

@Cn+1

!
:
(74)

Observing Eq. (64), the following expression is ob-
tained for the derivative of �n+1 with respect to Cn+1:

@�n+1

@Cn+1
=

1
3
J�

2
3

n+1(Tn+� : Cn+1)�
ICn+1 � 1

3
C�1
n+1 
C�1

n+1

�
� 1

3
�
�n+1 
C�1

n+1 + C�1
n+1 
�n+1

�
+ J�

2
3

n+1DEVn+1

�
@Tn+�

@Cn+�

�
: An+1: (75)

In this equation, IC is a fourth order tensor in reference
con�guration with the following components:

ICIJKL =
1
2

(C�1
IKC

�1
JL + C�1

ILC
�1
JK): (76)

The derivative of Tn+� with respect to Cn+1 can be
computed using Eq. (63) together with Eq. (62). The
�nal expression has the form:

@Tn+�

@Cn+�
=

1
3

�
(En : Cn+�)

�
ICn+� � 1

3
C�1
n+� 
C�1

n+�

�
�C�1

n+� 
Tn+�

�
;

(77)

and its deviator with respect to the metric Cn+1 in
reference con�guration is:

DEVn+1

�
@Tn+�

@Cn+�

�
=
@Tn+�

@Cn+�
� 1

3
C�1
n+1



�

Cn+1 :
@Tn+�

@Cn+�

�
: (78)

Substituting Eqs. (68), (71) and (74) into Eq. (67) and
pushing forward to spatial con�guration leads to:

adev,cr
n+1 =

4
3

���n+��n+1

�
tr(nn+1)(I� 1

3
g 
 g)

� �n�n+1 
 g + g 
 n�n+1
��

+ ��
(�

2J�
2
3

n+1f0DEVn+1

�
@Tn+�

@Cn+�

�
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+ �1N�n+1 
Nn+� + �2N�n+1


DEVn+�
�
Nn+�Cn+�NT

n+�
� �

: An+1

)sym

; (79)

where:

nn+1 =�~fn+�nn+�
�~f
T
n+�; (80)

f0 =
2���n+��n+1

k�trial
n+�k ; (81)

�1 = 2���n+�f1 � 4
3

�n+1k�trial
n+�k�

1
�0

�
1 +

H 0n+�

3�

�
� 1
�
; (82)

�2 = 2k�trial
n+�kf1; (83)

with:

f1 =
1
�0
� f0: (84)

4.2. Relative metric derivative
In order to �nalize the derivation of consistent tangent
operator, it is required to compute the change in
Cn+� relative to Cn+1. The deformation gradient
from reference con�guration to midpoint con�guration,
Fn+�, is expressed in terms of Fn and Fn+1 according
to Eq. (18). With the help of this equation, the
following expression is obtained for Cn+�:

Cn+� =(1� �)2Cn + �(1� �)FTnFn+1

+ �(1� �)FTn+1Fn + �2Cn+1: (85)

Using the polar decomposition, Fn+1 = Rn+1Un+1,
the previous equation transforms to:

Cn+� =(1��)2Cn+�2Cn+1+�(1� �) [Qn+1Un+1

+Un+1QT
n+1
�
; (86)

where:

Qn+1 = FTnRn+1: (87)

The derivative of Cn+� with respect to Cn+1 can be
expressed in component form as:

(An+1)IJKL =
@(Cn+�)IJ
@(Cn+1)KL

= �2IIJKL

+ �(1� �)
�
(Qn+1)IM

@(Un+1)MJ

@(Cn+1)KL

+
@(Un+1)IM
@(Cn+1)KL

(Qn+1)JM
�
: (88)

It should be noted that in this formulation an equation
was provided for the evolution of be = FeFeT , which
is a symmetric tensor, and not for Fe itself. Therefore,
the intermediate con�guration is determined up to
an arbitrary rigid body rotation. In other words,
considering another intermediate con�guration with
Fe� = FeQ�T and Fp� = Q�Fp that is obtained
from the �rst by applying the rigid body rotation Q�
such that Fe�Fp� = FeFp = F leads to the same
results [11,20,29-31]. Moreover, no rate equation was
provided for the evolution of rotation, since it was
assumed that the response of material is isotropic in
plastic limit (see [32,29] for more information). There-
fore, the derivative of Rn+1 cannot be determined with
respect to Cn+1.

The derivative of Un+1 with respect to Cn+1 is
computed by noting that U =

p
C. Thus we can write:

U =
p
�1E1 +

p
�2E2 +

p
�3E3; (89)

where �1, �2 and �3 are distinct eigenvalues of C, and
E1, E2 and E3 are the corresponding eigenprojections.
For an axisymmetric problem, E3 = e3 
 e3 and
therefore we have [33]:

@Ei

@C
=

1
�i � �j (I�Ei 
Ei �Ej 
Ej);

for i 6= j and i; j 2 f1; 2g; (90)

@E3

@C
= 0; (91)

and:

@
p
�i

@C
=

1
2
p
�i

Ei; i; j 2 f1; 2; 3g: (92)

If �1 = �2 = �, Eqs. (89), (90) and (92) reduce to the
followings:

U =
p
�E +

p
�3E3; (93)

@E
@C

=
1
�

(I� 1
2
E
E); (94)

and:

@
p
�

@C
=

1
4
p
�

E: (95)
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Observing Eqs. (89)-(95), we can write:

@U
@C

=
1p

�1 +
p
�2

�
I +

1
2

 r
�2

�1
� 1

!
E1 
E1

+
1
2

 r
�1

�2
� 1

!
E2 
E2

�
+

1
2
p
�3

E3 
E3; (96)

for distinct eigenvalues and:

@U
@C

=
1p
�

�
I� 1

4
E
E

�
+

1
2
p
�3

E3 
E3 (97)

for �1 = �2 = �.

5. Variational formulation

In this section, the variational formulation of the
elastoplastic boundary value problem using the �nite
element method is presented. Considering that the
formulation is discussed with great details in [20,34],
we only present the �nal results relevant to our work.

5.1. Hu-Washizu variational principle
In Section 2, it was stated that the potential in the time
continuous model described in that section is decoupled
into volumetric and deviator parts. Hence, de�ning
�F = J� 1

3 F and �C = �FT �F, the functional, considered
in this work, is as follows:

�('; �; p) =
Z




�
U(�) + �W (�C;CP ) + p(J � �)�

d
��ext('); (98)

with:

�ext(') =
Z



B �'d
 +

Z
@�


�t �'d�; (99)

where 'maps every point in reference con�guration, 
,
to corresponding point in spatial con�guration, '(
),
� is the dilatation, p is the pressure, B is the body
force and �t is the prescribed traction on the boundary
@�
. In Eq. (98), the purpose of the last term under
the integral sign is to enforce the constraint J = � and,
therefore, the pressure p is the Lagrange multiplier.

Considering an admissible variation � in ', the
derivative of � in the direction � leads to the following
equation:

G = D� � � =
Z



� : (r�)d
�Gext = 0; (100)

where:

� = pJ1 + 2dev
�

�F
@ �W
@ �C

�FT
�
; (101)

and:

Gext =D�ext � � =
Z



B � �d


+
Z
@�


�t � �d�: (102)

In the same manner, considering the variations  and
q, respectively, in � and p results in the following
equations:

H = D� �  =
Z



 [U 0(�)� p] d
 = 0; (103)

� = D� � q =
Z



q(J � �)d
 = 0: (104)

The response of the system is obtained by requiring
that Eqs. (100), (103) and (104) be satis�ed in each
time step. Eq. (100) is nonlinear and should be solved
iteratively. For the ith iteration of a given time step,
we can write

Gi + �Gi+1 = 0; (105)

where, considering another admissible variation such as
�u in ' and dropping the superindices for convenience,
�G has the following form:

�G =DG ��u =
Z



[r (�u) � ] : (r�) d


+
Z



(r�) :

�
pJ (1
 1� 2I) + adev

�
: r (�u) d
 +

Z


Dp ��uJ (div�) d
; (106)

with:

adev = adev,tr + adev,cr; (107)

which is the elastoplastic tangent moduli derived in
previous section.

In Eq. (106), the �rst integral emerges as a result
of geometric change in the body and leads to geometric
sti�ness matrix. The term containing adev corresponds
to material nonlinearity, and the material sti�ness
matrix derives from this term. The last integral
represents the contribution due to change in pressure
and is specially treated in the following section to avoid
shear locking.



1382 M. Jahanshahi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 1373{1389

5.2. Mixed �nite element formulation
We follow the methodology in [35,20,34] to construct
�nite element approximations for pressure p and di-
latation �. The resulting �elds are discontinuous over
elements, and can be e�ectively eliminated at element,
level to yield a generalized displacement model.

The following interpolations are considered for p
and � and their variations q and  within a typical
�nite element e.

phe = �T �p and qhe = �T �q; (108)

�he = �T �� and  he = �T � ; (109)

where � is the vector of interpolation functions, and �p,
�q, �� and � are the vectors of nodal values, respectively,
for p, q, � and  .

Substituting Eqs. (108) and (109) into Eqs. (103)
and (104), and performing straightforward manipula-
tions, we get:

phe = �TH�1
�Z


e
�U 0

�
�he
�
d
e

�
; (110)

�he = �TH�1
�Z


e
�Jhe d
e

�
; (111)

with:

H =
Z


e
��T d
e: (112)

Eq. (110) along with Eq. (111) results in the following
equation for the derivative of phe in the direction �u:

Dphe ��u =�TH�1�Z

e

�U 00
�
�he
�
�he div (�u) d
e

�
; (113)

where:

div (�u) =
1
�he

�TH�1
�Z


e
�Jhe div (�u) d
e

�
:
(114)

Substitution of Eq. (113) into the last integral of
Eq. (106) leads to:Z


e
Dp:�uJ (div�) d
e =

Z

e
U 00
�
�he
�
�he div (�) �he div (�u) d
e: (115)

6. Numerical examples

In this section, numerical examples are presented to
assess the performance of proposed algorithm. Error
graphs are used to provide a measure for the accuracy
of algorithm compared with backward Euler method.
The employed solution procedure is the full Newton-
Raphson scheme. In order to preserve the quadratic
rate of convergence, it is essential to use consistent
tangent moduli.

The form chosen for the volumetric part of the
free energy, i.e. for the function U(J) in Eq. (1), is:

U(J) =
1
2
�
�

1
2
�
J2 � 1

�� ln J
�
; (116)

where � is the bulk modulus. As it is evident from the
following expressions, a more general form is considered
for nonlinear hardening in which a saturation term of
exponential type is added to linear terms as well [11]:

K (�ep) = �h (�ep) ; � 2 [0; 1]; (117)

H (�ep) = (1� �)h (�ep) ; (118)

with:

h (�ep) = �K1 � � �K1 � �K0
�

exp (���ep) + �H 0�ep;

� > 0; (119)

where �K1, �K0, � and �H 0 are material constants
and � provides a modulation between pure kinematic
hardening (� = 0) and pure isotropic hardening (� =
1). The value of � that is used to accomplish the
numerical simulations is set to 0.50.

Four node quadrilateral elements with bilinear
displacement interpolation along principal directions
are employed in all numerical examples. Based on stan-
dard concepts in �nite element analysis [36,37], the al-
gorithm described in preceding sections is implemented
into the ANIA (Automatic Nonlinear Incremental
Analysis) program specially developed by the author
for the solution of nonlinear problems.

Given a speci�ed number of load steps, the error
graphs are generated by comparing the output of al-
gorithm with exact solution. Anticipating a prescribed
tolerance, the exact solution can be obtained by solving
the problem using a very �ne time step such that
a smaller time step does not change the solution.
The following equation is used to compute the error
percentage compared with exact solution:

E =
jQ�Qexj
Qex

� 100; (120)

where E is the error in percent, Q is the desired
quantity in which the error is to be computed and Qex
is the corresponding quantity from the exact solution.
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6.1. Necking of a circular bar
This example is experimentally well documented in the
literature and concerns the necking of a circular bar
with a radius of 6.413 mm and length of 53.334 mm
subject to uniaxial tension. The example is solved
by many authors [38,25,39] and is used as benchmark
to compare the results with the proposed algorithm.
Material properties of the bar are shown in Table 1.

Due to the symmetry of problem, only one quarter
of the bar is modeled using 200 axisymmetric elements.
The �nite element model, and the deformation of bar
after 14 mm elongation are shown in Figure 2. The
contours for Cauchy stress components, �11 and �22,
are shown in Figure 3. They are in good agreement
with those reported by Simo [25]. The graphs of total
load being applied to the bar versus the displacement
are provided in Figures 4 and 5, respectively, for
backward Euler method and the proposed algorithm.

Table 1. Material properties for circular bar.

Elastic modulus E 206.9 GPa
Poisson ratio � 0.29
Residual ow stress �K1 0.715 GPa
Initial ow stress �K0 0.45 GPa
Saturation exponent � 16.93
Linear hardening coe�cient �H 0 0.12924 GPa
Isotropic hardening � 1.0

Figure 2. Necking of a circular bar: (a) Finite element
model; and (b) deformation after 14 mm elongation.

Using the minimum number of load steps for backward
Euler method, the graph in Figure 6 presents the error
in computed total load for both algorithms.

To have an idea of computational e�ort, it should
be mentioned that the number of load steps used to

Figure 3. Necking of a circular bar. Contours of Cauchy
stress components: (a) �11; and (b) �22.

Figure 4. Necking of a circular bar. Load-displacement
curve for backward Euler method.

Figure 5. Necking of a circular bar. Load-displacement
curve for the proposed algorithm.



1384 M. Jahanshahi/Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 1373{1389

Figure 6. Necking of a circular bar. Error in total load
for backward Euler method and the proposed algorithm.

solve the problem using the proposed algorithm is
one sixth of the minimum number of load steps that
is required for backward Euler method to converge.
Moreover, a comparison between Figures 4 and 5 shows
that about elongation 3 mm, where the necking is
beginning to form, we have numerical problems for
backward Euler method (oscillations about the peak of
the curve) while the curve for the proposed algorithm is
smooth showing that the algorithm is very stable from
numerical point of view.

The exact solution used to generate the error
graphs in Figure 6 is obtained from the application
of the proposed algorithm employing very �ne time
steps. The backward Euler method could not be used
because the oscillations about the peak of the load-
displacement curve (see Figure 4) are not eliminated
even with very small time steps. With larger time
steps the aforementioned oscillations become so severe
that the overall Newton-Raphson iterations cease to
converge. The error graph for backward Euler method
clearly shows that the sti�ness matrix is ill-conditioned
at the point where the necking is being formed. In
contrast to backward Euler method, the error graph for
the proposed algorithm is very smooth showing that the
error increases uniformly (without oscillations) from
the point where the necking begins to form toward
the end of the loading program. In fact, there is no
ill-conditioning problem with the sti�ness matrix, and
as the number of load steps is increased, the accuracy
of the solution is improved. Moreover, the maximum
error is 3.6% (versus 3.0% for backward Euler method)
which is quite acceptable.

6.2. Expansion of a thick-walled cylinder
This example has been solved numerically in [25,40]. A
thick-walled cylinder with an inner and outer radii of 10
and 20 units is under the action of an internal pressure.
The inner radius is driven to a value of 85 units.
Material properties chosen to replicate a rigid-plastic
behavior are shown in Table 2. The axisymmetric

Table 2. Material properties for thick-walled cylinder.

Elastic modulus E 11050.0 MPa
Poisson ratio � 0.454
Residual ow stress �K1 0.5 MPa
Initial ow stress �K0 0.5 MPa
Saturation exponent � 0.0
Linear hardening coe�cient �H 0 0.0
Isotropic hardening � 1.0

Figure 7. Expansion of a thick-walled cylinder. Finite
element mesh and radial stress component, �rr, at inner
radius for backward Euler method and the proposed
algorithm.

mesh that is used to model the cylinder is shown
in Figure 7 and consists of 20 4-node quadrilateral
elements.

A graph of the radial Cauchy stress, �rr, at inner
boundary versus the inner radius is provided in Figure 7
both for backward Euler method and the proposed al-
gorithm. It is observed that the results of the proposed
algorithm are in good agreement with backward Euler
method. To give an idea of computational e�ort, it
should be noted that the solution using the proposed
algorithm is accomplished in one �fth the minimum
number of load steps required for backward Euler
method.

The graphs in Figure 8 present the error in
computed radial stress component, �rr, at inner radius
for both algorithms. The minimum number of load
steps required for the convergence of backward Euler
method is used to generate the graphs. The exact
solution is obtained from the application of backward
Euler method with very �ne time steps. The maximum
error in the solution from the proposed algorithm is
2.2% while the one from backward Euler method is
5.5%. The relatively higher error in backward Euler
method in the initial stages of loading is due to the
fact that it misses the point where the material begins
to plasticize while this is not the case for the proposed
algorithm.
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Figure 8. Expansion of a thick-walled cylinder. Error in
radial stress component, �rr, at inner radius for backward
Euler method and the proposed algorithm.

Table 3. Material properties for thick-wall sphere.

Elastic modulus E 800.0 MPa
Poisson ratio � 0.3333
Residual ow stress �K1 0.486 MPa
Initial ow stress �K0 0.083 MPa
Saturation exponent � 0.75
Linear hardening coe�cient �H 0 0.0
Isotropic hardening � 1.0

6.3. Finite expansion of a thick-wall sphere
This example has been considered in [25,41]. Material
properties are shown in Table 3. The sphere is modeled
using 72 4-node quadrilateral elements. The initial and
deformed meshes are shown in Figure 9. The graph
in Figure 10 shows the variation of internal pressure
versus internal radius both for backward Euler method
and the proposed algorithm. Using the minimum
number of load steps required for the convergence
of backward Euler method, the graphs in Figure 11
present the error in computed internal pressure for both
algorithms.

The same number of load steps is used to generate
the curves in Figure 10. However, the backward Euler

Figure 9. Finite expansion of a thick-walled sphere: (a)
Initial �nite element mesh; and (b) deformed mesh
corresponding to �nal con�guration.

Figure 10. Finite expansion of a thick-walled sphere.
Radial stress component, �rr, at inner radius for backward
Euler method and the proposed algorithm.

Figure 11. Finite expansion of a thick-walled sphere.
Error in radial stress component, �rr, at inner radius for
backward Euler method and the proposed algorithm.

method does not converge due to excessive element
distortions when the number of load steps is lower than
a certain limit while this limit is much smaller for the
proposed algorithm and as the number of load steps
is increased the results are monotonically improved.
Regarding the error graphs in Figure 11, it is observed
that the maximum error for the proposed algorithm is
only 1.5%, although that of the backward Euler method
is much smaller (about 0.03%). It seems that this is an
easy problem for both algorithms.

6.4. Upsetting of an axisymmetric disk
This problem has been considered as a benchmark
example by many authors [42,25,43]. An axisymmetric
disk is upset to 26.67%. Material properties are
given in Table 4. The disk is modeled using 100 4-
node quadrilateral elements. A node-to-node Hertzian
contact element is employed to simulate the subsequent
contact between the machine piece and the disk.

The initial �nite element mesh and the deformed
mesh corresponding to �nal con�guration are shown
in Figure 12. The graph of total load being applied
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Table 4. Material properties for axisymmetric disk.

Elastic modulus E 1000.0 MPa
Poisson ratio � 0.3
Residual ow stress �K1 1.0 MPa
Initial ow stress �K0 1.0 MPa
Saturation exponent � 0.0
Linear hardening coe�cient �H 0 3.0 MPa
Isotropic hardening � 1.0

Figure 12. Upsetting of an axisymmetric disk. Initial
mesh and deformed mesh corresponding to 26.67%
deformation.

Figure 13. Upsetting of an axisymmetric disk.
Load-displacement curve for backward Euler method and
the proposed algorithm.

to the disk versus vertical displacement is shown in
Figure 13 for backward Euler method and the proposed
algorithm. Practically identical curves are obtained for
both methods, however the number of load steps to
accomplish the solution using the proposed algorithm
is half of the minimum load steps required for backward
Euler method to converge.

The graphs in Figure 14 present the error in com-
puted total load for both algorithms. The minimum
number of load steps for backward Euler method is
used to generate the graphs. The exact solution is
obtained by the application of backward Euler method
with very �ne time steps. Regarding this �gure, it is
observed that at all points, except the one at which the
subsequent contact occurs between the machine piece
and disk (approximately at displacement 0.298), the
error for the proposed algorithm is less than 0.5%. Only
at this point the error is higher than the maximum error
for backward Euler method (2.6% versus 1.2%). From

Figure 14. Upsetting of an axisymmetric disk. Error in
total load for backward Euler method and the proposed
algorithm.

Table 5. Material properties for axisymmetric billet.

Elastic modulus E 200.0 MPa
Poisson ratio � 0.3
Residual ow stress �K1 0.3 MPa
Initial ow stress �K0 0.3 MPa
Saturation exponent � 0.0
Linear hardening coe�cient �H 0 0.7 MPa
Isotropic hardening � 1.0

the �gure, it can also be inferred that the maximum
error for backward Euler method at initial stages of
loading is attributable to the fact that it misses the
actual point where the material begins to plasticize.
However, the proposed algorithm is capable to capture
the onset of plasticizing.

6.5. Elastic-plastic upsetting of an
axisymmetric billet

This example is considered as a severe test problem and
is solved by many authors [25,41,43]. The initial radius
and height of billet are 10 and 30 mm, respectively,
and it is upset to 70% (versus 64% in previous works).
Material properties are given in Table 5. Due to the
obvious symmetry, only one quarter of specimen is
modeled using 56 4-node quadrilateral elements. Node-
to-node Hertzian contact elements are used to simulate
the subsequent contacts between the machine piece and
the billet.

The initial �nite element mesh and the deformed
mesh corresponding to �nal con�guration are shown
in Figure 15. The graph of total load being applied
to billet versus vertical displacement is shown in Fig-
ure 16 for backward Euler method and the proposed
algorithm. Similar to the previous example, identical
curves are obtained for both methods. However, the
number of load steps using the proposed algorithm is
half of the minimum load steps required for backward
Euler method.
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Figure 15. Elastic-plastic upsetting of an axisymmetric
billet: (a) Initial mesh; and (b) deformed mesh
corresponding to 70% upsetting.

Figure 16. Elastic-plastic upsetting of an axisymmetric
billet. Load-displacement curve for backward Euler
method and the proposed algorithm.

The graphs in Figure 17 present the error in
computed total load for both algorithms and are gen-
erated using the minimum number of load steps that
is required for backward Euler method to converge.
The exact solution is obtained by the application of
backward Euler method with very �ne time steps.
Regarding the �gure, it is observed that the maximum
error for the proposed algorithm is 4.9% while for
backward Euler method it is 19.5%. Moreover, the
error for the proposed algorithm is less than back-
ward Euler method at all points. For example, at
points where subsequent contacts occur between the
machine piece and billet (respectively at displacements
14.67 mm and 19.87 mm), the error for the proposed
algorithm is 1.6% and 1.1%. The corresponding
values for backward Euler method are 6.7% and 2.9%.
The maximum error for backward Euler method is

Figure 17. Elastic-plastic upsetting of an axisymmetric
billet. Error in total load for backward Euler method and
the proposed algorithm.

attributed to the point where the material begins to
plasticize.

7. Conclusions

Inspired by midpoint rule algorithms in small defor-
mation plasticity, a novel integration algorithm was
developed in this work for �nite strain J2 plasticity.
The formulation of algorithmic setup as well as the
trial and stress correction steps were discussed in
detail. Having computed the key parameters, the stress
tensor is derived from the corresponding potential
and therefore the hyperelastic nature of algorithm is
preserved at all con�gurations. This property can be
enumerated as one of the main features of algorithm.
The proposed integration scheme is amenable to closed-
form linearization and the formulation of consistent
tangent operator was provided as well.

Through the solution of benchmark examples,
it was shown that the algorithm is very stable from
the numerical point of view. In other words, the
backward Euler algorithm is very sensitive to the size
of time step and if it is larger than a certain limit
the algorithm ceases to converge due to excessive
element distortions. This is in contrast to the observed
behavior of the proposed algorithm which provides the
capability of using large time steps. If the size of time
step is too large, merely an approximate solution is
obtained which is improved with smaller time steps
but the algorithm does not diverge or stop due to
element distortions. In all numerical simulations, it
was observed that using the same number of load steps,
as for backward Euler method, the maximum error in
the solution obtained by the proposed algorithm is less
than 5% which is quite satisfactory.
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