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Abstract. In this paper, the deformation of an elastic spherical capsule suspended
in a shear ow is studied in detail using Lattice Boltzmann method for uid ow
simulation, immersed boundary method for uid-membrane interaction and �nite element
method for membrane force analysis. While Lattice Boltzmann method is capable of
implementing inertia e�ects, computations were carried out for small Reynolds number
in which inertia e�ects are negligible. E�ects of three membrane constitutive equations
on capsule deformation, including Neo-Hookean, zero-thickness shell approximation and
Skalak's law with di�erent area-dilation modulus, are studied in detail. Results presented
in the form of Taylor deformation parameter, inclination angle and period of tank-treading
motion of capsule, show close agreement between those obtained from Neo-Hookean
and zero-thickness shell approximation with previous published ones. Such agreement
is partially observed for Skalak's law implementing di�erent area-dilation modulus. In
general, behaviors of all three constitutive laws are similar for nondimensional shear rates
of less than 0.05 while some di�erences were observed for its values of 0.1 and 0.2. As an
e�cient computational framework, it is shown that combined Lattice Boltzmann, Immersed
Boundary and Finite element method is a promising method for such ow con�guration,
implementing di�erent membrane constitutive laws.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Deformation of a spherical capsule under shear ow
has been a subject of research for more than three
decades due to its physical complexity as well as its
importance in many applications such as motion of
red blood cell in blood ow and arti�cial capsules in
food industries. Consisting of a thin elastic membrane
with an incompressible uid inside, a capsule starts
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to deform under shear ow with its �nal con�gura-
tion depending on Reynolds number and shear rate.
The complexity of such ow con�guration stems from
simultaneous implementation of Eulerian description
for uid ow, Lagrangian description of membrane
deformation and their interconnection through a uid-
membrane interaction model.

Among the pioneers in investigating deformation
of a capsule freely suspended in a shear ow, Barth�es-
Biesel and Rallison [1] derived the equations governing
time-dependent deformation of membrane resulting
from viscous stresses more than three decades ago.
Their study was limited to a spherical capsule with
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small departure from sphericity. Substantial progress
in computational methods and computer hardware, in
the last few decades, created an opportunity to study
three dimensional time-dependent capsule deformation
in shear ow extensively [2-5]. A comprehensive review
of these progresses was reported by Barth�es-Biesel [6],
in 2011, in which di�erent modeling strategies in
simulation of a spherical capsule suspended in a shear
ow were presented along with their limitations and
advantages. Progress in implementation of di�erent
viscosities for uids inside and outside of the capsule
membrane [4,7] and membrane constitutive laws and
membrane bending resistance [8,9] are also reviewed in
this paper.

Analytical methods based on perturbation solu-
tion for deformation of an initially spherical capsule
in weak simple shear ow were presented by Barth�es-
Biesel and Rallison [1] and Barth�es-Biesel [10]. These
methods are limited to small deformations at Stokes
ow regimes. On the other hand, computational
methods are capable of representing details of ow
and capsule deformation in three dimensions for large
deformation, considering the e�ect of changing param-
eters such as di�erent membrane constitutive models
and uid viscosities. Boundary Element Method
(BEM) [2-5], Finite Di�erence Method (FDM) [7,11,12]
and Lattice Boltzmann Method (LBM) [13-17] are
among frequently used computational methods in sim-
ulation of capsule deformation in shear ow. BEM
was the �rst successful method in revealing detailed
physics of capsule deformation since two decades ago.
Pozrikidis [2,9,18], Kraus et al. [19], Ramanujan and
Pozrikidis [4], Navot and Sackler [20], Diaz et al. [21],
Barth�es-Biesel et al. [22] and Lac et al. [5] used
BEM in their simulation, and their results were in
close agreement with experimental data of Chang and
Olbricht [23] and Walter et al. [24,25]. In their in-
vestigations, Ramanujan and Pozrikidis [4] studied the
e�ect of large capsule deformation and uid viscosity in
detail for the �rst time. In spite of their great success,
BEM simulation of capsule deformation su�ered from
a limitation regarding ow regime: BEM application
is limited to Stokes ow where the e�ect of inertia is
neglected, and also the full dynamics of capsules with
complex geometries, such as biconcave capsules, cannot
be handled due to instabilities in computations.

There are some applications for which uid inertia
e�ect has to be considered, such as arti�cial capsules in
food and polymer processes. Moreover, the background
uid might be viscoelastic as is the case in biological
ows which might not be simulated using BEM. These
limitations motivated researchers to employ alterna-
tive methods among which there are �nite di�erence
of Navier-Stokes equations [7,11,12], and LBM with
Immersed Boundary Method (IBM) [26,27] for uid-
particle interaction. Meanwhile, IBM has been used

in simulation of many problems, such as deformation
of elastic membranes. Eggleton and Popel [28] studied
large deformation of capsules in shear ow using IBM;
however, due to computational costs, simulations were
carried out on a coarse mesh for a short period of time.
Li and Sarkar [12] employed a front tracking method
to simulate deformation of a spherical capsule in shear
ow, and compared and discussed the performance of
the method with the results obtained from BEM. Their
results showed that, in spite of low-order surface stress
calculations, the front tracking method is compared
very well with high-order BEMs in predicting capsule
deformation, orientation, and tank-treading motions.

Recently, LBM has emerged as a useful method
for simulation of uid-particle interaction problems due
to some of its intrinsic features, such as �xed Eulerian
grid and computational e�ciency [29], as experienced
by Hashemi et al. in particle ow simulation [30-32]. A
combination of IBM and LBM was used by Feng and
Michaelides [33,34] to study particulate ow. Based
on progresses in combined IB-LBM method, Sui et
al. [13-16] proposed a hybrid method consisting of IB-
LBM and Finite Element Method (FEM) to study the
deformation of a capsule in simple shear ow. In
their earlier simulations, Sui et al. [13] used multi-
block strategy to re�ne the mesh near the capsule to
increase the accuracy and e�ciency of computation.
They used a �nite element method to obtain forces
acting on the membrane nodes of the three-dimensional
capsule which was discretized into at triangular ele-
ments. Compared with other published results in the
literature, it was shown that this method is capable
of predicting dynamic behavior of deformable capsules
accurately. Sui et al. [13] studied deformation of
initially spherical and oblate-spheroidal capsules with
various membrane constitutive laws under shear ow
where it was observed that there were good agreements
between previous theory and numerical results. It was
reported in their paper that the inertia e�ects were
found to have signi�cant impact on capsule deforma-
tion. Moreover, the unsteady tank-treading motion,
in which the capsule undergoes periodic shape defor-
mation and inclination oscillation while its membrane
is rotating around the liquid inside, was revealed for
the �rst time in simulations using IB-LBM. Later on,
Sui et al. [16] coupled front-tracking method with the
LBM to investigate the e�ect of di�erent viscosities for
uids inside and outside of the membrane. These two
uids were treated as one uid with varying physical
properties in LBM simulation. Their computation
of Taylor deformation parameter (de�ned in Section
3), capsule inclination angle and the tank-treading
frequency showed good correspondence with previously
published numerical results.

More recently, Kruger et al. [17] studied capsule
deformation in shear ow using IB-LBM with FEM



Z. Hashemi et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1877{1890 1879

used for obtaining membrane forces from its deforma-
tion in the limiting case of small deformation where
the analytical expressions were reported. Their main
objective was to show the inuence of mesh tessellation
method, the spatial resolution, and the discrete delta
function of the immersed boundary method on the
numerical results. They came to the conclusion that
details of the membrane mesh, as tessellation method
and resolution, play only a minor role while the
hydrodynamic resolution, i.e. the width of the discrete
delta function, can signi�cantly inuence the accuracy
of the simulations. Their study also showed that
LBM is capable of reducing the computational time
for simulation of deformable object immersed in a uid
while maintaining high accuracy.

The present study was performed using combined
IBM, LBM and FEM for capsule deformation under a
shear ow. While physics of such ow con�guration has
been matured in recent years as mentioned in the above
literature review, there are still some issues which
have not been addressed clearly in this computational
framework such as the e�ect of di�erent membrane con-
stitutive equations on capsule deformation parameters
such as length of major axis and area changes of capsule
during its deformation as well as computational time.
The �rst aim of the present paper is to compare the
computational e�ciency and accuracy of the combined
method with other available techniques. Then the
dynamic response of three di�erent membrane con-
stitutive laws namely zero-thickness shell formulation,
Neo-Hookean law and Skalak's law at di�erent shear
rates are studied. Since the biological cells tend to
deform at constant area, the area change during the
deformation is an important factor. In the present work
the resistance of di�erent constitutive equations to
area change under di�erent conditions is also veri�ed.
Following the Skalak's law, the area dilation modulus
controls the changes in area during the deformation.
When this modulus approaches in�nity, the area will
be constant. The e�ects of di�erent area dilation
modulus are studied here to �nd a value which is
appropriate for dynamic behavior of biological cells.
The paper starts with a description of LBM for uid
ow simulation, IBM for uid-capsule interaction mod-
eling and FEM which is used for obtaining membrane
forces from its deformation. In the results part of
the paper, authors express their �ndings regarding
the computational strategies, comparison of di�erent
membrane constitutive laws and major axes lengths
and capsule area variations in more details compared
to the previous published papers.

2. Numerical method

In order to study deformation of a spherical capsule in
a shear ow, a combined computational frame, capable

of simulating uid motion, capsule membrane deforma-
tion and uid-membrane interaction is required. In the
present computations, a combination of three meth-
ods is used for such simulation composed of Lattice
Boltzmann method for uid ow simulation, immersed
boundary method which models uid-membrane inter-
actions, and �nite element method for computation of
membrane forces from its deformation. In the following
subsections, each of the above mentioned methods is
described in more details.

2.1. Lattice Boltzmann method
Lattice Boltzmann method is a particle-based kinetic
method which uses a mesoscopic approach for uid ow
computations. It is based on the numerical solution of
Boltzmann equation from which velocity distribution
function is obtained. The discretized form of this
equation, using single relaxation time approximation
(BGK model) [35], is expressed as:

f�(x+ e��t; t+ �t)� f�(x; t)

= �1
�

[f�(x; t)� feq� (x; t)] + �tF�; (1)

where f�(x; t) is velocity distribution function in �th
discrete velocity direction; x is the spatial position
vector; t is time; � is the relaxation time; feq� (x; t)
is equilibrium velocity distribution function; and F�
is the external force. Di�erent discretizations of
three dimensional velocity vector have been proposed,
however, the most widely used one is nineteen-velocity
model which is called D3Q19, as shown in Figure 1.
Discrete velocity sets fe�g can be de�ned in this model
as:
e0 = (0; 0; 0);

e� = (�1; 0; 0)c; (0;�1; 0)c; (0; 0;�1)c

for � = 1 � 6;

Figure 1. Velocity discretization in three-dimensional LB
method: D3Q19 model.
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e� = (�1;�1; 0)c; (0;�1;�1)c; (�1; 0;�1)c

for � = 7 � 18; (2)

where c = �x=�t is the lattice speed. The equilibrium
distribution function can be expressed as:

feq� = !��

"
1 +

3~e�:~u
c2

+
9 (~e�:~u)2

2c4
� 3 (~u:~u)

2c2

#
: (3)

The coe�cients !� are weighting factors that depends
on the discrete velocity set in three spatial dimensions.
In D3Q19 model, !0 = 1=3 and !� = 1=18 for � = 1 to
6, and !� = 1=36 for � = 7 to 18.

Macroscopic variables such as density and velocity
can be obtained from velocity distribution function as
follows:

� =
X

f�; (4)

�~u =
X

~e�f�: (5)

Fluid viscosity is related to the relaxation time in LBM
as � = (� � 0:5)c2s�t, where cs is the lattice speed of
sound and is equals to c=

p
3. External force term,

which is introduced in the present LBM, is based on
the method of Luo [36], which is expressed as:

F� = �3!��e�:f=c2: (6)

Here f is external force density at Eulerian nodes which
is more discussed in Sections 2.2 and 2.3.

2.2. Immersed boundary method
Immersed boundary method was initially developed
by Peskin [26] in 1970s to model blood ow in the
human heart. In this method, the e�ect of an object
on uid ow is speci�ed by adding a body force
to momentum equations. It can be explained using
a set of �xed uid Eulerian nodes, x, and moving
Lagrangian points s with position vectors X(s; t), for
membrane, see Figure 2. At each time step, a force
F (s; t) is computed for each membrane node due to
its deformations. This Lagrangian force which is
computed using a procedure explained in Section 2.3,
is distributed on the Eulerian points by the following
Dirac delta function interpolation:

f(x; t) =
X
s

F (s; t)�(x�X(s; t)): (7)

For three-dimensional cases the discrete delta function
can be written as:

�(x�X(s; t))

= �(x�X(s; t))�(y � Y (s; t))�(z � Z(s; t)); (8)

Figure 2. Schematic diagram showing uid Eulerian and
membrane Lagrangian points.

where for example,

�(x�X(s; t))

=

(
1� jx�X(s; t)j jx�X(s; t)j � 1
0 otherwise

(9)

The new velocities of membrane Lagrangian nodes can
be obtained from the local uid velocities, u(x; t), by
the same interpolation function used in Eq. (7):

U(s; t) =
X
x

u(x; t)�(x�X(s; t)): (10)

At the surface of the particle, the no-slip boundary
condition is satis�ed by equating boundary-node ve-
locities with velocity obtained from its adjacent uid
nodes expressed as:

@X(s; t)
@t

= u(X(s; t); t): (11)

2.3. Membrane model: �nite element method
In order to compute elastic forces on membrane nodes,
an appropriate constitutive equation, which describes
the membrane properties, is required. Among di�erent
constitutive equations, the Neo-Hookean (NH) law is
the simplest one with the strain energy function in the
form of:

WNH =
Es
6

�
�2

1 + �2
2 � 3 +

1
�2

1�2
2

�
; (12)

in which Es is the surface shear elasticity modulus and
�1 and �2 are the principle stretch ratios. The NH
constitutive equation models membrane as a volume-
incompressible isotropic material which means any
increase in the area of membrane due to its deformation
accompany with thinning of membrane thickness to
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preserve membrane volume. Another version of NH
law is Zero-Thickness (ZT) shell formulation which was
used by Ramanujan and Pozrikidis [4]. Here, a strain-
energy function is expressed as:

WZT =
Es
6

�
�2

1 + �2
2 � 2� log(�2

1�
2
2)

+
1
2

log2(�2
1�

2
2)
�
: (13)

Skalak et al. [37] proposed another constitutive equa-
tion, denoted by SK, to describe elastic behavior of red
blood cells. A red blood cell tends to deform easily
at constant area. In the SK law, the resistance of the
membrane to area changes is represented by coe�cient
C in its equation which is written as follow:

W SK =
Es
12
�
(�4

1 + �4
2 � 2�2

1 � 2�2
2 + 2)

+C(�2
1�

2
2 � 1)2� : (14)

The �rst term on the right-hand side of the above
equation describes the shear e�ects, and the second
term represents the area dilation. A membrane with
zero change in area is obtained if C approaches in�n-
ity.

The current study was done using �nite element
method developed by Charrier et al. [38] and Shri-
vastava and Tang [39] from which elastic forces of
membrane nodes are obtained from their deforma-
tion, taking into account the selected constitutive law.
Membrane surface is discretized using at triangular
elements which remain at after deformation. The
procedure of generating unstructured mesh on the
surface of the membrane is presented in Section 3. This
idealization allows us to employ in-plane-membrane
theory for each element. To obtain element deforma-
tion, each individual undeformed triangular element is
transferred to the plane of the deformed element (see
Figure 3). Such pure displacement does not a�ect
nodal forces of the element. Assuming constant dis-
placement gradients within the element, displacement

of any point on the surface of element can be expressed
as:

u =
3X
i=1

Niui;

in which Ni is the linear shape function de�ned as
Ni = �ix + �iy + i for each node i. The unknown
coe�cients in this function can be obtained by the
fact that Ni = 1 at node i and Ni = 0 at two other
nodes. By virtue of this assumption, the displace-
ment gradients and corresponding principal stretch
ratios can be immediately determined [38]. Using the
principle of virtual work, one can derive the relation
between the nodal displacements and nodal forces.
Since the membrane material is assumed to be volume-
incompressible and initially isotropic, the strain energy
function is a symmetric function of the principal stretch
ratios and is only a function of in-plane stretch ratios.
Therefore one can �nd the nodal forces in the local
system as:�

FLx
	

= Ve
�
@W
@�1

@�1

@uL
+
@W
@�2

@�2

@uL

�
; (15)

�
FLy
	

= Ve
�
@W
@�1

@�1

@vL
+
@W
@�2

@�2

@vL

�
; (16)

where Ve is the original area of the element, u and
v are the x- and y-component of the displacements.
These nodal forces in local system are transferred back
to the global system and a summation is made over all
elements that meet at one node. The opposite of the
resulting force is the elastic force that is implemented
on uid nodes by membrane. More details of this
procedure can be found in [38,39].

3. Results and discussion

The present results are related to the ow geometry
of deformation of an initially spherical capsule located
in the middle of an unbounded shear ow (illustrated
in Figure 4) with velocity ~Vs = ( _y; 0; 0) in which
_ is shear rate and y is distance from center of the

Figure 3. Undeformed (a) and deformed (b) triangular elements in space along with their superposition (c) shown in the
deformed plane.
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Figure 4. Schematic illustration of an initially spherical
capsule in an unbounded shear ow.

computational domain. The computational domain is
a cubic box whose top and bottom walls move with
the equal velocity in opposite directions to produce
a simple shear ow and follow the no-slip boundary
condition. In order to simulate an unbounded shear
ow, the periodic boundary condition is applied at the
four other boundaries of the domain to reach repeating
ow conditions. Fluids inside and outside the capsule
are considered as Newtonian with the same density
and viscosity. No bending resistance is considered for
the capsule membrane. Two dimensionless parameters
a�ecting such ow con�guration are Reynolds number,
Re = � _R2=�, and dimensionless shear rate, G =
� _R=Es which express the ratio of viscous force to
elastic force. Here, � and � are the density and dynamic
viscosities of surrounding uid, respectively, R is cap-
sule radius, and Es is the membrane shear elasticity.
The present study was performed at Re = 0:025 which
corresponds to Stokes ow regime. Starting from its
spherical shape, membrane starts to deform gradually,
changing to an ellipsoidal shape with its major axis
having an angel of � with respect to the ow direction
(x). Capsule deformation can be represented by Taylor
deformation parameter which is de�ned as:

Dxy =
L1 � L2

L1 + L2
: (17)

Here, L1 and L2 are the largest and the smallest semi-
axes of the ellipsoid with the same inertia tensor as the
capsule. Using the inertia tensor in the form of [12]:

Id =
Z
V

[r2I � xx]d3r =
1
5

Z
@V

[r2Ix� xxx]:nd2r;
(18)

one can �nd the principal directions and the principal
moments of the tensor (Idi ) and compute the major

Figure 5. E�ect of the size of computational domain on
transient evolution of Taylor deformation parameter at
G = 0:1 and Re = 0:025 for a sphere with 1280 elements
(642 nodes).

axes of the ellipsoid (Li) as:

Id1 =
1
5
�V (L2

2 + L2
3); Id2 =

1
5
�V (L2

1 + L2
3);

Id3 =
1
5
�V (L2

1 + L2
2): (19)

The �rst concern in numerical simulation of shear ow
over a spherical capsule is selecting an appropriate
minimum size for the computational domain. The
length of the computational domain in x-, y- and z-
directions is generally expressed based on the radius of
the sphere. In order to investigate the e�ect of the
distance between shear-producing plates, H, on the
present computation, Taylor deformation parameter is
plotted for H equals to 5R, 10R and 12R in Figure 5.
In this �gure t� is the dimensionless time de�ned as
_t. As is observed from this �gure, computed values
of Taylor deformation parameter for H = 10R and
12R correspond to each other compared to a slightly
smaller values for H = 5R. Despite small di�erence
between results obtained from H = 5R and H = 10R,
the latter one was used in the present computations
to better compare the results with previous published
works with H = 10R. It should be mentioned that
sphere radius is selected as 6 lattice units (lu) in the
present calculations which results in a computational
domain of 60� 60� 60.

The number of elements on membrane surface is
another important factor which a�ects the accuracy of
the results and computational time considerably. In
creating membrane mesh, homogeneity and isotropy
are two important factors which need to be considered.
As implemented by many researches [16,17], a uniform
and symmetric mesh can be generated starting from a
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Figure 6. Di�erent steps of mesh subdivision on the
surface of a sphere for generating triangular elements: (a)
A regular icosahedron; (b) split each face of icosahedron;
(c) project each new vertex on the surface of the sphere;
(d) a sphere with 162 nodes and 320 elements; (e) a sphere
with 462 nodes and 1280 elements; and (f) a sphere with
2562 nodes and 5120 elements.

regular icosahedron (Figure 6(a)), which is a polyhe-
dron with 20 identical equilateral triangular faces, 30
edges and 12 vertices. The process starts with splitting
each edge of the triangular faces of the icosahedron
into two equal parts (Figure 6(b)). The next step
is to project the new vertices on the surface of the
sphere (Figure 6(c)). This procedure is repeated until
a desired resolution is obtained (Figure 6(d)-(f)).

In order to show the e�ects of di�erent mesh
resolutions of sphere on the accuracy of results, vari-
ation of Taylor deformation parameter is represented
in Figure 7 for three sets of membrane elements. The
required time for each iteration of di�erent resolutions
atH = 10R is also tabulated in Table 1. Based on these
results, it is concluded that using a sphere with 1280
elements and 642 nodes is appropriate for obtaining
accurate and e�cient modeling. Moreover, Table 1
shows that increasing the number of nodes on sphere
has much less e�ect on iteration time as compared to
increasing the domain size. It should be mentioned
that all of the present computations were done using a
Core-i7/2.4 GHz computer.

It should be noted that the required number of
membrane nodes and domain size used in the present
computations are considerably smaller than those used

Figure 7. E�ect of di�erent sphere grid resolution on
transient evolution of Taylor deformation parameter at
G = 0:1 and H = 10R.

in previous works, such as Li and Sarkar [12], which
used a computational grid of 96 � 96 � 48 nodes with
5120 elements and 10242 nodes for a membrane, Doody
& Boghchi [7] with a computational grid of 120�120�
120 nodes and 1280 elements on a membrane, and Sui
et al. [13] who used multi-block technique with 8192
elements and 4098 nodes on a membrane.

As a main criterion for evaluating the results,
Figure 8 shows the evolution of Taylor deformation
parameter, Dxy, and inclination angle, �=�, with
dimensionless time for a spherical capsule with mem-
brane constitutive equation of zero-thickness shell, in
shear ow at di�erent dimensionless shear rates, G.
The well-known behavior of initial increase followed
by a steady value for Taylor deformation parameter,
and initial decrease followed by a steady value of
inclination angle with increasing dimensionless shear
rate are clearly observed in this �gure. Results of
Ramanujan and Pozrikidis [4], which were obtained
using boundary element method, are shown in this
�gure too. Close agreement between the present results
and those of Ramanujan and Pozrikidis reveals the
accuracy of the computational method along with its
required resolution.

When a spherical capsule is exposed to the shear
ow, it starts to elongate until an equilibrium state
is reached. At this stage, the capsule is no longer
deformed and starts to rotate around the interior
uid. The transient shapes of the deformable spherical

Table 1. The required time for one complete iteration in di�erent test cases.

Case

255 elements,
162 nodes

1280 elements,
642 nodes

5120 elements,
2562 nodes

H = 10R H = 5R H = 10R H = 12R H = 10R
CPU time 0.63 0.064 0.67 1.14 0.76
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Figure 8. Comparison of transient evolution of (a)
deformation parameter, and (b) inclination angle for a
capsule with zero-thickness model in shear ow at
di�erent dimensionless shear rates at Re = 0:025.

capsule at di�erent stages and G = 0:1 are shown
in Figure 9. The �rst three �gures show transient
deformation and alignment of the capsule, while the
last three ones represent steady deformed shapes that
align with a �xed angle with respect to the x-axis.
A material point is shown in these �gures which
represents tank trading motion of the membrane in the
last three �gures; a continuous rotation of a membrane
around its steady shape.

To investigate the e�ect of constitutive equations
on the results, three most important models, namely
Zero-Thickness shell formulation (ZT), Neo-Hookean
law (NH) and Skalak's law (SK) were implemented and
compared in the present computations. Figure 10(a)
and (b), respectively, show steady deformation param-

Figure 9. Deformation of an initially spherical capsule
exposed to simple shear ow at di�erent times; G = 0:1
and Re = 0:025..

Figure 10. E�ect of di�erent constitutive equations on
(a) a steady deformation parameter, and (b) steady
inclination angle at di�erent G.
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eter and steady inclination angle for di�erent values of
G. The results of Ramanujan and Pozrikidis [4], Sui
et al. [13] and small deformation theory of Barth�es-
Biesel and Rallison [1] are also included in these
�gures for comparison. Excellent agreement is observed
between present computations and those obtained from
small deformation theory for G = 0:025. It is worth
mentioning that small deformation theory is not valid
at relatively large deformations, e.g. for G � 0:05.
Among these three membrane laws, the ZT model
predicts the closest values to those of Ramanujan and
Pozrikidis [4] who used the same model. As observed
from Figure 10, the aforementioned three membrane
laws produce nearly equal values of Dxy (and �)
for G � 0:05 which reveals their accuracy at small
deformations. This trend is not observed for relatively
larger deformations. In accordance with the results of
Ramanujan and Pozrikidis [4], the predicted results by
ZT shell law is 1.7% and 2.4% less than those obtained
by NH law for G = 0:1 and 0.2, respectively. It should
also be noted that SK law underestimates the values of
Dxy and �, slightly, compared to the ones obtained by
Ramanujan and Pozrikidis [4]. In other words, using
SK membrane law results in less deformation compared
to ZT or NH membrane law for the same shear rate.
Such behavior for SK law is reasonable due to its
strain hardening behavior. In fact, resistance to area
compression in SK law prevents further deformation
of the capsule which, in turn, a�ects the alignment of
the membrane and increases the inclination angle with
respect to the ow direction (x-axis).

One important issue in the present computa-
tions is the e�ect of grid uniformity on the results
as compared to the published results obtained from
nonuniform grid distribution. Sui et al. [13] whose
computations were based on IBM/LBM/FEM, used
multi-block technique for increasing concentration of
grid points near the membrane. They divided the
computation domain into two blocks: the interior one
which is a cubic box with length of 4R around the
membrane and has �ne mesh with grid resolution of
�xf = �yf = �zf = R=12, and the exterior one
with the coarse mesh and grid resolution �xc = �yc =
�zc = R=6. The present computations were done with
a uniform grid with resolution R=6 in all directions for
the whole computational domain. As observed from
Figure 10(a) and (b), results of present computations
are in good agreement with those of Sui et al. [13] using
multi-block method. It is concluded that the condition
of local grid re�nement can be relaxed without losing
considerable accuracy.

As mentioned before, when a capsule passes
through the transient stage and reaches the steady
state behavior, the material points on the membrane
start to rotate along a �xed trajectory on the steady
deformed shape (see Figure 9). At this level, there is

no normal velocity for the membrane nodes and only
tangential velocity is experienced by those nodes. This
well-known periodic motion is called \tank-treading-
motion". To reveal the characteristics of this motion,
the position of a material point, which is initially on the
top of the sphere, is plotted versus time in Figure 11
for di�erent values of G with ZT shell formulation for
the membrane. The periodic motion of this material
point is evident in these �gures. With increasing
dimensionless shear rate, G, the capsule elongates more
which results in a larger path of rotation of the material
point and its subsequent longer periodic time.

Following the position of a material point for a
long time, one can �nd the tank-treading period _T of
the membrane. The tank-treading period is plotted in
Figure 12 as a function of G for di�erent constitutive
laws along with the results of the earlier works. In the
present study, the tank-treading period is computed by
following a marker point and measuring the time period
for one complete cycle. Due to larger deformation and
longer rotation path at higher G, the tank-treading
period increases with increasing G. Results obtained
from the present computations are in a reasonable
agreement with those of Ramanujan and Pozrikidis [4]
and Lac et al. [5] for G < 0:1. However, closer
agreement is observed between present computations
and those of Ramanujan and Pozrikidis [4] for G = 0:2
using ZT and NH laws. At small deformations the
three constitutive equations show similar behavior and
predict approximately the same value for the tank-
treading period. However, at large deformation, the SK
law predicts the smallest value among them. The strain
hardening behavior of the SK law leads to smaller
deformation and shorter rotating path, compared with
other laws, which results in an underestimation. At
G = 0:2, the predicted result by ZT law is 3% less than
that obtained using NH law.

The steady shape of the deformable capsule is rep-
resented in Figure 13 for di�erent values of G. Viscous
forces become relatively stronger than elastic forces
with increasing G which results in more deformation
and less inclination angle with respect to the x-axis.

Surface area of a deformable capsule in shear
ow might not remain constant. Investigation of this
e�ect is of prime importance in RBC deformation. To
reveal the e�ect of shear rate on surface area and
lengths of the major and minor axes of capsule, a
series of computations were carried out for di�erent
dimensionless shear rates, and their results are illus-
trated in Figure 14(a), (b) and (c). In these �gures,
time variation of these parameters is expressed in
nondimensional forms; lengths and area are divided by
their corresponding values for the undeformed initial
sphere. Figure 14(a) shows variation of major axis
elongation with time. Opposite behavior is observed for
the length of the minor axis of the capsule; it reduces
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Figure 11. Time evolution of the position of a material point on a ZT membrane surface.

Figure 12. Comparison of tank-treading period for
di�erent G and di�erent constitutive equations with
earlier works.

with both increasing time and dimensionless shear rate.
At equilibrium state, both lengths reach some constant
values. As is observed from Figure 14(c), surface
area of capsule increases with time, reaching a steady
value which increases with increasing G. According to

Figure 13. Steady deformed shape of the capsule in the
plane of shear at di�erent G and Re = 0.025.

Figure 14(a)-(c), results obtained by ZT, NH and SK
laws correspond to each other for small deformation
(G � 0:05). For G = 0:2, the steady area of SK law
is about 3.1% and 4.6% less than that for ZT and NH
capsules. Unlike the SK law, at the same G, the NH
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Figure 14. E�ect of di�erent constitutive equations on a)
the lengths of major axes, b) lengths of minor axes, and c)
area ratio at di�erent G.

law makes the biggest changes in the capsule area which
shows its strain-softening behavior.

At the end of this section the e�ect of di�erent
values of the coe�cient C in SK law is investigated.
The variations of deformation parameter, inclination

Figure 15. E�ect of di�erent values of coe�cient C on a)
the Taylor deformation parameter, b) an inclination angle,
and c) area ratio in SK law at di�erent C.

angle and area ratio with dimensionless shear rate for
di�erent values of C are plotted in Figure 15. Results
of Ramanujan and Pozrikidis [4] which were obtained
for a membrane with ZT shell formulation is also added
to Figure 15(a) and (b). The SK constitutive equation
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was proposed to describe the elastic behavior of red
blood cell membranes. A red blood cell tends to deform
easily at a constant area. In the SK law, the resistance
of the membrane to area changes is represented by
coe�cient C. If this coe�cient approaches in�nity, a
membrane with zero change in the area is obtained.
However, the behavior of SK law with small value of C
is close to the behavior of a ZT or NH membrane. A
membrane obeying the SK law with larger values of C
has a larger area dilation modulus and becomes more
area incompressible and less deformed at a constant
shear rate. According to Figure 15(c) with C = 10, the
�nal area change for G = 0:025, 0.05, 0.1 and 0.2 is
about 0.002, 0.015, 0.03 and 0.054, respectively. With
increasing the value of C, the inclination angle, with
respect to x-axis, increases.

4. Conclusions

A three-dimensional numerical simulation is performed
to study the dynamic behavior of an initially spher-
ical capsule in simple shear ow. Fluid ow, uid-
membrane interaction and membrane analysis were
studied using Lattice Boltzmann method, immersed
boundary method and �nite element method, respec-
tively. Membrane analysis was done using three di�er-
ent constitutive equations consisting of Neo-Hookian
law, zero-thickness shell approximation and Skalak's
law with di�erent area-dilation modulus. Comparison
of results, in the form of Taylor deformation param-
eter and capsule inclination angle, showed negligible
variation using di�erent constitutive laws for G < 0:05
while more discrepancies were observed for G = 0:1
and 0.2. Results of membrane area variation during
capsule deformation showed that area conservation is
a good assumption for small G, namely G < 0:05,
no matter which constitutive model is used for the
membrane. Such behavior was not observed for G =
0:1 and 0.2, and more discrepancies appeared using
di�erent constitutive laws. Using di�erent values of
the parameter, C, in SK model (see Eq. (14)) in
computation of Taylor deformation parameter, incli-
nation angle and area ratio showed that SK model
is sensitive to such variations; good correspondence
with previous published results of Ramanujan and
Pozrikidis [4] could be obtained for C = 0:01 for
small G values. For C = 10, the maximum area
change is about 5%, so since higher values of this
parameter may lead to numerical instability, it seems
that C = 10 is large enough that one can ignore the
area change during the deformation. In comparison
with previous techniques available in the literature
the combined method can predict accurate results at
low computational cost, and according to the intrinsic
features of lattice Boltzmann method in paralleliza-
tion processes, this method has a great capability in

simulating biological problems with large number of
deformable cells.

Nomenclature

c Lattice speed
C A coe�cient in Skalak's law
cs Speed of sound
e� Discrete velocity vector
Dxy Taylor deformation parameter
Es Shear elasticity modulus
f� Density distribution function
feq� Equilibrium density distribution

function
F� External force
f Eulerian external force density
F Lagrangian force
G Dimensionless shear rate
H Domain height

Id Inertia tensor
L1; L2 Semi-axes of ellipsoid
N Shape function
R Capsule radius
s Membrane node
t Time
t� Dimensionless time
~u Fluid velocity vector
U Velocity of Lagrangian node
u; v Displacement
V Volume
Ve Original area of element
W Strain energy function
x; y; z Eulerian position coordinates
X;Y; Z Lagrangian position coordinates

Greek symbols

_ Shear rate
�(x) Dirac delta function
� Inclination angel
� Principal stretch ratio
� Fluid dynamic viscosity
� Fluid kinematic viscosity
� Density
� Dimensionless relaxation time
!� Weighting factor

Subscripts/superscripts

� Lattice direction
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eq Equilibrium state
L Local system
! A vector
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