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Abstract. The biomicrouidic devices utilizing electroosmosis for ow actuation are
usually encountered with non-Newtonian behavior of working uids. Hence, studying the
ow of non-Newtonian uids under an electroosmotic body force is of high importance for
accurate design and active control of these devices. In this paper, mixed electroosmotically
and pressure driven ow of two viscoelastic uids, namely PTT and FENE-P models,
through a rectangular microchannel is examined. The governing equations in dimensionless
form are numerically solved through a �nite di�erence procedure for a non-uniform grid. It
is observed that although the Debye-H�uckel linearization fails to predict the velocity pro�le
for viscoelastic uids, this approximation holds even at high zeta potentials, provided the
velocity �eld is normalized with the mean velocity. It is also revealed that the dependency of
the mean velocity on the level of elasticity in the uid is linear. This functionality results
in a Poiseuille number independent of the level of elasticity in the uid. Moreover, the
pressure e�ects are pronounced for higher values of the channel aspect ratio. In addition,
both the mean velocity and the Poiseuille number are increasing functions of the channel
aspect ratio.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Electrokinetics is a term classically used for referring
to any motion which is created due to the interaction
of ionic clouds, charged surfaces, and electric �elds.
With the exploration of dielectrophoresis, this classical
de�nition has encountered a real challenge, because this
phenomenon is a result of applying non-uniform electric
�elds and does not require ionic solutions to take
e�ect [1]. Given the characteristics of dielectrophoresis,
a better de�nition of electrokinetics may be given to be
any kind of motion which is created due to the presence
of macroscopic electric �elds.

Having been explored more than two centuries
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ago [2], electroosmosis is one of the �rst electrokinetic
phenomena to be discovered. Electroosmosis refers
to ow actuation by applying an electric �eld to an
electrolyte solution in contact with a surface. The
contact of the surface with the electrolyte solution
results in the formation of an Electric Double Layer
(EDL), shown in Figure 1, within which there is a
net charge density. Therefore, the application of an
external electric �eld can result in a net ow toward
the cathode or anode, depending on the sign of the
charge density.

In spite of a long history, it took a long time
for electroosmosis to be widely used in practice. The
main di�culty associated with the commercialization
of electroosmosis was that it requires small length
scales to take e�ect. Hence, considerable progresses,
in this respect, were only become possible after major
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Figure 1. Schematic of the physical problem along with
the coordinate system. EDLs are the regions between the
dashed lines and the channel wall [21].

advancements in microfabrication technology in the
late 20th century which led to the development of
various microuidic devices. Among these microde-
vices are various types of microthrusters including
miniaturized electrokinetic thrusters [3] developed for
space propulsion. Another microdevice in which elec-
troosmosis plays an important role is a Lab-On-a-Chip
(LOC) system. Lab-on-chip devices are microscale
laboratories on a microchip that can perform medical
diagnoses. The main advantages of these devices are
ease of use, speed of analysis, and low sample con-
sumption. Electroosmosis is the main mechanism for
ow generation in lab-on-chip devices. Electroosmotic
micropumps have many advantages over other types of
micropumps. For example, though the head produced
by conventional pumps should increase with decreasing
the channel diameter to overcome the extra pressure
drop, the maximum electroosmotic velocity is not de-
pendent upon the channel diameter. Furthermore, the
electroosmotic pumps are bidirectional, can generate
constant and pulse free ows with ow rates well suited
to lab-on-chip devices, and can be readily integrated
with them [4].

The study of liquid ow in microchannels with
consideration of electrokinetic e�ects can be traced to
1960s. The early analytical works on electroosmotic
ow report the electrokinetically driven fully developed
ow in slit and cylindrical microchannels [5-7]. More
recently, Tsao [8] analyzed the hydrodynamic features
of electroosmotic ow in a microannulus. He developed
analytical solutions for potential and velocity distribu-
tions, using the Debye-H�uckel linearization. The above
work was extended to high zeta potentials by Kang
et al. [9], using an approximate method. Analytical
solutions for fully developed electroosmotic ow in
rectangular and semicircular microchannels were pre-
sented by Yang [10] and Wang et al. [11], respectively.
Wang and Chang [12] developed an e�cient Ritz
method from the variational principle to solve the

Poisson-Boltzmann equation under the Debye-H�uckel
approximation for studying the electroosmotic ow in
microchannels. The method was then applied to the
family of super elliptic cross sections which includes
the elliptic and rectangular channels as limiting cases.
More complex geometries were considered by Goswami
and Chakraborty [13] and Vocale et al. [14].

An understanding of the ow characteristics of
common biouids is crucial in design and active control
of LOCs. Because of complex structure, common
biouids such as blood, saliva, and synovial uid
usually show non-Newtonian rheological behaviors.
Therefore, any related study should account for these
complex behaviors. The available literature indicates
a growing interest in modeling of the non-Newtonian
electroosmotic ow in recent years. One of the �rst
attempts in this context was carried out by Das and
Chakraborty who derived analytical solutions for the
transverse distributions of velocity, temperature and
solutal concentration in electroosmotic ow of power-
law uids through a slit by means of an approximate
method [15]. Zhao and coworkers [16,17] obtained
expressions for the Helmholtz-Smoluchowski electroos-
motic velocity of power-law uids at small and high
zeta potentials. By means of the same non-Newtonian
model, Vasu and De [18] analyzed the electroosmotic
ow in a slit microchannel at high zeta potentials.
Lattice Boltzmann based numerical studies of the
electroosmotic ow of power-law were conducted by
Tang et al. [19,20]. In a recent study, Vakili et al. [21]
studied the electroosmotic ow of power-law uids in a
rectangular microchannel.

The viscoelastic constitutive equations have also
received much attention in electrokinetics studies. Park
and Lee [22] devised a simple method based on the
concept of the Helmholtz-Smoluchowski velocity to �nd
the volumetric ow rate of viscoelastic electroosmotic
ows through microchannels. The electroosmotic ow
of viscoelastic uids through parallel plate microchan-
nels was analytically investigated by Dhinakaran et
al. [23]. Analytical solutions were presented by Afonso
et al. [24] for the ow of viscoelastic uids through
parallel plates and pipes under the combined inuence
of electrokinetic and pressure forces. In addition,
these authors recently reported a �nite volume based
numerical study on electroosmotic ow in a cross
slot using the same rheological model [25]. Another
work of this research group is dealing with the two
uid electroosmotic ow of viscoelastic uids [26].
Sousa et al. [27] derived analytical solutions for mixed
electroosmotic and pressure driven ow of viscoelastic
uids by taking into account the near-wall depletion
of macromolecules. More recent works have also been
reported regarding electroosmotic ow of viscoelastic
uids [28-31].

Microuidic circuits are usually produced by
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etching on a substrate, so that the channel cross-
sections are generally trapezoidal or rectangular in
shape [32]. However, to the author's best knowledge,
no study has been undertaken on electroosmotic ow
of viscoelastic uids in either of these geometries.
The objective of this paper is to extend the previous
studies on electroosmotic ow of viscoelastic uids by
considering a rectangular geometry. Through this line,
both PTT and FENE-P models are being considered,
assuming a hydrodynamically developed ow. The
governing equations are �rst made dimensionless and
then transformed into new ones based on the com-
putational parameters which provide mesh clustering
near the wall. Afterward, the transformed equations
are discretized using a �nite di�erence procedure.
After iteratively solving the discretized equations and
validating the results using available literature data,
a complete parametric study is done in order to �nd
out the e�ects of the channel aspect ratio, the zeta
potential, the dimensionless Debye-H�uckel parameter,
the Weissenberg number, and the velocity scale ratio
on the hydrodynamic features of the ow.

2. Problem formulation

2.1. Problem de�nition
Consideration is given to combined electroosmotic and
pressure driven ow of a viscoelastic uid through a
long rectangular microchannel with dimensions given
in Figure 1. The rheological behavior of the uid is
assumed to be represented by either PTT or FENE-P
models. The ow is considered to be steady, laminar,
and fully developed. It is assumed that the liquid
contains an ideal solution of fully dissociated symmetric
salt. Moreover, the channel wall is considered to be
subject to a constant zeta potential.

2.2. Electrical potential distribution
The electrostatic potential, ', at any point in the chan-
nel will be described by superposition of the externally
applied potential, �, along the channel axis, and the
double layer potential,  . Under the hydrodynamically
developed conditions  =  (x; y), so:

'(x; y; z) = �(z) +  (x; y): (1)

The electrostatic potential is related to the local net
charge density, �e, at certain point in the solution by
the Poisson equation:

r2' = ��e
"
; (2)

where " is the permittivity constant of the solution. In
general, the Nernst-Planck equations should be used
to relate the electric charge density to the electrostatic
potential. However, at the hydrodynamically devel-
oped conditions, the spatial distribution of the electric

charge density is described by the Boltzmann equation,
in spite of the fact that it assumes thermodynamic
equilibrium [33]. This is due to the fact that, at
the fully developed conditions, the velocity vector and
the ion concentration gradient are orthogonal to each
other. Using the Boltzmann distribution, the electric
charge density for an ideal symmetric electrolyte of
valence z is given by [34]:

�e = �2ezn0 sinh
�
ez 
kBT

�
; (3)

where n0 is the ion density, e is the proton charge,
kB is the Boltzmann constant, and T is the absolute
temperature. The introduction of the charge density
expression into the Poisson equation along with the
assumption of a constant voltage gradient in the z-
direction results into the following modi�ed version of
Eq. (2):

@2 
@x2 +

@2 
@y2 =

2ezn0

"
sinh

�
ez 
kBT

�
; (4)

which can be written in a dimensionless form as given
below:

@2	
@X2 +

@2	
@Y 2 = K2 sinh(	); (5)

where 	 = ez =kBT , X = x=H, Y = y=H,
and K = H=�D is the dimensionless Debye-H�uckel
parameter with �D = (2n0e2z2="kBT )�1=2 being the
Debye length, a measure of the extent of EDL. The
dimensionless electrical potential (Eq. (5)) is subject
to the following boundary conditions:

@	
@X

����
X=0

=
@	
@Y

����
Y=0

= 0;

	jX=� = 	jY=1 = Z; (6)

in which Z = ez�=kBT is the dimensionless zeta
potential and � = W=H stands for the channel aspect
ratio.

2.3. Constitutive equations
The constitutive equation of PTT model, derived by
Phan-Thien and Tanner [35] from network theory
arguments, is given by:

�(�kk)� + ��r = 2� _; (7)

where � is the relaxation time of the uid and �r
represents the upper convected derivative of the stress
tensor � , de�ned as:

�r =
D�
Dt
�ruT :� � � :ru: (8)
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The stress coe�cient function, �(�kk), is given by the
linear form:

�(�kk) = 1 +
2 �
�
�kk; (9)

where �kk = �xx + �yy + �zz represents the trace of the
stress tensor, and 2 is a parameter that imposes an
upper limit to the elongational viscosity.

The FENE-P model is based on the kinetic the-
ory for �nitely extensible dumbbells with a Peterlin
approximation for the average spring force. For this
model, the stress tensor is given by [36]:

�(�kk)� + ��r � �
�
� � b

b+ 2
nkBT I

�
D ln �
Dt

= 2�
�
b+ 5
b+ 2

�
_; (10)

where I is the identity tensor, b is a parameter that
measures the extensibility of the dumbbell, and n is
a parameter of the model. Here, the stress coe�cient
function, �(�kk), is given by:

�(�kk) = 1 + 3
�

1
b+ 2

+
�

3�
�kk
b+ 5

�
: (11)

For steady fully developed ow in ducts, the material
derivatives of all the parameters vanish. Accordingly,
the constitutive equation of FENE-P model is reduced
to:

�(�kk)� + ��r = 2�
�
b+ 5
b+ 2

�
_: (12)

By carefully inspecting Eqs. (7) and (9) and comparing
them against Eqs. (12) and (11), respectively, it is
revealed that at fully developed conditions, there is an
exact equivalence of both PTT and FENE-P models
equations in the sense of a parameter to parameter
match, as explained by Afonso et al. [24]. Therefore, for
convenience of analysis, it is useful to de�ne generalized
parameters and perform an analysis based on the
generalized parameters instead of two analyses for both
models. The following generalized parameters are
introduced for the FENE-P model:

�ge,FENE-P =
�
b+ 5
b+ 2

�
�; (13)

�ge,FENE-P = �
�
b+ 5
b+ 2

�
; (14)

2ge,FENE-P=
1

b+ 5
; (15)

�ge,FENE-P = �: (16)

For PTT model, the generalized parameters are the
same as those belonging to the model, i.e.:

�ge,PTT = �; �ge,PTT = �;

2ge,PTT=2; �ge,PTT = �: (17)

The generalized constitutive equations, therefore, be-
come:

�(�kk)� + �ge�r = 2�ge _; (18)

�ge(�kk) = 1 +
2ge �ge

�ge
�kk: (19)

2.4. Velocity distribution
Since the ow has been considered to be fully devel-
oped, the e�ects of transverse velocity components are
neglected as compared to the axial component. Hence,
the velocity vector becomes u = [0; 0; u(x; y)], resulting
in the following rate of deformation tensor:

_ =
1
2

266664
0 0 @u

@x

0 0 @u
@y

@u
@x

@u
@y 0

377775 : (20)

Also the upper convected derivative of � is obtained
as:

�r=�

266664
2�xz @u@x �xz @u@y +�yz @u@x �zz @u@x

�xz @u@y +�yz @u@x 2�yz @u@y �zz @u@x

�zz @u@y �zz @u@y 0

377775 : (21)

Substitution Eqs. (20) and (21) into Eq. (18) gives rise
to the following stress components:

�xx =
2�ge

�ge
�2
xz; �yy =

2�ge

�ge
�2
yz; �zz = 0; (22)

�xz =
�ge

�ge

@u
@x
; �yz =

�ge

�ge

@u
@y
: (23)

In addition, combining Eqs. (19) and (22) gives:

�ge(�kk) = 1 + 2
2ge �2

ge

�2
ge

�
�2
xz + �2

xz
�
: (24)

By substituting Eq. (23) into the momentum equation
given by:

�
Du
Dt

= rp�r:� + f ; (25)
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the following equation is obtained for the z-component
of the momentum equation:

�ge

�ge

�
@2u
@x2 +

@2u
@y2

�
� �ge

�2
ge

�
@�ge

@x
@u
@x

+
@�ge

@y
@u
@y

�
=
@p
@z

+ 2EZezn0 sinh
�
ez 
kBT

�
;

(26)

where p shows the pressure, and the body force
in the axial direction, fz, has been replaced with
�2EZezn0 sinh(ez =kBT ) [21]. Eqs. (23), (24), and
(26) may be written in dimensionless form as:

Txz =
1

�ge

@U
@X

; Tyz =
1

�ge

@U
@Y

; (27)

�ge = 1 + 2 2ge We2(T 2
xz + T 2

yz); (28)

1
�ge

�
@2U
@X2 +

@2U
@Y 2

�
� 1

�2
ge

�
@�ge

@X
@U
@X

+
@�ge

@Y
@U
@Y

�
= �2�� K2

Z
sinh(	): (29)

The dimensionless parameters appeared in these equa-
tions are given as:

U = u=uHS; uHS = �"�EZ=�ge;

� = uPD=uHS; uPD = �H2(@p=@z)=2�ge;

T = H�=�geuHS; We = �geuHS=H; (30)

where uPD is the pressure driven velocity scale, uHS
is the Helmholtz-Smoluchowski electroosmotic velocity,
and We is the Weissenberg number. The momentum
equation is subject to the symmetry and no slip
boundary conditions. The dimensionless forms of these
boundary conditions are written as:

@U
@X

����
X=0

=
@U
@Y

����
Y=0

= 0; U jX=� = U jY=1 = Z:
(31)

2.5. Flow parameters
Once the potential and velocity �elds are obtained, the
parameters of physical interest can be calculated. One
of the important parameters of the hydrodynamics is
the friction factor given as:

f =
2�w;av
�uHS

; (32)

where �w;av is the average wall shear stress that can be
obtained as:

�w;av=� 1
W+H

0@ WZ
0

�yzjy=H dx+
HZ

0

�xzjx=W dy

1A :
(33)

Replacing the ow parameters with their non-
dimensional forms, the friction factor in the form of
the Poiseuille number is obtained as:

fRe=� 2
1+�

0@ �Z
0

Tyzjy=H dX+
1Z

0

TxzjX=� dY

1A ;
(34)

where Re = �uHSH=�ge.
The dimensionless mean velocity is also given as:

Um =
1
�

1Z
0

�Z
0

UdXdY: (35)

3. Numerical procedure

Due to strong gradients near the wall, it is necessary
to have smaller grid sizes in this region. Therefore,
transformations are used to cluster the grid points
near the channel wall. The X and Y coordinates are
transformed into x̂ and ŷ as [37]:

x̂ = ln
�
� + x

W
� � x

W

��
ln
�
� + 1
� � 1

�
; (36)

ŷ = ln
�
� + y

H
� � y

H

��
ln
�
� + 1
� � 1

�
; (37)

where H = H=H = 1, W = W=H = �, and � is the
stretching parameter. With this transformation, the
dimensionless forms of Eqs. (5), (27), and (29) can be
rewritten in terms of x̂ and ŷ as:

Q2
1 (x̂)

@2	
@x̂2 +Q2 (x̂)

@	
@x̂

+Q2
3 (ŷ)

@2	
@ŷ2

+Q4 (ŷ)
@	
@ŷ

= K2 sinh 	; (38)

Txz =
Q1 (x̂)

�ge

@U
@x̂

; Tyz =
Q3 (ŷ)

�ge

@U
@ŷ

; (39)

1
�ge

�
Q2

1 (x̂)
@2U
@x̂2 +Q2 (x̂)

@U
@x̂

+Q2
3 (ŷ)

@2U
@ŷ2

+Q4 (ŷ)
@U
@ŷ

�
� 1

�ge

�
Q2

1 (x̂)
@�ge

@x̂
@U
@x̂

+Q2
3 (ŷ)

@�ge

@ŷ
@U
@ŷ

�
= �2�� K2

Z
sinh(	); (40)

where the functions Qi=1���4 are given as:

Q1 (x̂) =
e
x̂ + e�
x̂ + 2

2��

;

Q2 (x̂) =
e2
x̂ + 2e
x̂ � 2e�
x̂ � e�2
x̂

4�2�2

; (41)
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Q3 (ŷ) =
e
ŷ + e�
ŷ + 2

2�

;

Q4 (ŷ) =
e2
ŷ + 2e
ŷ � 2e�
ŷ � e�2
ŷ

4�2

; (42)

where 
 = ln[(�+1)=(��1)]. The associated boundary
conditions are also transformed, accordingly. Since
Eq. (28) does not include any of the x and y coordi-
nates, it remains unchanged during the transformation
process. Applying the central �nite di�erence scheme,
the discretized forms of Eqs. (38), (39), (28), and (40),
developed for the inner points, become:

k0 	i;j � k1 	i+1;j � k2 	i�1;j

= k3 	g
i;j+1 + k4 	g

i;j�1; (43)

Txz;i;j =
Q1 (x̂i)
�g

ge;i;j

Ui+1;j � Ui�1;j

2�x̂
;

Tyz;i;j =
Q3 (ŷi)
�g

ge;i;j

Ui;j+1 � Ui;j�1

2�ŷ
; (44)

�ge;i;j = 1 + 2 2ge We2 �T 2
xz;i;j + T 2

yz;i;j
�
; (45)

k0uUi;j � k1uUi+1;j � k2uUi�1;j

= k3uUgi;j+1 + k4uUgi;j�1 + k5u: (46)

The exact forms of the coe�cients k and ku are
not shown here, in order to save space. Indices i
and j denote the grid numbers in x and y directions,
respectively. For the grids located on the boundaries,
appropriate second order di�erence equations are used.
Superscript g refers to the previous iteration results,
while denoting guess values for the �rst iteration.
The set of algebraic Eqs. (43) is solved by means of
Tridiagonal Matrix Algorithm, considering the overall
relative error of 10�7. Afterward, a velocity distri-
bution is guessed based on which the coe�cients ku
which contain the guessed values of �ge are computed.
Eq. (46) is then solved using TDMA solver and,
after evaluating the shear stress components as well
as �ge;i;j from Eqs. (44) and (45), the new values
are used to update the coe�cients. This procedure
continues until the required overall relative error of
10�7 is achieved. Once the velocity distribution is
obtained, the ow parameters are evaluated by means
of Cavalieri-Simpson method for integration.

Figure 2. Grid dependency analysis of the velocity pro�le
at the channel center.

4. Results and discussion

First of all, a mesh dependency analysis is performed
to �nd out the minimum number of grid points that
provides su�ciently accurate results. A mesh depen-
dency of the velocity pro�le is performed in Figure 2.
This �gure shows that no signi�cant change is occurred
in the results by increasing the number of grid points
in each direction from 100 to 120. More precisely,
the di�erence between the maximum velocity values
obtained by these grid systems is only about 1%. The
dependency of the Poiseuille number on the number of
grid points is also given in Table 1. When the number
of grid points in each direction from 100 is increased
to 120, only about 0.2% change is occurred in the
Poiseuille number. Hence, it seems that a 120 � 120
grid system can provide su�ciently accurate results,
especially because only the graphical data is presented
here.

To estimate the value of 2geWe2 for a typical
microuidic application, a channel height of 100 �m
is considered. Moreover, the parameter 2ge may be
considered to be at most of the order 0.1, based on
2ge,FENE-P= 1=(q + 5). Assuming an electroosmotic
velocity of 1 mms�1, the parameter 2geWe2, then, will
have a maximum value of 0.1 for �ge = 0:1 [38]. The
minimum value of 2geWe2 is clearly zero, correspond-
ing to a Newtonian behavior. Hence, the range 0-0.1 is
considered for 2geWe2.

For validation of the numerical method, the re-
sults are compared with existing literature data for

Table 1. Mesh dependency of the Poiseuille number values. Here, the ow parameters are the same as those of Figure 2.

Number of
grid points

40� 40 60� 60 80� 80 100� 100 120� 120

fRe 241.55 237.40 235.84 235.02 234.47
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the limiting case of a parallel plate geometry. In this
respect, the data reported by Afonso et al. [24] is chosen
for comparison. A large aspect ratio of � = 50 is
considered here for the channel to imitate a slit, and the
velocity pro�le across the channel height at the center
of microchannel, that is x = 0, is chosen for a more
reasonable comparison. Figure 3 shows the comparison
between the velocity pro�les obtained in the present
study with those given by Afonso et al. [24]. As seen,
a complete agreement is observed between the results.
It should be pointed out that the de�nitions of the
Weissenberg number, We, and the velocity scale ratio,
�, in Ref. [24], are completely di�erent from ours and

Figure 3. Comparison between the velocity pro�les
obtained in the present study at the limiting case of a
parallel plate channel and those of Afonso et al. [24].

Table 2. Comparison between the present results and the
results of Vakili et al. [21].

K
fRe

Discrepancy
(%)

Present
study

Vakili
et al. [21]

5 8.7237 8.7264 0.031

10 18.7234 18.7267 0.018

50 98.7139 98.7263 0.013

100 198.6985 198.7268 0.014

we have therefore recalculated their data based on the
present de�nitions.

The present Poiseuille numbers are also compared
with the results of Vakili et al. [21] in Table 2. This
comparison is done assuming a Newtonian uid ow in
a channel of square cross section. It can be seen that
the results are in complete agreement; the maximum
relative error is only about 0.03% which is quite
reasonable.

The presentation of the results is continued by
giving the distribution of U=Um at di�erent values of
K for 2geWe2 = 0:1 in Figure 4. It can be seen that for
smaller values of K, such as K = 5, the velocity pro�le
seems nearly parabolic and it becomes more plug-like
as K increases. For K = 5, the EDL is relatively thick
and the electric body force exists throughout the entire
channel. Thus, the velocity variations exist in almost
the whole channel domain, which results in a nearly
parabolic pro�le. For higher values of K, such as K =
100, the EDL is con�ned to a thin layer near the wall.
Therefore, the velocity variations exist only in this layer

Figure 4. Distribution of U=Um for purely electroosmotic ow in a square duct with 2geWe2 = 0:01 and Z = 2 at
di�erent values of K.
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Figure 5. Dimensionless velocity at centerline for purely
electroosmotic ow at di�erent values of Z.

and the outside uid is dragged by the uid within
EDL, creating a plug-like pro�le.

Figure 5 illustrates the pro�les of the dimension-
less velocity at centerline for purely electroosmotic ow
of a viscoelastic uid with 2geWe2 = 0:1 at di�erent
zeta potentials. The predictions of the Debye-H�uckel
approximation, which are independent of Z, are also
shown with symbols. As expected, an increase in zeta
potential leads to an increase in the velocity, because
of increasing the electroosmotic body force. Moreover,
this �gure reveals that the use of the Debye-H�uckel
linearization may lead to signi�cant errors in predict-
ing the electroosmotic velocity of viscoelastic uids,
as compared to the Newtonian uids for which this
validation is valid for Z � 2 [39]. However, Figure 6
shows that this linearization holds even at high zeta
potentials, provided the velocity is normalized with
the mean velocity. This means that, the Debye-H�uckel
linearization can approximately predict the shape of

Figure 6. Normalized velocity at centerline for purely
electroosmotic ow at di�erent values of Z.

Figure 7. Velocity pro�le at centerline for purely
electroosmotic ow at di�erent levels of elasticity.

the velocity pro�le even at high zeta potentials, even
though it fails to obtain the correct velocity magnitude.

The e�ect of elasticity, characterized by 2geWe2,
on the velocity pro�le, is observed in Figure 7. It is
visible that elasticity e�ects drastically increase the
uid velocity. For a better evaluation of the elasticity
e�ects, the normalized velocity at centerline for purely
electroosmotic ow at di�erent values of 2geWe2 is
given in Figure 8. As seen, an increase in 2geWe2

gives rise to a more uniform velocity pro�le due to
higher elasticity e�ects. In other words, uid tends
to behave more like a solid with the same velocities for
its composed particles.

Figures 9 and 10 respectively depict the dimen-
sionless mean velocity and Poiseuille number values
versus K at di�erent channel aspect ratios. It is
observed that both of these parameters are increasing
functions of K. The variations of fRe with K is
expected because, as is clear from Figure 4, an increase

Figure 8. Normalized velocity at centerline for purely
electroosmotic ow at di�erent levels of elasticity.
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Figure 9. Dimensionless mean velocity versus the
dimensionless Debye-H�uckel parameter.

Figure 10. Poiseuille number versus the dimensionless
Debye-H�uckel parameter.

in this parameter gives rise to higher velocity gradients
at the wall. However, at �rst glance, the variations
of Um with K seem to be odd as we would expect
that the mean velocity would tend to an asymptotic
value at high amounts of K. For interpretation of
this odd behavior, let us assume that the Debye
length remains unchanged while increasing K. Hence,
for increasing K, the channel height should increase.
Accordingly, for the Weissenberg number to remain
unchanged, the relaxation time should increase. The
increase in the relaxation time is to say that the level
of elasticity is increased. As we saw, a higher level
of elasticity is leading to higher velocities. Therefore,
the velocity is an increasing function of K even at
high values of this parameter. It is worth noting
that by using the Debye length as the length scale
in the de�nition of We the mean velocity will tend to
an asymptotic value at high values of K [24]. It is
also observed in Figure 9 that a higher channel aspect
ratio results in a higher mean velocity. This is due

Figure 11. Um versus 2ge We2 at di�erent values of �
and �.

to the fact that, as the channel approaches a square
shape, the corner e�ects become more prominent,
leading to smaller amounts of the mean velocity. The
aspect ratio dependency of the mean velocity vanishes
at higher values of K due to the establishment of
a nearly uniform velocity pro�le. The higher mean
velocities for higher values of �, as expected, lead
to higher Poiseuille numbers, as observed in Fig-
ure 10.

As the last illustration, the values of the dimen-
sionless mean velocity are depicted versus 2ge We2 in
Figure 11. It can be seen that Um is almost a linear
increasing function of 2ge We2, regardless of � and
�. In addition, as expected, the mean velocity is an
increasing function of the velocity scale ratio, because
of increasing the pressure driving force. Another point
taken from Figure 11 is that the pressure e�ects are
more pronounced when the channel shape deviates
from a rectangular geometry. As � increases the
distance between the two vertical walls is increased
for a given channel height, resulting in smaller sur-
face e�ects at the channel center. This, in turn,
prepares the way for a higher e�ect of the pressure
force.

It is worth mentioning that the linearity of
Um� 2ge We2 graph has an interesting outcome. It
means that the velocity gradient at the wall is almost
a linear function of 2ge We2. Combining Eqs. (27)
and (28) with the consideration of the fact that usually
�ge >> 1, due to huge values of stress near the wall for
an electroosmotic ow, it can be concluded that both
Txz and Tyz at the wall are independent of 2ge We2.
This, according to Eq. (34), leads to the disappearance
of the dependency of the Poiseuille number on the level
of elasticity in the uid. This conclusion is justi�ed by
our �ndings. The pertinent graphs are not shown here
in order to save space.
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5. Conclusions

In this paper, the viscoelasticity e�ects on fully devel-
oped electroosmotic ow in a rectangular microchan-
nel were being investigated, utilizing both PTT and
FENE-P constitutive equations. The problem was
handled numerically, using a �nite di�erence based
method for a non-uniform grid. Instead of two separate
analyses, an analysis was performed for both models,
considering generalized parameters. The obtained
results were validated using available literature data.
A comprehensive parametric study showed that al-
though the validity range of the Debye-H�uckel lin-
earization may be much narrower for viscoelastic uids
as compared to that of Newtonian uids, however,
this approximation holds even at high zeta potentials,
provided the velocity is normalized with the mean
velocity. It was also observed that the mean velocity
is almost a linear function of the level of elasticity
in the uid. This linearity was found to lead to
the disappearance of the dependency of the Poiseuille
number on the level of elasticity in the uid. Moreover,
the pressure e�ects are pronounced when the channel
shape deviates from a square geometry. Last but not
least, both the mean velocity and Poiseuille number are
increasing functions of the channel aspect ratio.
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