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Abstract. This paper aims to apply a multi-objective optimization method for optimizing
a truss design problem. This method is named the Multi-Objective Bee Algorithm
(MOBA). In the �rst problem, objective functions minimize stress in two members and
minimize the volume of the truss. In each of the other three problems, the objectives to
be optimized are the value of the total weight of the structure and the total displacement
of nodes, considering limits on the cross section of the elements. The bee algorithm is
developed based on the principle of multi-objective problems. A clustering algorithm is
applied for the multi-objective bee algorithm in order to manage the size of the Pareto-
optimal set. The results provide good evidence of the robustness and e�ectiveness of the
multi-objective bee algorithm in solving the multi-objective optimal truss design.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Optimization methods play very important roles in
practical issues, in particular, computer sciences, en-
gineering and business decision making. Conventional
optimization methods, such as calculus based, listing
based and random search, have a high probability of
being trapped in a local optimum.

Many population-based algorithms have been in-
troduced and used that are less prone to becoming
stuck in local optimum. In mentioning some of
these algorithms, we can begin with Particle Swarm
Optimization (PSO). This algorithm is developed by
considering the nature of bird ocks. Another is Ant
Colony Optimization (ACO), which is inspired by the
foraging behavior of ants and emphasizes the question
of how ants can �nd the shortest path between their
nest and food.
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The basic version of all these algorithms is de-
signed for a single objective problem. However, many
real-world problems are categorized as multi-objective
problems. In multi-objective optimization problems,
several goals must be achieved concurrently in order to
obtain an optimal solution. These objectives are usu-
ally in conict with each other, are not commensurable
and must be achieved simultaneously. One way to solve
this kind of problem is to take one of the objectives
as a main objective and the others as constraints.
The disadvantage of this approach is the limiting of
available choices, which makes the optimization process
a complex task. Another approach is to combine all the
objectives and make a single objective function.

During the last decade, multi-objective optimiza-
tion has become a well-studied research area. The
�rst application of multi-objective optimization con-
cepts in structures began in 1968, in a paper by
Krokosky [1]. Stadler [2] described the scienti�c
application of the concept of Pareto optimality to
problems of natural structural shapes. He used this
concept for the optimal initial shapes of uniform shal-
low arches. Rao [3,4] undertook signi�cant work in
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multi-objective structural optimization with uncertain
parameters. Carmichael [5] suggested the use of the
e-constraint method to the multi-objective optimum
design of trusses. Another more formal treatment of
this subject was given by Koski and Silvennoinen [6]
who proposed a numerical method to generate the
Pareto optimal set of a truss. In further research,
Koski and Silvennoinen [7] proposed scalarization of
the dimension of the problem using a partial weighting
method. Fu and Frangopol [8] formulated a multi-
objective structural optimization technique based on
structural reliability theory. This approach was ex-
plained by solving a hyper static truss. EI-Sayed et
al. [9] used linear goal-programming techniques with
successive linearization to solve nonlinear structural
optimization problems. Hajela and Shin [10] presented
a slight variation of the global criterion approach, used
in conjunction with a branch and bound algorithm.
Another variant of the global criterion approach was
suggested by Saravanos and Chamis [11]. Tseng
and Lu [12] applied goal programming. Grandhi et
al. [13] presented a reliability-based decision criterion
approach for multi-objective optimization of struc-
tures with a large number of design variables and
constraints. Lounis and Cohu [14] used a projected
Lagrangian algorithm to transform the multi-objective
optimization of prestressed concrete structures into
single objective optimization problems. A book by
Eschenanuer et al. [15] is a very valuable guide to
some of the most relevant work in multi-objective
design optimization in the last few years. Good
surveys on multi-objective structural optimization may
be found in [16-18]. Various algorithms for generating
the Pareto set of various optimization problems, such
as the (bounded) knapsack problem [19], ant-Q algo-
rithms [20], fuzzy logic [21], neural networks [21,22],
and genetic algorithms [23-27] have also been devel-
oped.

Nowadays, a more appropriate way to deal with
multiple objective problems is to use techniques that
were originally designed for that purpose in this re-
search area. The bee algorithm is one of these new
techniques in the optimization �eld.

This algorithm does not use mathematical equa-
tions but is a population-based algorithm which mimics
the foraging behavior of honey bees and is inspired by
their swarm intelligence [28]. It is based on three main
components: (1) Food source position, corresponding
to a feasible solution to the given problem; (2) Amount
of nectar, which indicates the quality of the solution;
and (3) The bee type: employed, onlooker, and scout
bee.

The bee algorithm has two balanced searches.
The �rst is a local search that explores a neighborhood
around some determined answers, and the second is a
random global search that explores the total feasible

area. All these features contribute to the novelty of
the bee algorithm.

In this study, the design of truss systems is
performed by the bee algorithm. The multi-objective
bee algorithm is used in solving the problem. The goals
in this optimization process are, in the �rst case, to
minimize stress and volume, and for the other three
cases, to minimize the weight of the structure and the
displacement.

The paper is organized as follows. Section 2 ex-
plains the multi-objective optimization problems math-
ematically. Section 3 explains the Pareto optimality.
Section 4 briey discusses the colony of honey bees in
nature. Section 5 outlines the main steps of the bee
algorithm. Section 6 explains optimization problems.
Section 7 presents the results obtained using the bee
algorithm and other optimization procedures.

2. Multi-objective optimization

This paper describes application of the bee algorithm
to multi-objective optimization problems. The multi-
objective optimization procedure yields a set of non-
determined solutions, called a Pareto optimal set, each
of which is a trade-o� between objectives and can be
selected by the user, regarding application and the
project limits. The bee algorithm is a search procedure
inspired by the way honey bees forage for food. The
general multi-objective optimization problem is posed
as follows [29]:

minimize fi(x) i = 1; 2; :::; l

subject to Cj(x) = 0 j = 1; 2; :::;m

hk(x) � 0 k = 1; 2; :::; p

X = (x1; x2; :::; xn)T ; (1)

where fi(x) are the objective functions, X is the
column vector of the n independent variables, cj(x)
are equality constraints, and hk(x) are inequality
constraints. Taken together fi(x), cj(x) and hk(x) are
known as the problem function. The word `minimize`
means that we aim to minimize all objective functions
simultaneously. If there is no conict between the
objective functions, then, a solution can be found
where every objective function reaches its optimum.
To avoid such trivial cases, it is assumed that there
is not a single solution that is optimal with respect
to every objective function. This means that objective
functions are at least partly conicting. They may
also have di�erent units.

3. Pareto optimum

We say that a point, �x� 2 F , is Pareto optimal if, for
every �x 2 F , either:
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x 2 I fi(�x�) = fi(�x); (2)

or there is at least one i 2 I, such that:
fi(�x�) < fi(�x): (3)

Simply, this de�nition says that �x� is Pareto optimal if
no feasible vector �x exists, which would decrease some
criteria without causing a simultaneous increase in at
least one criterion. Unfortunately, the Pareto optimum
almost always gives not a single solution, but rather a
set of solutions called non-dominated solutions.

4. Bees in nature

A colony of honey bees can develop and extend itself
over long distances in order to exploit a large number
of food sources at the same time [30,31]. The foraging
process starts in a colony by scout bees being sent to
search for promising ower patches. Scouts y around
and look for food. When they �nd a source of nectar
or pollen, they y back to the colony and start dancing
to communicate with other bees in a particular region
in the comb. Figure 1 presents the decoding of the
language of the bee dance [32].

Hence, the behavior of the scout scenario is

Figure 1. Decoding the language of the bee dance.

summarized according to the following activities:

� The scout leaves its colony, searching for food
sources in a random way.

� Once it �nishes a full trip, it returns to its colony.
� When a scout arrives at the colony, it goes inside the

hive and announces its presence by wing vibrations.
This means that it has a message to communicate.

� If it has found a nearby source of nectar or pollen,
it created a circular dance. The nearby bees follow
it through this circular dance and smell it for the
identity of the owers. They listen to the intensity
of the wing vibrations to indicate the value of the
food source.

� If the source is near, no direction is given. Alter-
natively, if the ower source is far from the colony,
careful directions must be given.

� The abstract convention that the scout uses is that
the up position on the comb is the position of the
sun. Because bees can see polarized light, they can
tell the sun's position without actually watching
it. The scout dances in a precise angle from the
vertical direction. This equals the horizontal angle
of the sun, with reference to the colony exit, with
the location of the food source.

� In the next step, the scout bee must tell the other
bees how far away the ower source is. This will be
done by waggling the abdomen from side to side.
The slower the waggling, the farther away is the
distance of the food ower from the colony.

Thus, the dance of the scouts shows the direction,
distance, and quality of the food source. What Von
Frisch notes is that the various groups of scouting bees
compete with each other and, therefore, the decision is
�nally made in favor of the best domicile [33].

5. The bee algorithm

This section summarizes the main steps of the Bee
Algorithm (BA). Pham et al. [34,35] proposed the
bee algorithm, which is a population-based algorithm
imitating the food foraging behavior of swarms of
honey bees. For more detail, the reader is referred
to [36-41]. Table 1 shows the pseudo code for the
bee algorithm. The algorithm requires a number of
parameters which should be set, namely: the number
of scout bees (n), the number of sites selected for the
neighborhood search (out of n visited sites) (m), the
number of top-rated (elite) sites among m selected
sites (e), the number of bees recruited for the best e
sites (nep), the number of bees recruited for the other
(m � e) selected sites (nsp), the initial size of each
patch (ngh) (a patch is a region in the search space
that includes the visited site and its neighborhood),
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Table 1. Psudeo code of the bees algorithm.

1- Initialize population with random solutions.
2- Evaluate �tness of the population.
3- While the stopping criterion is not met,// the new population is formed.
4- Select sites for neighborhood search and determine the path size.
5- Recruit bees for selected sites (more bees for best e sites) and evaluate �tness.
6- Select the �ttest bee from each path.
7- Amend the Pareto optimal set.
8- Assign remaining bees to search and evaluate, randomly, their �tnesses.
9- End while.

and the stopping criterion. The algorithm starts with
n scout bees randomly distributed in the search space
(step 1). The �tness of the sites (i.e. the performance
of the candidate solutions) visited by the scout bees is
evaluated in step 2. While the stopping criterion is not
met, the new population is formed (step 3).

In step 4, the m non-dominated sites are desig-
nated as \selected sites" and selected for a neighbor-
hood search. If there are more than m non-dominated
sites in the population, the �rst m will be selected,
because it is not possible to di�erentiate between them.
If there are less thanm non-dominated sites, from those
which have been dominated only once, the rest will
be selected, and this procedure is continued until a
su�cient number of sites have been chosen. In step 5, a
large patch size is chosen initially. For each patch, the
initial size is kept unchanged as long as the recruited
bees can �nd better solutions in its neighborhood. If
the neighborhood search does make any progress, the
patch size is decreased. This strategy aims at making
the local search more exploitative, searching the area
around the local optimum more densely. Henceforth,
this step will be called the \shrinking method" as well.

In step 6, the algorithm searches around the se-
lected sites. In the basic version of the bee algorithm, it
assigned more bees to search in the vicinity of the best e
sites and selection of the best sites was made according
to the �tness associated with them. In the multi-
objective optimization version of the bee algorithm,
as it involves more than one objective function, it is
not possible to rank the solution candidates all the
time. So, all the selected sites have the same number
of recruited bees to search around the neighborhood.
In step 7, the representative bee will be the original
one, unless it is dominated by one of the recruited
ones; in that case, the representative would be the
new non-dominated bee. In step 8, which has been
added to the basic version of the bee algorithm, in
order to be capable of dealing with multi-objective
optimization problems, if the �ttest is a non-dominated
solution, it will be added to the Pareto optimal set. In
addition, if this solution dominates the other solutions
in the performed Pareto optimal set, the dominated

ones will be removed from the set. In step 9, in a case
where no improvement is gained using the shrinking
method, it is assumed that the patch is centered on
the local peak performance of the solution space. Once
the neighborhood search has found a local optimum,
no further progress is possible. Consequently, the
exploration of the patch is terminated. Henceforth,
this step is referred to as \abandon sites without new
information". In step 10, the remaining bees in the
population are placed randomly around the search
space to scout for new potential feasible solutions. At
the end of each iteration, the colony has two parts to
its new population: representatives from the selected
patches, and scout bees assigned to conduct random
searches. These steps are repeated until a stopping
criterion is met.

6. Multi-objective optimization problems

To introduce our new BA-based multi-objective opti-
mization approach, we will use four design problems. In
the �rst example, objective functions minimize stresses
in each of the two members, AC and BC, and minimize
volume. In each of the other three examples, two ob-
jectives will be considered: minimizing the weight, and
minimizing the sum of deection nodes using the cross
sectional area of each element as the design variables.
These objectives are conicting in nature, because, if
we wish to reduce displacement, we need to increase
the cross-sectional area, consequently, increasing the
weight of the structure. These objectives are also non-
commensurable, because, whereas weight usually has
large values, maximum allowable displacement has, in
general, small values.

A simple diagram of truss analysis and multi-
objective optimization is described in Figure 2.

6.1. Multi-objective optimization of 2-bar
truss design

Figure 3 illustrates the two-bar truss that is to be
optimized. This problem was originally studied using
the "-constraint method [42]. It is comprised of two
stationary pinned joints, A and B, where each one is
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Figure 2. Simple diagram for a multiobjective optimization problem.

Figure 3. 2-bar truss with the objective of minimizing
the stresses in AC and BC and the total structural weight.

connected to one of the two bars in the truss. The
two bars are pinned where they join one another at
joint C, and a 100 kN force acts directly downward
at that point. The cross-sectional areas of the two
bars are represented as x1 and x2; the cross-sectional
areas of trusses AC and BC, respectively. Finally,
y represents the perpendicular distance from the line
AB that contains the two-pinned base joints to the
connection of the bars where the force acts (joint C).
The problem has been modi�ed into a two-objective

problem in order to show the non-inferior Pareto set
clearly in two dimensions. The stresses in AC and
BC should not exceed 100,000 kPa. Hence, in order
to generate Pareto optimal solutions in a reasonable
range, objective constraints are imposed. The problem
formulation is shown below:

min

8><>:f1(x) = x1
p

16 + y2 + x2
p

1 + y2

f2(x) = max (�AC; �BC)
(4)

Subject to:

max (�AC; �BC) � 1(105)

1 � y � 3

xi � 0; (5)

where:

�AC =
20
p

16 + y2

yx1

�BC =
80
p

1 + y2

yx2
: (6)
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Figure 4. 9-bar space truss with the objective of
minimizing weight and the sum of deection of nodes 1
and 2.

Table 2. The loading and displacement bounds for 9-bar
space truss system.

Joint
number

Loading (kN)
Displacement

limitation
(cm)

X Y Z X Y

1 80 0 -32 0.2 0.2
2 -80 48 -32 0.2 0.2

6.2. Multi-objective optimization of 9-bar
truss design

The design of the 9-bar space truss, shown in Figure 4,
is considered with the objective of minimizing weight
and the sum of deection of nodes 1 and 2. Location of
the external load is shown in Figure 4. The loading of
the truss and the upper bounds for the displacements of
the restricted joints are given in Table 2. The members
of the space truss are collected in 3 groups. The
minimum cross-sectional area for members is chosen
as 2 cm2. The modulus of elasticity is taken as
2:06 � 104 kN/cm2. This problem can be written
compactly as:

min

8><>:w(x) =
P9
i=1 �Aili

�(x) =
P2
i=1

q�
�2
ik + �2

iy + �2
iz
�
:

(7)

The design variables are bounded as:

A(l)
i � Ai � A(u)

i i = 1; 2; 3; (8)

Figure 5. 56-bar space truss with the objective of
minimizing the total structural weight and the 1st nodal
displacement.

where the limiting values are taken as:

A(l)
i = 2:0 cm2; A(u)

i = 10 cm2; i = 1; 2; 3: (9)

6.3. Multi-objective optimization of 56-bar
truss design

This problem includes 56-bar space trusses whose
members are collected in three groups, which are
shown in Figure 5. Angle sections are adopted for
members. Joint 1 is loaded with 4 kN in the Y -
direction and 30 kN in the Z-direction, while the
others are loaded with 4 kN in the Y -direction and
10 kN in the Z-direction. The vertical displacements
of joints 4, 5, 6, 12, 13 and 14 are restricted to
4 cm, while the displacement of joint 8 in the Y-
direction is limited to 2 cm. The loading of the truss
and the upper bounds for the displacements of the
restricted joints are given in Table 3. The modulus
of elasticity and the minimum member cross-sectional
areas are taken as 2:06 � 104 kN/cm2 and 2 cm2,
respectively.

The total structural weight, w(x), and the 1st
nodal displacement, �(x), have to be minimized simul-
taneously. We write the two objective optimization
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Table 3. The loading and displacement bounds for 56-bar
space truss system.

Joint
number

Loading
(kN)

Displacement
limitation

(cm)
X Y Z Y Z

1 0 4 30 - -
2 0 4 10 - -
3 0 4 10 - -
4 0 4 10 - 4
5 0 4 10 - 4
6 0 4 10 - 4
7 0 4 10 - -
8 0 4 10 2 -
9 0 4 10 - -
10 0 4 10 - -
11 0 4 10 - -
12 0 4 10 - 4
13 0 4 10 - 4
14 0 4 10 - 4
15 0 4 10 - -
16 0 4 10
17 0 4 10

problems as follows:

min

8<:w(x) =
P56
i=1 �Aili

�(x) =
q�

�2
ix + �2

iy + �2
iz
� (10)

The design variables are bounded as:

A(l)
i � Ai � A(u)

i ; i = 1; 2; 3 (11)

where the limiting values are taken as:

A(l)
i = 2:0 cm2; A(u)

i = 20 cm2; i = 1; 2; 3: (12)

6.4. Multi-objective optimization of 120-bar
truss design

The fourth structure is a 120-bar nonlinear space
truss whose members are collected in 7 groups, as
shown in Figure 6. Angle sections are adopted for
members. The loading of the truss and the upper
bounds for the displacements of the restricted joints
are given in Table 4. The modulus of elasticity and
the minimum member cross-sectional area are taken
as 2:06 � 104 kN/cm2 and 2 cm2, respectively. The
problem formulation is shown below:

min

8><>:w(x) =
P120
i=1 �Aili

�(x) =
q�

�2
ix + �2

iy + �2
iz
� (13)

The design variables are bounded as:

A(l)
i � Ai � A(u)

i ; i = 1; 2; :::; 7 (14)

where the limiting values are taken as:

Figure 6. 120-bar space truss with the objective of
minimizing the total structural weight and the 1st nodal
displacement.

Table 4. The loading and displacement bounds for
120-bar space truss system.

Joint
number

Loading (kN) Displacement
limitation (cm)

X Y Z Z
1 0 0 60 1
2 0 0 30 1
. . . . .
. . . . .
. . . . .

14 0 0 30 1
15 0 0 10 1
. . . . .
. . . . .
. . . . .

37 0 0 10 1

A(l)
i = 2:0 cm2; A(u)

i = 10 cm2; i = 1; 2; 3: (15)

7. Results and discussion

7.1. Multi-objective optimization of two-bar
truss design

The empirically chosen parameters for the bee algo-
rithm are given in Table 5. Figure 7 shows the non-
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Table 5. Parameter of the bees algorithm.

n m e nep nsp ngh imax

100 20 4 50 8 0.1 200

Figure 7. Non-dominated solutions obtained for the
2-bar truss design problem using the bees algorithm and
other optimization methods.

dominated solutions obtained using the bee algorithm.
Deb has investigated this problem [43] using the non-
dominated sorting GA (or NSGA), and another dif-
ferent predecessor, NSGA, called NASGA-II, for �nd-
ing multiple Pareto optimal solution. In comparison
with the number of solutions found by non-dominated
sorting genetic algorithms, it can be seen that the bee
algorithm can �nd more non-dominated solutions.

According to Table 6, the solutions are spread
in the following range: [(0.00403 m3, 99642.131 kPa),
(0.07877 m3, 7661.940 kPa)], respectively, which indi-
cates the superiority of the bee algorithm compared to
other optimization methods.

If minimization of stress is important, the bee
algorithm �nds a solution with stress as low as
7661.940 kPa, whereas the NSGA-II has found a
solution with minimum stress of 8439 kPa. Also, if
minimization of volume is important, NSGA-II �nds
the amount of 0.00407 m3 for volume, whereas the
bee algorithm �nds a solution with a minimum volume
of 0.00403 m3. According to results (Figure 7. and

Figure 8. Non-dominated solutions obtained for the
9-bar truss design problem using the bees algorithm and
other optimization methods.

Table 6), bee algorithm solutions are better than other
methods, both in terms of closeness to the optimum
front and in their spread. Another detail worth
mentioning is that all these solutions have been found
in just one simulation run of the bee algorithm.

7.2. Multi-objective optimization of 9-bar
truss design

The empirically chosen parameters for the bee al-
gorithm are given in Table 5. Figure 8 shows the
non-dominated solutions obtained using the bee algo-
rithm. According to Figure 8, regarding the number
of solutions found by non-dominated sorting genetic
algorithms, it can be seen that the bee algorithm
can �nd more non-dominated solutions. Also, in Fig-
ure 8, the solutions are spread in the following ranges:
[(2.4020 cm, 52,280 cm3), (4.5506 cm, 27,428 cm3)],
respectively, which indicates the superiority of the bee
algorithm compared to other optimization methods.
All these solutions have been found in just one sim-
ulation run of the bee algorithm.

Kelesoglu has investigated this problem [44] using
fuzzy optimization for �nding the optimal solution.
Table 7 summarizes the best solutions for di�erent
optimization methods. This table also provides a com-
parison between the optimal design results reported by

Table 6. Results for 2-bar truss design obtained using the bees algorithm and other optimization methods.

Objective function Methods Min (volume) (m3) Min (max stress) (KPa)

Min(max stress) BA 0.07877 7661.940

Min(volume) BA 0.00403 99642.131

Min(max stress) NSGAII [43] 0.00407 99755

Min(volume) NSGAII [43] 0.05304 8439

Min(max stress) NSGA [43] 0.042012 9474.692

Min(volume) NSGA [43] 0.021023 69996.461

Min(max stress) Palli et al. [42] 0.004445 89983

Min(volume) Palli et al. [42] 0.004833 83268
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Table 7. Results for 9-bar truss design obtained using the
bees algorithm and other optimization methods.

Variables Methods
Fuzzy- Fuzzy-
linear non-linear BA
[44] [44]

A1 (cm2) 7.99 7.95 9.67
A2 (cm2) 2.04 2.05 2.64
A3 (cm2) 6.72 6.74 4.57
Min (w=�) (cm3) 38,846 38,808 36,741
Min � (cm) 3.33 3.37 3.30

the bee algorithm and other algorithms. According to
Table 7, if min (w=�) is important, the bee algorithm
�nds a solution with (w=�) as low as 36,741 cm3, but
fuzzy-linear and fuzzy-non-linear algorithms obtained
solutions of 38,846 cm3 and 38,808 cm3, respectively.
Also, for displacement, the BA found 3.30 cm, whereas,
the fuzzy-linear and fuzzy-non-linear found 3.33 cm and
3.37 cm. Comparing results (Figure 8 and Table 7), one
can conclude that bee algorithm solutions are better
than other methods, both in terms of closeness to the
optimum front and in their spread.

7.3. Multi-objective optimization of 56-bar
truss design

The empirically chosen parameters for the bee al-
gorithm are given in Table 5. The results for the
multi-objective optimization of a 56-bar truss design
are shown in Figure 9. If we attend to Figure 9,
in comparison with the number of solutions found
by fuzzy optimization, it can be seen that the bee
algorithm can �nd more non-dominated solutions, so
that the solutions are spread in the following ranges:
[(0.2180 cm, 39,074 cm3), (3.6427 cm, 44,088 cm3)],
respectively. This indicates the superiority of the bee
algorithm compared to other optimization methods.

It should be pointed out that Kelesoglu solved this

Figure 9. Non-dominated solutions obtained for the
56-bar truss design problem using the bees algorithm and
other optimization method.

Table 8. Results for 56-bar truss design obtained using
the bees algorithm and other optimization methods.

Variables Methods
Fuzzy

optimization [45]
BA

A1 (cm2) 12.3217 12.8042
A2 (cm2) 11.8822 1.65603
A3 (cm2) 13.0863 3.60747
Min (w=�) (cm3) 326,212 164,384
Min � (cm) 0.44208 0.41622

problem using the genetic algorithm to �nd optimal
solutions [45]. Table 8 compares the results obtained
in this research with the outcome of other research.
According to Table 8, if min (w=�) is important,
the bee algorithm �nds a solution with the amount
of 164,384 cm3, but fuzzy optimization calculated
326,212 cm3 for (w=�). Also, for displacement, BA
found 0.41622 cm, whereas fuzzy optimization found
0.44208 cm. In comparison with the results (Figure 8
and Table 7), one can conclude that bee algorithm
solutions have a very good performance, both in terms
of closeness to the optimum front and in their spread.
So, the bee algorithm method can �nd a wide variety
of solutions.

7.4. Multi-objective optimization of 120-bar
truss design

The empirically chosen parameters for the bee algo-
rithm are given in Table 5. In Figure 10, we show the
real Pareto-optimal solution and the result of the bee
algorithm for the multi-objective optimization of the
120-bar truss design. According to Figure 10, the solu-
tions are spread in the following ranges: [(0.1666 cm,
2,441,573 cm3), (0.7834 cm, 995,963 cm3)], which
shows that the bee algorithm method can �nd a wide
variety of solutions.

Kelesoglu has investigated this problem [44] using
the Genetic Algorithm (GA) for �nding optimal solu-

Figure 10. Non-dominated solutions obtained for the
120-bar truss design problem using the bees algorithm and
other optimization methods.
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Table 9. Results for 120-bar truss design obtained using
the bees algorithm and other optimization methods.

Variables Methods
Fuzzy- Fuzzy-
linear non-linear BA
[44] [44]

A1 (cm2) 36.17 34.44 21.52
A2 (cm2) 50.00 26.68 26.37
A3 (cm2) 27.81 40.11 26.52
A4 (cm2) 34.99 32.70 15.23
A5 (cm2) 28.40 39.73 49.17
A6 (cm2) 40.15 33.44 17.43
A7 (cm2) 34.87 32.73 9.62
Min (w=�) (cm3) 2,175,715 2,134,888 1,604,695
Min � (cm) 0.52 0.33 0.3137

tions. Table 9 has performed a comparison between
the results of the bee algorithm with the results of
other optimization methods. It can be seen that
the results of the proposed algorithm are better than
those of the previously reported methods. If min
(w=�) is important, the bee algorithm �nds a solu-
tion with an amount of 1,604,695 cm3, but fuzzy-
linear and fuzzy-non-linear obtained 2,175,715 cm3 and
2,134,888 cm3, respectively. Also, for displacement, BA
found 0.3137 cm, whereas the fuzzy-linear and fuzzy-
non-linear found 0.52 and 0.33 cm, respectively. In
comparison with results (Figure 10 and Table 9), one
can conclude that the bee algorithm solutions have a
very good performance, both in terms of closeness to
the optimum front and in their spread. This indicates
the superiority of the bee algorithm compared to other
optimization methods.

8. Conclusion

We have presented a novel approach to solve engi-
neering design problems based on a simple evolution
strategy. The proposed approach has described a mod-
i�ed version of the bee algorithm and its application
to the search for multiple Pareto optimal solutions in
mechanical engineering problems. We compared our
results with those obtained by other algorithms that
are found to perform well in the same problems. The
bee algorithm found many trade-o� solutions compared
to the number of solutions obtained using other algo-
rithms. Also, the computational cost of our approach
(measured in terms of the number of evaluations of
the objective function) is very low and the proposed
approach is very simple and easy to implement. Thus,
the bee algorithm is a computationally fast, multi-
objective optimizer tool for complex engineering multi-
objective optimization problems.
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