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Abstract. This paper proposes a storage-independent model for SPARQL-to-SQL
translation algorithms based on a relational view. In the development of Web ontology
research, the translation from SPARQL to SQL continues to be an issue. Previous research
has focused on an e�cient and complete translation from SPARQL queries to equivalent
SQL queries. However, these translation algorithms depend on speci�c storage structures.
When we modify the storage structure, the translation algorithm should also be modi�ed
to suit the changed storage structure. This has motivated study of the issue of a model
for the independent use of storage structures by algorithms. These can then guarantee
independence between translation algorithms and storages by generating relational views,
and improve the application and usability of the translation algorithm. In addition, this
paper presents experiment results showing the accuracy and no data loss rate of query
results for di�erent storages.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Continuous and rapid increase in the amount of current
Web information has made it di�cult for users to
extract desired information. The Semantic Web has
been proposed as a solution to this problem [1,2]. In
the Semantic Web environment, query languages for in-
formation retrieval of ontologies have been proposed [3-
5]. Among these, SPARQL, recommended by W3C,
is the most representative description language [5].
Further, many Web ontology storage systems have
been developed on the basis of a relational database
(RDB) for e�cient data management [6-15]. However,
there are several issues related to the use of RDB
and SPARQL. The appropriate query language for an

*. Corresponding author. Tel.: +822 925 3706;
Fax: +82 2 921 9137
E-mail addresses: redfunky07@korea.ac.kr (J. Son);
kjd4u@korea.ac.k (J.-D. Kim); baikdk@korea.ac.kr (D.-K.
Baik)

RDB is SQL, and, hence, it is necessary to develop
a SPARQL-to-SQL translation algorithm for e�cient
data retrieval from an RDB using SPARQL. Common
representative SPARQL-to-SQL translation algorithms
include the Chebotko algorithm [16], sparql2sql over
Jena [17], the Harris algorithm [18], and so on [19-24].

However, the algorithms proposed are dependent
on speci�c storage models. If the storage structure
is changed, the corresponding translation algorithm
should be modi�ed accordingly. This approach also
causes some problems:

1. Making the original characteristics (advantages) of
the storage weak or lost;

2. Interoperability di�culty with various relevant
modules (e.g., inference engine, parser, etc.).

As a result, the cost associated with the modi�cation
and veri�cation of the translation algorithm can be
extremely high.

To resolve this issue, we have proposed a model
for the independent use of storage structures of a
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SPARQL-to-SQL translation algorithm [25]. How-
ever, the model only supports triple structure storage.
Therefore, in this paper, we extend the previous model
used for various structure storages for Web ontology.
Likewise, the proposed model uses a relational view
on RDB. To evaluate the proposed model, this paper
implements a prototype and describes the experiment.
We describe the experimental results that clearly show
the predominance of the proposed model.

The paper is organized as follows. Section 2
describes previous SPARQL-to-SQL translation algo-
rithms and Web ontology storage based on RDB.
Section 3 provides a comparison between the previous
approach and our approach, including the proposed
model. Section 4 describes our experiments to verify
the proposed model, for which we measure accuracy
and data loss rates by query results as evaluation items.
We describe the comparison performance evaluation
conducted between a dependent model and the pro-
posed model in Section 5, and, �nally, conclusions and
future study plans are summarized in Section 6.

2. Related works

2.1. Previous SPARQL-to-SQL translation
algorithms

Several SPARQL-to-SQL translation algorithms have
been published [16-24], and the Chebotko algo-
rithm [16], sparql2sql over Jena [17], and the Harris
algorithm [18], which are the most representative, are
described as follows.

To the best of our knowledge, the facts described
below regarding the algorithms are correct at present.
the Chebotko algorithm o�ers the maximum number of
functions for translation of the OPTIONAL clause of
a SPARQL query and uses the simplest triple storage
structure compared to all others available [14]. In
addition, this algorithm proposed a novel relational
operator. It shows better performance than a general
left outer join operator. Therefore, the Chebotko
algorithm [16] supports a translation of semantic pre-
serving, and provides a more e�cient translation of
SQL queries.

sparql2sql [17] is an algorithm in a query engine
for SPARQL over Jena triple stores. It rewrites a
SPARQL query into an SQL query. This approach
o�oads most of the query execution work on the
database. The Harris algorithm [18] supports trans-
lation using a simple optional graph pattern using
relational algebra. However, both sparql2sql and the
Harris algorithm still have problems. Both algorithms
are limited to translating a nested OPTIONAL clause
to its corresponding SQL query. The translated SQL
query su�ers from ine�ciency.

Most of all, all three algorithms depend on speci�c
storage models. sparql2sql, the Harris algorithm, and

the Chebotko algorithm are based on Jena storage,
3store, and TRIPLES, respectively. Therefore, we
must modify either the translation algorithm or the
given storage structure, which causes the low usability
and applicability of the algorithm.

2.2. Web ontology storage based on RDB
Currently, Web ontology storages based on RDB are
being developed for the e�cient storage and manage-
ment of enormous amounts of Web ontology data.
Several Web ontology storages based on RDB have
been proposed, such as Jena [6], Sesame [7], OWL-
JessKB [8], DLDB [9], and so on [10-15]. Jena is
a Java framework for building Semantic Web appli-
cations [5]. In essence, Jena stores data in a triple
structure. The jena gntn stmt table stores all data less
than 256 bytes. However, in cases when that data
length is more than 256 bytes, the data is managed in
separate tables: Literal, URI and Pre�x are stored in
jena long lit, jena long uri and jena long pre�x, respec-
tively. Sesame provides a storage model based on RDB
for the Resource Description Framework (RDF) [26]
and Resource Description Framework Schema (RDF-
S) [27]. The class and property tables in Sesame store
the respective information of class and property in an
ontology document. Sesame generates the subClassOf
table to represents hierarchy among classes. The sub-
PropertyOf table contains hierarchy information among
properties. The relationship information on class, class
instance, and property is stored in the table, TRIPLES.
OWLJessKB is a memory-based reasoning tool that
can be used with ontology speci�ed in OWL. OWL-
JessKB uses an RDB to store service descriptions, with
JESS as the inference engine. DLDB is a knowledge
base system that extends an RDB management system
with additional capabilities for DAML+OIL inference.

3. Proposed model

In this section, we describe a comparison made be-
tween the previous approach and our approach, which
includes the proposed model. The overall process of
the two approaches is as follows. First, a user inputs
a SPARQL query. The input SPARQL query is trans-
lated by a SPARQL-to-SQL translation algorithm. The
translated SQL is transmitted on RDB, and the query
result is transmitted to the user. When SPARQL is
translated to SQL; the SQL query essentially requires
a table name for information retrieval. This table name
is represented in a FROM clause by the SQL syntax.
To do this, an algorithm developer should recognize
a storage schema structure. Therefore, previous pro-
posed translation algorithms depend upon a storage
schema structure.

Previous approaches require the same number
of translation algorithms as the number of storage,
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Figure 1. Proposed storage-independent model based on relational view table.

because the translation algorithm depends on the
storage structure. For example, if each of ten storages
has a di�erent schema structure, the SPARQL-to-SQL
translation algorithm should develop ten algorithms.
In addition, if the storage structure is changed, the
translation algorithm should be modi�ed to be suitable
for a new storage structure. Therefore, the devel-
opment, modi�cation, and veri�cation of additional
translation algorithms require much time and cost.

To solve the aforementioned issue, we propose
a storage-independent model for the translation al-
gorithm based on a relational view table. Figure 1
shows the proposed model for our approach. We use
a simple SPARQL query example, using a LUBM
query, which is provided by Lehigh University [28].
This SPARQL query is transmitted to the translation
algorithm. The proposed model requires only one
translation algorithm, regardless of storage number and
structure. However, let us assume that the translation
algorithm will target any speci�c RDB structure (e.g.,
RDB storage-2). This algorithm analyzes SPARQL
algebra, and then each SPARQL property is mapped
with its equivalent SQL property by a mapping rule.
The query translates the SQL query to the suitable
target, RDB storage-2. SQL The query retrieves the
query results directly, subsequent to transmission to
the target RDB storage-2. In Figure 1, if we have
several N-storages, the other storages with di�erent
structures (e.g., RDB storage-1, RDB storage-3, RDB
storage-n), with the exception of the target RDB,
retrieve the query results through view tables. To
create the view table, �rst, the proposed model ana-
lyzes each storage schema structure. The next step
selects the tables and columns that correspond to the
target RDB storage-2. The selected tables maintain the
relationship between the other tables. Finally, the view
table is generated with the same structure as the target

RDB storage-2. Using the view table, the proposed
model can use storage independently. In addition,
creation of the view table is simpler than developing
the algorithm. The view table is generated by not
demanding the development capability of high-level
SQL syntax, but of a simple SQL syntax. Therefore,
the proposed model can save the time and cost required
for the development, modi�cation, and veri�cation of
the algorithm.

4. Experiment for proposed model

We implemented a prototype for evaluation of the
proposed model, and, in this paper, we conduct an
experiment to verify our proposed model. To do
this, we measure accuracy and data loss rate by using
query results as the evaluation items. The experiment
process is as follows. First, we de�ne several types of
query using LUBM queries [28], and select any speci�c
algorithm for SPARQL-to-SQL translation. In this
experiment, we use the Chebotko algorithm, because
this algorithm supports more powerful functionality for
SPARQL-to-SQL translation compared to other algo-
rithms. The Chebotko algorithm depends on TRIPLE
storage, and, therefore, our target storage is TRIPLES
storage. The other storages for the experiment are Jena
storage and Sesame storage. They generate a relational
view that corresponds to the structure of the TRIPLES
storage. We con�rm the translated SQL statements
using the Chebotko algorithm, which are equivalent to
the de�ned SPARQL queries. Finally, we compare the
correct answers and the results obtained from the three
storages, which are TRIPLES storage, Jena storage,
and Sesame storage. We generate an OWL dataset
using UBA, which is provided by Lehigh University.
As listed in Table 1, we use 14 LUBM queries for our
experiment. A set of original LUBM queries requires
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Table 1. Experiment test queries.

Query Query description
Q1 All Graduate Students who take Graduate Course 0 in Department 0 of University 0
Q2 All Graduate Students who are now studying at the university from which they obtained their bachelor degrees
Q3 All publications of Assistant Professor 0 in Department 0 of University 0
Q4 All Assistant Professors in Department 0 of University 0 and their email addresses and telephone numbers
Q5 All Undergraduate Students in Department 0 at University 0
Q6 All Graduate Students
Q7 All Graduate Students who take the Graduate Course of Associate Professor 0 in Department 0 of University 0
Q8 All Undergraduate Students of University 0 and their email addresses
Q9 All Undergraduate Students who take those courses whose advisor is Full Professor
Q10 All Graduate Students who take Graduate Course 0 in Department 0 of University 0
Q11 All research groups in Department 0 of University 0
Q12 All department heads of University 0
Q13 All Assistant Professors who have master degrees from University 0
Q14 All Undergraduate Students of University 0

an inference support that can infer relationships be-
tween OWL data. However, the main purpose of this
experiment is not reasoning, but correct SPARQL-to-
SQL translation. Therefore, the SPARQL queries for
Q4 to Q10, Q12, and Q13 are modi�ed. Reasoning is
not necessary to execute the modi�ed queries.

4.1. Experiment results and evaluation
Table 2 lists all the experiment results from 14 test
queries. The Correct Answer is the true value, with re-
spect to the result of the 14 queries. By comparing the
query results between the three storages, we evaluate
whether data loss occurs, and whether the value is true.
Table 2 indicates that the number of all query results

with the Correct Answer; TRIPLES storage as target,
and Jena storage and Sesame storage as the view
tables, are the same. Furthermore, the values of the
retrieved results are the same. Consequently, although
the three storages have di�erent storage structures, we
can guarantee the same results without loss of query
results from the three storages that use a relational
view table.

5. Performance evaluation

This section evaluates the previous storage-dependent
and storage-independent models. We describe prelimi-

Table 2. Result of 14 queries.

Query

Result of query (number)
Accuracy (%)

(data loss
rate (%))

Correct
answer

TRIPLES
storage
(target)

Jena
storage
(view)

Sesame
storage
(view)

Q1 4 4 4 4 100% (0%)
Q2 0 0 0 0 100% (0%)
Q3 6 6 6 6 100% (0%)
Q4 40 40 40 40 100% (0%)
Q5 532 532 532 532 100% (0%)
Q6 1874 1874 1874 1874 100% (0%)
Q7 16 16 16 16 100% (0%)
Q8 17748 17748 17748 17748 100% (0%)
Q9 90 90 90 90 100% (0%)
Q10 4 4 4 4 100% (0%)
Q11 10 10 10 10 100% (0%)
Q12 30 30 30 30 100% (0%)
Q13 1 1 1 1 100% (0%)
Q14 5916 5916 5916 5916 100% (0%)
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nary constraints, factors, and notations for the models,
and, in addition, the comparison evaluation between
the two models.

5.1. Comparative items and assumptions
The comparative item of the two models uses two
methods. The �rst method compares the performance
of the SPARQL-to-SQL algorithm development time
with the performance of the view generation time.
The second method compares the performance of the
query translation time with the performance of the
query transmission time. However, in the case of the
�rst method, the performance of the SPARQL-to-SQL
algorithm development time generally has a higher
performance compared with that of the view generation
time. Therefore, this paper measures performance
using the second method. The query translation
time is the time required for that SPARQL to be
translated to SQL through the translation algorithm.
The query transmission time is the time required for
that generated SQL to be executed in storages.

The main factors for our evaluation are summa-
rized as follows:

� Comparative targets: Storage-independent model
and storage-dependent model;

� Comparative items: Query translation time and
query transmission time;

� Main factors: Number of storages, number of trans-
lation algorithms, query types, network environ-
ment, storage structure, and dataset size.

The key notations are de�ned as follows:

� S: Set of storages;

� t(S to S): SPARQL-to-SQL translation time by
translation algorithms;

� n(S): Number of storages;

� t(TM): SQL query transmission time to a storage;

� n(A): Number of translation algorithms;

� VQ: SPARQL-to-SQL translation time a�ected by
query type;

� VT : Transmission time;

� VRAN: random values, 0 < VRAN < 1.

For the performance evaluation, several assumptions
and de�nitions are required, as follows:

� The query translation time, t(S to S), a�ected by
the network environment, is VQ � VRAN. VQ is the
actual translation time of the query type used in
the Lehigh University benchmark. VRAN is one of
the values generated by a random number generator,
(0 < VRAN < 1);

� The query transmission time, t(TM), a�ected by
the network environment, is VT � VRAN. VT is the
SQL-to-storage transmission time;

� The SQL query type generated by the translation
algorithm is a�ected by the SPARQL query type;

� This performance evaluation does not consider algo-
rithm patterns, because we assume that the query
translation time, t(S to S), generates uniform algo-
rithm patterns, rather than di�erent ones;

� This performance evaluation does not consider
dataset size, because the evaluation uses the same
dataset;

� We do not consider algorithm complexity because
this evaluation focuses on the e�ciency of the
storage-independent model using a relational view,
not on the performance of translation algorithms.

5.2. Performance evaluation
To evaluate the performance of the storage-dependent
and storage-independent models, two key factors,
t(S to S) and t(TM), should be considered. The
t(S to S) and t(TM) factors are a�ected by n(A) and
n(S), respectively. Estimation of model performance is
de�ned as follows:

Performance(Model) =
n(A)X
i=1

t(S to S)i +
n(S)X
j=1

t(TM)j :
(1)

In the storage-dependent model, a given SPARQL
query should be translated to its corresponding SQL
query by the translation algorithms that are valid for
all storages. The t(S to S) factor is measured as n(A).
Then, the translated SQL is executed in di�erent stor-
age structures. The t(TM) factor is measured as n(S).
In the storage-independent model, a given SPARQL
should be translated to its corresponding SQL query
by one speci�c translation algorithm. Therefore, the
n(A) value that a�ects t(S to S) is uniform. However,
one SQL query is executed as many n(S) values. The
t(TM) factor is measured as n(S). The t(S to S)i
factor is de�ned as:

t(S to S)i=

(
n(Ai)�VRAN�VQi; 0<VRAN<1
0; otherwise (2)

The t(TM)j factor is de�ned as:

t(TM)j=

(
n(Sj)�(1�VRAN)�VTj ; 0<VRAN<1
0; otherwise (3)

5.3. Evaluation results
In this section, we compare and evaluate, quanti-
tatively, the performance e�ciency of the storage-
dependent and storage-independent models using
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Figure 2. Performance results 1.

Eq. (1) de�ned in Section 5.2. This paper represents
two evaluation results. First, we show the evaluation
results for the case where the number of storages
increased. Second, we show the evaluation results
re
ected by query type.

For the �rst evaluation, we measure the transla-
tion time of SPARQL to SQL and transmission time of
SQL to storages. Each time was measured three times
for each query, and we obtained the average values.
Figures 2 and 3 show the performance evaluation of
two models through 14 LUBM test queries. As shown
in Figures 2 and 3, all the results from the storage-
independent model represent a higher performance
in comparison with all the results from the storage-
dependent model. When the number of storages
is one, the performance result is the same between
the storage-independent and the storage-dependent
models, because the translation algorithm equivalent
to the storage is one. However, as the number of
storages increases, the di�erence between the evalu-
ation results of the two models ranges from a low
of 1.1 times (Q2, Q7, and Q8) to a high of 23
times (Q12). On average, the performance results of
the 14 test queries show a performance improvement
of the storage-independent model, which is approxi-
mately three times faster than the storage-dependent
model.

The second evaluation is performance by query
patterns. The query patterns are determined by the
number of join operations when the SPARQL query
is translated to a SQL query. We de�ne �ve types of
query generated when increasing the number of join
operations, as listed in Table 3, and then measure

the performance time for both storage-dependent and
storage-independent models as the number of storages
increases: n(S) = 1, 5, and 10.

Figure 4 shows the performance evaluation results
by query type using the �ve queries from Table 3. The
performance results of the two models indicate that the
more the number of join operations increases, the more
SPARQL-to-SQL transformation time is required. In
addition, the performance result is a�ected by the num-
ber of storages. When the number of storages is one,
the performance time is the same between the storage-
independent and storage-dependent models, as shown
in Figure 4(a). Figure 4(b) and (c) show that when
the number of storages increases, the performance dif-
ference between the two models is signi�cant. In other
words, when the query type is complicated, the storage-
independent model requires less performance time than
the storage-dependent model. Consequently, as shown
by the two evaluation results, we can determine that
the storage-independent model is more e�cient than
the storage-dependent model.

6. Conclusions and future work

In this paper, we propose a model that can indepen-
dently apply a given translation algorithm to di�erent
storages. The proposed model is based on a relational
view table, and we implemented a prototype. As the
experiment results show, the proposed model ensures
accuracy with regard to the query result. In addition,
no data loss occurred from the query results based
on the view table. Consequently, we show that
using a view table, the proposed model can be used
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Figure 3. Performance results 2.
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Figure 4. Performance results by query type.

Table 3. Query type of �ve patterns.

Query SPARQL n
(join operation)

Q1
?X

0f?X type UndergraduateStudentg

Q2

?X

1
f?X type Graduate Student.

?X takesCourse

Uv::http://www.Department0.University0.edu/GraduateCourse0g

Q3

?X, ?Y

2
f?X headOf ?Y .

?Y type Department.

?X worksforUv::http://www.Department0.University0.edu.g

Q4

?X, ?Y , ?Z

3
f?X memberOf ?Z.

?Z subOrganizationOf ?Y .

?X undergraduateDegreeFrom ?Y g

Q5

?X, ?Y

4
f?X type GraduateStudent.

?Y type GraduateCourse.

?X takesCourse ?Y .

http://www.Department0.University0.edu/AssociateProfessor0 teacherOf ?Y g

independently of storage. In addition, creation of
the view table is simpler compared to development
of an algorithm. The view table is generated, not
by demanding the development capability of high-level
SQL syntax, but by simple SQL syntax. Therefore,
the proposed model can save time and cost in the
development, modi�cation, and veri�cation of the al-
gorithm.

Future work includes a semi-automatic view gen-
eration method required for the high usability of the
proposed model. In addition, the model will be
extended to support inference queries. For veri�cation
and evaluation of the view generation method, we
intend to apply it to various Web ontology storages.
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